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ABSTRACT
ParaLearn is a scalable, parallel FPGA-based system for
learning interaction networks using Bayesian statistics. Par-
aLearn includes problem specific parallel/scalable algorithms,
system software and hardware architecture to address this
complex problem.
Learning interaction networks from data uncovers causal

relationships and allows scientists to predict and explain a
system’s behavior. Interaction networks have applications
in many fields, though we will discuss them particularly in
the field of personalized medicine where state of the art high-
throughput experiments generate extensive data on gene ex-
pression, DNA sequencing and protein abundance. In this
paper we demonstrate how ParaLearn models Signaling Net-
works in human T-Cells.
We show greater than 2000 fold speedup on a Field Pro-

grammable Gate Array when compared to a baseline con-
ventional implementation on a General Purpose Processor
(GPP), a 2.38 fold speedup compared to a heavily opti-
mized parallel GPP implementation, and between 2.74 and
6.15 fold power savings over the optimized GPP. Through
using current generation FPGA technology and caching op-
timizations, we further project speedups of up to 8.15 fold,
relative to the optimized GPP. Compared to software ap-
proaches, ParaLearn is faster, more power efficient, and can
support novel learning algorithms that substantially improve
the precision and robustness of the results.
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1. INTRODUCTION
ParaLearn is a scalable, parallel FPGA-based system for

learning interaction networks using Bayesian statistics. In-
teraction networks and graphical models have various ap-
plications in bioinformatics, finance, signal processing, and
computer vision. They have found use particularly in sys-
tems biology and personalized medicine in recent years, as
improvements in biological high-throughput experiments pro-
vide scientists with massive amounts of data.
ParaLearn algorithms are based on a Bayesian network

(BN) [19] statistical framework. BNs’ probabilistic nature
allows them to model uncertainty in real life systems as well
as the noise that is inherent in many sources of data. Unlike
other graphical models such as Markov Random Fields and
undirected graphs, BNs are easily capable of learning sparse
and causal structures that are interpretable by scientists [9,
14, 19].
Learning BNs from experimental data helps scientists pre-

dict and explain systems’ outputs and learn causal relations
that lead to new discoveries. Discovering unknown BNs from
data, however, has been a computationally challenging prob-
lem and despite the significant recent improvements in algo-
rithms is still computationally infeasible, except for networks
with few variables [8].
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ParaLearn accelerates BN discovery through exploiting
parallelism in BN learning algorithms. Furthermore, Par-
aLearn uses Markov Chain Monte Carlo (MCMC) optimiza-
tion methods to search for the BNs that can best explain ex-
perimental data. As it was designed for high-performance,
ParaLearn is able to use novel algorithms to address ro-
bustness and precision issues, which have traditionally been
sacrificed to decrease runtime on general purpose processors
(GPPs).
BN modeling has motivated previous studies targeting sin-

gle chip FPGA implementations [5, 20]. Unlike these ap-
proaches, ParaLearn’s focus is to explore different avenues
for system scalability. In order to scale to larger problems
and networks, ParaLearn supports a general mesh of in-
terconnected FPGAs. To increase robustness and find the
true underlying model behind the data, ParaLearn coordi-
nates an ensemble of scoring methods in what we call the
MetaSearch approach.
We implemented ParaLearn on multi-core GPPs, GPUs [17]

and FPGAs. The FPGA implementation achieves the high-
est performance and power savings through best exploit-
ing fine-grained parallelism inherent in the algorithm, but
required the most development effort. Moreover, FPGA
multi-chip systems are interconnected through a topology
customized to ParaLearn algorithms. This allows ParaLearn
to scale, while maintaining performance, using additional
FPGAs.
We demonstrate ParaLearn’s performance, power and scal-

ability in modeling the Signal Transduction Networks (STN)
in human T-Cells. STNs include hundreds of interacting
proteins and small molecules in the cell and regulate nu-
merous cellular functions in response to changes in the cell’s
chemical or physical environment. STNs are important sub-
jects of study in systems biology and alterations in their
structures are profoundly linked to increased risks of human
diseases like cancer [15].
Single cell high-throughput measurement techniques such

as flow cytometry have made it possible to measure and
monitor the activity of small molecules and proteins involved
in STNs. BNs have been successfully applied to reconstruct
possible STN pathways from this data [21]. BN inference
helps determine the causal structure of STNs as well as link-
ing different structures to clinical outcomes. This can lead
to new diagnostics, drug target and biomarker discoveries
and novel prognosis tools [15]. While the previous compu-
tational studies on reconstructing STNs from data involved
few variables (about 10 proteins), a new high-throughput
measurement technology, “CyTof” [4], has been developed
based on mass spectrometry that enables scientists to mea-
sure up to a hundred molecules simultaneously. CyTof cre-
ates the opportunity and the need for more sophisticated
analysis of STNs in cancer cells. We use the data that has
been produced using CyTof technology [4] in our analysis.

2. ALGORITHMS & MAPPING TO FPGAS
BNs [19] are a class of probabilistic graphical models that

are useful in modeling and learning complex stochastic re-
lationships between interacting variables. A BN is a di-
rected acyclic graph G, the nodes of which represent mul-
tivariate random variables V = {V1, . . . , Vn}. The struc-
ture of the graph encodes conditional and marginal inde-
pendence of the variables and their causal relations by the
local Markov property: that every node is independent of

its non-descendants given its parents. The dependence of
nodes on their parents is encoded in local Conditional Prob-
ability Distributions (CPDs) at each node [14, 19]. The joint
probability distribution is decomposed to the product of the
probability of each variable Vi conditioned on its parents Πi:

P (V1, . . . , Vn) =

nY
i=1

P (Vi|Πi)

The CPDs that model P (Vi|Πi) can have different forms
based on the data characteristics. The Multinomial distri-
bution, Linear Gaussian or Mixture of Gaussians are a few
examples of possible CPD formulations. Figure 1.a depicts
an example of a BN with binomial CPDs.
The algorithms that have been developed for learning BNs

usually assign a score to candidate graph structures (based
on how well each graph structure explains the data) and
then search for the best scoring graph structures. The score
of a graph structure G given the data D can be computed in
many different ways. The most popular scoring metrics are
based on Maximum Likelihood (ML), Bayesian Information
Criterion (BIC) or Bayesian methods [14, 16]. The graph
scores also depend on the CPD formulation that is assumed
for the BN. The important observation here is that the graph
score can always be decomposed into a local score at each
node. As we explain later, this enables a general purpose
parallel framework that can accommodate all the different
BN learning algorithms.
While learning CPD parameters for a given graph struc-

ture is a relatively easy task, the computational inference
of the graph structures is an NP-hard problem [6]. Despite
significant recent progress in algorithm development, this is
currently an open challenge in computational statistics that
has remained infeasible except for cases with a small number
of variables [8].
MCMC optimization methods have been used to perform

the search algorithm [5, 8] in this super-exponentially grow-
ing space. MCMC methods are capable of skipping the local
optima in the search space and are preferred over heuristic
search methods in multi-modal distributions. Following [5,
8, 22] we use MCMC in the order space instead of directly
searching the graph space. The order space is smaller than

the graph space (2O(n log(n)) vs. 2Ω(n2), where n is the num-
ber of variables or nodes of the BN). Moreover, the order
space enables powerful search operations (such as swapping
the position of two nodes) leading to better exploration of
the search space.
For any BN there exists at least one total ordering of

the vertices, denoted as ≺, such that Vi ≺ Vj if Vi ∈ Πj .
An example of a BN and a compatible order is depicted in
Figure 1. To employ MCMC in the order space, one per-
forms a random walk in the space of possible orders and
at each step accepts or rejects the proposed order based on
the current and proposed orders’ scores (according to the
Metropolis-Hastings rule [13]). The score of a given order
is decomposed into the scores of the graphs consistent with
the order: Score(≺ |D) =PG∈≺ Score(G|D), which can be
efficiently calculated as shown in [10]:

Score(≺ |D) =
X
G∈≺

nY
i=1

LocalScore(Vi,Πi;D,G)

=

nY
i=1

X
Πi∈Π≺

LocalScore(Vi,Πi;D,G) (1)
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After MCMC converges, each order is sampled with a fre-
quency proportional to its posterior probability. The high
scoring orders include the high scoring graphs and these
graph structures can be extracted from the orders in par-
allel.
Local score generation must finish before the MCMC Or-

der Sampler can start walking the order space. The compu-
tation of local scores in Equation 1 depends on the scoring
metric as well as CPD formulations. Local scores are calcu-
lated from the raw data for the possible parent sets of that
node and only once for each node. The MCMC Order Sam-
pler then scores randomly generated orders by traversing the
list of possible parent sets for each node and accumulating
the local score of each parent set that is compatible with
the current order. Each node’s score is then multiplied to-
gether to form the order score, according to Equation 1. The
MCMC Order Sampler usually needs to perform hundreds of
thousands or even millions of iterations before convergence
and this is where more than 90% of computation takes place
[5].
Therefore BN inference is a three step computation prob-

lem:

1. Preprocessing: local scores are generated according
to the CPD formulation and scoring method for pos-
sible parent sets.

2. Order and Graph Sampling (“MCMC Kernel”):
the high scoring order structures are learned from data
and the high scoring graph structures are sampled from
these orders. This step usually takes 90% of execution
time on general purpose processors.

3. Postprocessing: higher level analysis processes such
as visualization and other tools for comparing and us-
ing the learned graph structures.

To achieve high-throughput as well as flexibility, ParaLearn
uses general purpose computing tools (GPPs) to perform the
first and third steps and optimizes the MCMC Kernel (sec-
ond step) by using a customized hardware implementation.
The key observation that leads to this efficient and flexi-
ble design is that while the different BN scoring and search
methods differ in the first and third steps, all feature the
same kernel (second step). In the next section we will ex-
plain how the computations needed for the MCMC Kernel
are mapped and optimized to FPGA platforms.

3. IMPLEMENTATION
In this section, we discuss how the MCMC Kernel is im-

plemented on a single FPGA and scaled to multiple FPGAs.

3.1 Mapping the MCMC Kernel to an FPGA
The MCMC Kernel’s computation is performed by an

MCMC Controller, Scoring Unit and Graph Sampler Unit,
shown in Figure 2.

3.1.1 MCMC Controller
The MCMC Controller Unit (MCU) performs the sample

(order) generation as well as deciding whether to keep or
discard a sample based on its score. The MCU uses the two
dimensional encoding to represent orders as in [5]. In the
two dimensional encoding of an order, each row represents
a “local order” and encodes the possible parents of the node
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Figure 1: A Bayesian Network with 4 variables and
Binomial CPDs. a: The CPD at node B, which
encodes the distribution of B given different states
of its parents. b: An order that is compatible with
the graph. c: Two dimensional one-hot encoding of
the same order.

corresponding to that row, as is shown in Figure 1. The
MCU performs the random walk by swapping the position
of two nodes (corresponding rows and columns in the two
dimensional encoding) to create new samples, and accepts
the new sample with probability A based on the Metropolis-
Hastings rule:

A(≺→≺′
) = min

 
1,

Score(≺′ |D)
Score(≺ |D)

!

Since the scores represent very small probabilities, all com-
putations are done in logarithmic (log) space. This also
allows the reduction step on the FPGA to be implemented
as simple additions rather than multiplications. Therefore,
the MCU decides whether to keep the new sample by sub-
tracting the old score from the new score and compares this
number to the log of a random number. A hardware LFSR
and a log look-up table are designed to generate the required
random numbers.

3.1.2 MCMC Scoring Unit
When the MCU generates an order, the MCMC scoring

unit (MSU) is responsible for calculating and returning the
resulting score to the MCU. As introduced in Section 2, the
scoring process for each local order involves traversing over
a set of parent sets (stored in memory) and accumulating
the local score of each compatible parent set. The accumu-
lation process is associative and commutative and can be
decomposed into as many smaller, parallel accumulations as
the implementation platform can accommodate.
On Virtex-5 FPGAs, each accumulation circuit (called

a scoring core or ‘SC’) requires Block RAM (BRAM) for
parent set and local score lookups, regular FPGA logic to
implement the accumulator itself, and either BRAM or dis-
tributed/LUT RAM (LRAM) to implement a log lookup op-
eration. Score look-ups are made with BRAMs because of
their high bandwidth and single cycle access. Using LRAM
for log look-ups saves BRAM resources for parent sets and
scores but constrains routing high-utilization/frequency de-
signs.
At the MSU’s top level, the logic responsible for scoring

one node (or ‘SN’) is replicated for each node that the system
must support. Nodes are then divided into SCs, which are

85



MCMC
Controller

Platform
Interconnect
Network

RCBIOS
Harness

Scores

Key
Scoring Data
Scoring Logic

Resulting Score

One
node

Proposed Order

Scoring Post-Processor

Score
Threads

Block RAM

Enable?

LOG
Table

Score

ParentSet
Score
ThreadsEn

ab
le
?

LOG
Table

Score

Pa
re
nt
Se
t

Sc
or
in
g
D
at
ap
at
h Scoring
D
atapath

+

Previous Core

Next CoreScoring Core

Lo
ca
lO
rd
er

LocalO
rder

Graph
Sampler

Graph
Sampler

Node

Scoring Core

Scoring Core

Scoring Core

Graph
Sampler

Graph
Sampler

Graph
Sampler

+

+

Previous
Node

N
ex
tN
od
e

Lo
ca
lO
rd
er
(fr
om

M
C
M
C
C
on
tr
ol
le
r)

Graph Sampler
Accumulator

Graph Score

Order Score

Graph Sampler
Accumulator

Accumulator

Block RAM Column Block RAM Column

29 node system
3 scoring cores per node

Xilinx Virtex-5
LX155T FPGA

MCU

Ethernet

RCBIOS 
Harness

Node

Node

Node

PLiN

PLiN PLiNPLLLLLLLLLLLLLLLLLLLLLLLLLiiiiiiiiiiiiiiiiiiNNNNNNNNNNNNNNNNNNNNN

PLiN

Figure 2: A ParaLearn MCMC Kernel on a single FPGA, supporting 29 nodes.

assigned BRAMperSC 18Kbit BRAM, given by:

BRAMperSC =

‰
Network Size

32× 1
Ports

ı
+

‰
FP Precision

32× 1
Ports

ı

Ports is either 1 or 2 for Virtex-5 FPGA BRAMs, mean-
ing that each BRAM can be dual-ported to increase perfor-
mance. Within each SC, the score accumulation datapath
is pipelined and time-multiplexed between hardware scor-
ing threads in order to maintain a one-score-per-cycle accu-
mulation in the steady state, regardless of clock frequency.
Each SN is assigned as many SCs as is necessary to sup-
port the problem specified parent-sets-per-node (PPN) con-
straint. This architecture strives to minimize BRAM depth
and maximize throughput per SC, which in turn maximizes
performance.
When the MCU broadcasts an order, the order is split into

local orders and, through a pipeline that fans out across the
FPGA, sent to each node’s SCs in parallel. Each SC starts

and finishes scoring its local order at the same time since
the scoring process is a data independent memory traversal.
Once scoring is complete, each SC’s result is accumulated as
shown in Figure 3. Linear accumulation is used to accumu-
late in nearest-neighbor fashion across SCs and SNs because
the Virtex-5 FPGA’s BRAMs are arranged in columns.
To avoid rerunning FPGA CAD tools for different net-

works, each node and SC in the MSU can be enabled or
disabled at runtime. Each SC that does not receive any
parent sets from software is considered disabled and is by-
passed during the score accumulation process. If all SCs
within an SN are bypassed in this way, the entire SN is by-
passed. This means that an MCMC Kernel that is designed
to accommodate an N node and P PPN system can accom-
modate any number of nodes ≤ N and any number of PPN
≤ P .
When the system is synthesized to support more PPN

than it needs to support a given network, the system can
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achieve a greater speedup. This is because every parent set
BRAM is designed to behave like a restartable FIFO. Thus,
each SC only scores as many parent sets as have been loaded
at initialization. By spreading out parent sets across the SCs
as evenly as possible, the kernel can optimize at runtime for
arbitrary problems.

3.1.3 MCMC Graph Sampler Unit
Determining which graph will produce the highest score

from each order is a process typically undertaken by software
after order sampling is complete [17]. ParaLearn’s FPGA
Kernel determines graphs and their scores in parallel with
the order scoring process.
The highest scoring graph consists of the highest scoring

parent set for each node. Thus, each SC must keep track of
the highest scoring parent set it has seen throughout each
iteration. When order scoring is complete, the graph score
is accumulated separately across SCs and the graph itself is
assembled and sent to software (see the “Graph-Samplers”
in Figure 2). Assembling the final graph takes more clock
cycles than accumulating the order score, so the ith order’s
graph is assembled while the (i+ 1)st order is issued by the
MCU. Through integrating the graph sampling step into the
order sampler, graph sampling costs zero time overhead.

3.1.4 GateLib & RCBIOS
GateLib [12] is a standard library of hardware and soft-

ware code with an integrated build and test framework.
GateLib was developed at U.C. Berkeley and includes ev-
erything from standard registers, to DRAM controllers, to
build and test tools which ensure that both the library and
designs such as ParaLearn are operating correctly.
For ParaLearn the most significant component of GateLib

is the sub-library called RCBIOS, which provides a Recon-
figurable Cluster Basic Input/Output System for the kind
of FPGA computing platforms used in this work. RCBIOS
provides three primary interfaces between hardware and soft-
ware: remote memory access (RDMA), control and status
registers and data streams. RCBIOS is built on top of
a flexible Network-on-a-Chip interconnect and XLink, an-
other sub-library of GateLib which provides simple hard-
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Figure 4: RCBIOS infrastructure and hard-
ware/software blocks supporting MCMC. From
right to left, the system is initialized. From left to
right, results are collected.

ware/software communication. Implemented directly in RTL
Verilog (i.e. without any service processors), the RCBIOS
modules provide high-performance, low cost and easy-to-use
communications between the FPGAs and the front-end sys-
tem.
ParaLearn uses RCBIOS to initialize system state and to

collect resulting graphs and their scores as shown in Fig-
ure 4. After the pre-processing step, ParaLearn software
uses RCBIOS to send parent sets, local scores, a node count,
an iteration count, and an initial order to the reconfigurable
cluster (referred to as Load T ime). As each order is scored,
its highest scoring graph and that graph’s score is streamed
back to software and post-processed.

4. SCALABILITY
When the problem becomes too large for a single FPGA,

the MCMC Kernel must be spread across multiple FPGAs.
ParaLearn leverages the BEE3 [2] platform’s mesh network
(see Figure 5), composed of both interchip links between
the four FPGAs, and CX4 links between BEE3’s. A multi-
FPGA MCMC Kernel is composed of a master FPGA and
one or more slave FPGAs. The master FPGA contains MCU
and MSU logic. The slave FPGAs are used for their MSUs
only and score any local order which arrives, returning the
partial score to the master FPGA. In all cases, since the logic
which differentiates master and slave is relatively small com-
pared to total FPGA area, a single FPGA bit-file is used for
both master and slave, and each is configured at runtime
through software. This simplifies the process of reconfigur-
ing and managing the system as more FPGAs need to be
introduced to support larger problems.
ParaLearn augments the BEE3 mesh network with a gen-

eral cross-chip router to support additional FPGAs without
having to modify the pre-existing system. The router, a ded-
icated circuit called the “Platform Interconnect Network”
or PIN [18], interfaces with firmware designed to support
both interchip tuning and interboard protocols. Further-
more, PIN uses dimension order routing to channel packets
both to and from the master FPGA. When the MCU broad-
casts an order, a subset of the order is sent directly to the
master’s MSU, and the remainder is packetized and sent to
the slave FPGAs in the system. As the scoring process takes
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the same amount of time for every node, the master FPGA
decreases total scoring time by sending local orders to slave
FPGAs whose hop latency to the master1 is greatest, first.
The hop latency is made up of hops across interchip and in-
terboard links, and therefore is not completely determined
by the manhattan distance between two FPGAs.

4.1 FPGA Platforms
ParaLearn’s scalability, coupled with the dearth of indus-

try standards, makes it important for us to address the
tradeoffs between different multi-FPGA or reconfigurable
cluster platforms. Reconfigurable cluster platforms differ in
the number and type of FPGAs per board, the connection
topology, as well as supported peripherals and interfaces.
Platforms range from the Dini Group DN9000K10 which
consists of a mesh of FPGAs, to the Xilinx ACP that uses
an Intel front-side-bus (FSB) to connect a smaller number
of FPGAs to a CPU.
ParaLearn targets the BEE3 reconfigurable cluster plat-

form from BEEcube [2]. The BEE3 consists of four Virtex-
5 LX155T FPGAs, two channels of DDR2 SDRAM per-
FPGA, and a point-to-point interconnect. The interconnect
for each FPGA consists of two “interchip” links, which form
a ring on the board, and two 10GBase-CX4 Ethernet inter-
faces for interboard connections. ParaLearn as discussed in
section 4, uses these connections to assemble a mesh network
of MCMC cores.
Unlike platforms that embed a full network of FPGAs in

a single PCB, such as Dini Group boards, the CX4 connec-
tions on the BEE3 are cable-based, which allows the system
to be reconfigured to meet the application’s needs. This al-
lows different FPGAs in the system to be connected directly
together in order to reduce inter-FPGA hop count, or to in-
crease the size of the overall system. These CX4 connections
come at a price, having latency on the order of several dozen
cycles, as opposed to the 5 cycles between FPGAs on one
board.
When comparing the BEE3 against bus-connected plat-

forms like the Xilinx ACP, there is a tradeoff between cluster
size and front-end communication. Bus-connected platforms
like the ACP are limited by bus sharing and score accumu-

1Measured in clock cycles across the mesh.

lation will scale linearly in time with the number of FPGAs.
By contrast the BEE3 can take advantage of score reductions
at each hop, accumulating multiple FPGA’s score at a single
time. Furthermore, the cost of the ACP systems must in-
clude a processor which is of no particular use to ParaLearn
and adds to purchase, complexity and maintenance costs.
While ParaLearn is currently implemented on a BEE3 sys-

tem due to the characteristics of the algorithm, this is not
the only compatible implementation platform, and the sys-
tem can be efficiently implemented on other platforms. In
particular the system was developed in part on the Xilinx
ML505 demonstration boards, which are comparable to a
quarter of a BEE3, and provide a low-cost entry level FPGA
platform.

5. RESULTS AND ANALYSIS
Our primary study analyzes 22 proteins in human cancer

T-Cells with data from CyTof technology. We use 10,000
single cell measurements of the 22 proteins and limit the
search indegree for the graph search to 4. Therefore, we
have 7547 possible parent sets for each node and that we
need at least two Virtex-5 LX155T FPGAs to implement
one MCMC Kernel.

5.1 Quality of Results
To assess the correctness of the FPGA design, we tested

the software and FPGA versions of the algorithms on syn-
thetic data simulated from known BN structures such as the
ALARM [1] network and we were able to reconstruct the net-
work on both implementations. The only approximation in
the FPGA implementation compared to the software version
is the fixed point conversion of the local scores and lookup
table entries. We used 32 bit fixed-point precision and while
this results in a small change in the graph scores (less than
0.1 - that is about 0.1% of the score), the relative orderings
of the graph structures do not change and the best graph
structures found by the two implementations are identical.
With simulated data like the ALARM network, the CPD

formulations are known, while with real data like CyTof, we
do not know which CPD is the closest representative of the
underlying interactions in the system. Therefore we applied
two different CPD formulations to learn the interaction in
this system—shown in Sections 5.1.1 and 5.1.2.
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As we expected the final results of the two kernels are
significantly different. The Multinomial encoding results in
a sparser model with 14 edges while the Linear Gaussian
results in a denser model with 63 edges. There are 6 edges
that appear in both models. These different graphs need to
be further validated by scientists and domain experts and
their true quality should be measured by their predictive
power on new data sets from the STN.

5.1.1 Multinomial CPD
For the Multinomial representation we need to discritize

raw data that is continuous. We used Biolearn software [3] to
perform the discritization to a three-level discrete data set.
The local score of a given parent set for each node using
Bayesian formulation (with Dirichelet priors on parameters)
is calculated as: BayesianLocalScore(Vi,Πi;D)

LSVi,Πi = log

 
riY

k=1

Γ(αik)

Γ(αik +Nik)

|Vi|Y
j=1

Γ(Nijk + αijk)

Γ(αijk)

!

where ri =
Q

Vj∈Πi
|Vj | [7]. α is the BDe prior parameter

introduced in [14]. Nik and Nijk are sufficient statistics
(counts) that are calculated from experimental data D.
5.1.2 Linear Gaussian CPD
The joint probability distribution of variables in a Gaus-

sian network is a multivariate Gaussian distribution. We
used the BIC scoring method and, as shown in [11], the lo-
cal scores can be calculated as: BICLocalScore(Vi,Πi;D)

LSVi,Πi
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−mn
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where m is the number of variables and n is the number of
observations. SπiX is the covariance matrix of the node and
its parents and Sπi is the covariance matrix of the parent
variables. γ is the penalty parameter that is used to adjust
the BIC score to penalize the more complex networks in the
search algorithm.

5.2 Design Space Exploration
Sections 5.2.2 through 5.2.5 present different studies used

to evaluate ParaLearn in terms of scalability, performance,
area and power. In our analysis, we use an “orders per sec-
ond” (OPS) metric to determine performance. Unless oth-
erwise noted, all tests are run on the following hardware:

FPGA: Xilinx Virtex-5 XC5VLX155T (-2 speed) FPGAs

GPP: Intel(R) Core(TM) i7 CPU QuadCore running at
3.07 GHz, with 12 GB of Memory and with an ad-
vertised TDP of 130 W.

For perspective, the Virtex-5 is a generation-old FPGA
family and the XC5VLX155T is a mid-sized chip in the fam-
ily.

5.2.1 Software Generator
To help conduct performance studies, we use software to

generate MCMC Kernels that are optimized for different
networks. The generator takes as input the desired network
size, PPN, and parameters describing the implementation
platform (such as BRAM dimensions and the number of FP-
GAs available to solve the problem). From this information,
the generator sets parameters used by the FPGA CAD tools

that describe how many SCs should be instantiated in each
node, and also how each of the SCs should be implemented.
To build the optimal configuration, the software genera-

tor first determines the theoretical maximum performance
through fixing the network size, PPN, and hardware re-
sources, while scaling the number of SCs per node. Gen-
erally, performance will increase with the number of SCs to
the point where the result accumulation step overwhelms the
SC’s execution time. Figures 7 and 9 exemplify the pare-to
optimum curves as a function of SCs per node.
The generator varies the number of SCs per node by adding

more single-ported SCs or dual-porting existing SCs. Adding
single-ported SCs costs the most BRAM and FPGA logic,
but can be done incrementally until the system runs out of
FPGA fabric. Using dual-ported SCs is “all or nothing”—if
one SC is dual-ported, the rest have to be as well or the
performance benefit is masked by the slower SCs. Adding
single-ported SCs also increases the maximum PPN that the
system can support, while dual-porting does not. ParaLearn
dual-ports SCs when the required PPN is low or the system
is BRAM constrained.

5.2.2 Current Scalability
In this section we compare the 22 parameter2 CyTof data

across currently attainable3 FPGA configurations in order
to show how speedup and power consumption is affected by
the hardware configuration used to support the problem.

BRAM SCs / Clock OPS Power / Power /
port FPGA (Mhz) FPGA Problem
mode (W) (W)

Two FPGAs (nodes per FPGA = 11)
Single 88 100 86,730 10.56 21.12

150 122,951 13.82 27.64
Three FPGAs (nodes per FPGA = 8)

Single 64 100 88,106 10.33 30.99
150 124,792 12.38 37.14
200 159,109 10.96 32.88

Double 128 100 144,092 11.72 35.16
150 195,567 14.39 43.17

Four FPGAs (nodes per FPGA = 6)
Single 48 100 84,962 9.94 39.76

150 119,048 11.26 45.04
200 153,022 10.13 40.52

Double 96 100 137,363 10.56 42.24
150 184,729 12.80 51.20
200 226,501⊕ 11.85 47.40

Eight FPGAs (nodes per FPGA = 3)
Single 24 100 77,640 9.73 77.84

150 109,649 11.06 88.48
200 152,091 10.33 82.64

Double 48 100 114,679 10.68 85.44
150 160,600 11.06 88.48
200 201,005 10.51 84.08

Table 1: MCMC Kernel study on the 22 parame-
ter CyTof data (PPN = 7547) on one and two BEE3
boards. The highest performance “attainable” con-
figuration for each system composed of N FPGAs is
shown in bold.

The OPS column in Table 1 shows the performance im-
pact of spreading the 22 parameter problem across different

2One parameter corresponds to one node.
3An“attainable” configuration can fit into the allotted hard-
ware and meet timing at the specified frequency.
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arrangements of FPGAs. For each number of FPGAs, tri-
als are run for {100, 150, 200} Mhz clock frequencies and
for both single and dual-ported SCs. To isolate the effect
of scaling across FPGAs, all configurations support exactly
8 single or dual-ported SCs per node. If a configuration in
this permutation isn’t listed in Table 1, it was not attainable.
As more FPGAs are used to support the problem, config-
urations using the same number of SC ports and the same
clock frequency tend to degrade in performance due to an
increased hop latency in the FPGA mesh. With additional
hardware, however, more aggressive configurations (in terms
of SC porting and clock frequency) become “attainable.”
The Power columns in Table 1 show power utilization

for different configurations. All power results are gathered
through the Xilinx XPower Analyzer after simulating traces
through the system running the 22 parameter CyTof data
set. As we have fixed the number of SCs per node in each
experiment, the power consumption per FPGA drops in
sparser FPGA configurations however total system power
(taking into account the number of FPGAs) tends to in-
crease. We found that this is due to fixed cross-FPGA
communication overhead, namely the interchip links in each
sample (which produced ≈ 3.8 W ) and the GTP connections
(responsible for ≈ 1 W ) in the 8 FPGA experiment. Fur-
thermore, Table 1 shows that in general, 150 Mhz configura-
tions require more power than 200 Mhz configurations. We
attribute this to there being an extra clock in 150 Mhz con-
figurations (interchip requires a 200 Mhz clock and RCBIOS
requires a 100 Mhz clock—thus the MCMC Kernel can use
those existing clocks when running at 100 or 200 Mhz).
Figure 6 shows the FPGA resource utilization for all at-

tainable 2–4 FPGA configurations in Table 1. In general,
using dual-ported SCs increases performance improves by
≈ 1.6× and more evenly uses FPGA resources. In practice,
we observed that designs that utilize a majority of FPGA
logic resources could not route at higher frequencies when
LRAM was also heavily utilized. To get around this prob-
lem for 200 MHz configurations, we more heavily relied on
BRAM rather than LRAM to implement log tables, relative
to 150 MHz configurations.

5.2.3 Projected Scalability
In this section, we explore how larger FPGAs can be

used to increase system speedup. For this experiment, we
used the software generator (Section 5.2.1) to project per-
formance over a range of SC counts per node (shown in
Figure 7). We verified these trends through:

1. Direct comparison with hardware performance for “at-
tainable” configurations.

2. Gate-level simulation at fixed intervals on the curve,
and at the projected upper-bound, for configurations
requiring larger FPGAs.

Extrapolated from Figure 7, larger FPGAs will provide
between 1.5× and 1.7× speedup over current configurations
assuming a comparison across the same number of FPGAs.
If the problem is able to fit onto a single FPGA, power will
be minimized4 and speedup can increase by up to 2.61×.
4In addition to saving power with less FPGAs, single FPGA
configurations do not use interchip and GTP connections,
which we showed to be a large contributor to total power
consumption.
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Figure 7: Scaling the number of SCs per node for
the 22 parameter CyTof data. All experiments are
carried out with dual-ported SC BRAMs, a 200 Mhz
clock, and assuming that an FPGA chip can support
any number of SCs. The vertical bar indicates the
point that our current hardware allows us to achieve.
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Figure 8: Scaling the number of FPGAs for the
22 parameter CyTof data. Samples are taken at
200 Mhz with dual-ported SCs.

It is also important to consider how performance degrades
as the number of FPGAs in the system increases. To iso-
late this effect, we constrain the software generator to 8
dual-ported SCs per node while increasing the number of
FPGAs, as shown in Figure 8. In order to maximize per-
formance, each FPGA mesh is arranged so that the hop
latency from the master FPGA to any given slave FPGA
is minimized. The occasional kinks in the graph are due to
adding an FPGA with a new greatest hop latency. As can
be seen, the greatest performance hit is moving from one
to two FPGAs, with the performance decreasing linearly as
the number of FPGAs increases.

5.2.4 Current Flexibility
This section studies how ParaLearn can scale to handle

different networks.
As the FPGA CAD tools take an appreciable amount of

time to run, it is important to study how a general FPGA
bitfile, configured for up to N nodes and P PPN performs
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for different problems. Table 2 shows different configura-
tions for problems spanning over four FPGAs (a single BEE3
board). All configurations maximize PPN and place per-
formance as a second-order constraint in order to tolerate
denser networks. Thus, this study synthesizes only single-
ported BRAMs and shows results for the highest attainable
clock frequency (150 MHz for every experiment).
All configurations are first shown assuming that all avail-

able parent set memory is used. The 22 parameter CyTof
data’s performance is shown in rows whose PPN column is
marked with a �. The closest configuration to the CyTof
data (A) achieves .8× performance relative to the most ag-
gressive, attainable bitfile (marked ⊕ in Table 1) while the
next closest (B) achieves .6× the performance, and the last
(C) maintains .4× performance. The drop-off is due to there
being less SCs per FPGA, which is due to larger networks
requiring wider parent set logic.

Nodes Nodes / SCs / PPN OPS
FPGA Node Max Actual Limited

8 2 58 59,392 128 99 −
16 4 28 28,672 28,672 1,941 113,208
24 6 15 15,360 15,360 10,903 110,457

�7,547 “” 180,288A

32 8 11 11,264 11,264 4,992 103,306

�7,547 “” 134,168B

40 10 8 8,192 8,192 9,920 91,296

�7,547 “” 94,399C

Table 2: MCMC Kernel flexibility study. All ex-
periments are carried out with single-ported SCs
and a 150 Mhz clock. “Max” refers to the highest
PPN that our current hardware can support, “Ac-
tual” corresponds to the PPN used to benchmark
the system (performance is shown in the “OPS” col-
umn) and “Limited” is the PPN when the indegree
is fixed (Section 5.2.5).

Table 2 also shows the point at which the MCMC Kernel
becomes BRAM limited in handling different networks. For
a network of N nodes, there are a possible 2N−1 different
parent sets. Theoretically, the 8 node network across four
FPGAs can tolerate 59,392 parent sets but a network of that
size will only ever have 28−1 = 128 parents (for this reason,

an 8 node network would never be spread across four FPGAs
in practice). The 16 node network, on the other hand could
have 32,768 different parent sets, yet the MCMC Kernel can
only tolerate 28,672 parents.
ParaLearn tolerates BRAM constrained networks through

limiting the number of parent sets. This can be done in two
ways:

1. Using smarter parent set filtering algorithms based on
supervised learning techniques that can learn the sub-
set of variables that are correlated with a node value
and then include those as possible parent sets.

2. Limiting the maximum indegree of the graphs. With
this approach, ParaLearn includes parent sets up to
size K, where usually 2 < K < 6. This decreases the
parent set count from 2N−1 to

PK
i=0

`
N−1

i

´
.

Method 1 is more flexible as candidate parent sets for
each node will be optimized and learned separately. For the
22 parameter CyTof data we used method 2 (K = 4) as
it does not impose additional runtime and is a reasonable
assumption for 22 node networks.

5.2.5 Projected Flexibility
Using Method 2, Figure 9 shows peak performance curves

for each network, again as a function of SCs per node. The
8, 16, 22, and 24 node networks use indegree = 4 while the
32 and 40 node networks use indegree = 3. X notches in the
graph represent where 22 parameter CyTof configurations sit
on each curve that supports ≥ 22 nodes and ≥ 7547 PPN.
As in Table 2, bitfiles designed for less similar networks, rel-
ative to the 22 parameter data, show less performance. In
general, networks will lower PPN requirements reach peak
performance with less SCs per node because the ratio be-
tween SC kernel time and result accumulation decreases as
problem size decreases.

5.3 End-to-End Computation
In this section we compare 22 parameter CyTof end-to-end

(“time to graphs”) performance between an optimized GPP
implementation [17] and an MCMC Kernel using different
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numbers of FPGAs. This study runs 100,000 MCMC itera-
tions over 50 random restarts, where each random restart re-
sets the system with a different initial order (starting point).
After the MCMC Kernel completes, the final graph results
are sorted by their scores and probabilities are normalized
against a weighted average to produce a final graph.

Architecture End-to-end time (s)
GPP (optimized) 0 +44.6+18.8=63.4

FPGA (2x) 4.5+40.6+ 0 =45.1
FPGA (3x) 4.5+25.5+ 0 =30.0
FPGA (4x) 4.5+22.1+ 0 =26.6

Table 3: MCMC Kernel end-to-end performance
comparison against an optimized GPP solution.
Times are broken into: Load T ime + Order Sampler
+ Graph Sampler.

Table 3 shows how the Order Sampler’s speedup scales
with the number of available FPGA chips. The pre-processing
time starts to dominate the problem as the core is acceler-
ated. Preprocessing currently takes 185 seconds for multi-
nomial CPDs and 50 seconds for Linear Gaussian CPDs.

6. SOURCES OF SPEEDUP
In this section we compare different MCMC algorithm im-

plementations, using different optimizations, to show where
the speedup in our approaches comes from. Table 4 shows
the“best effort”end-to-end run times for a baseline GPP im-
plementation, optimized GPP implementation (derived from
[17]), and attainable FPGA configurations. For this partic-
ular problem and network’s size, [17] has shown that the
GPU does not perform well relative to the GPP. Thus, only
GPP numbers are shown here. As can be seen, FPGA load
time weighs down the FPGA’s performance while the graph
sampler weighs down the GPP.

The baseline GPP implementation was written in C and
applies no software optimizations. The optimized GPP im-
plementation performs bitwise operations where possible,
uses software multi-threading, and caches results to improve
performance. The FPGA implementation exploits the fine-
grained parallelism afforded by the BRAMs and uses bitwise
manipulation, however, does not cache. In the remainder of
the section, we will distill the different optimizations used
in each approach to try to explain performance differences.
First, we compare the benefits of threading the GPP and

FPGA implementations. We implicitly implemented multi-
threading on the FPGA through exploiting BRAM paral-
lelism. Through adding pthreads to the baseline C im-
plementation, we were able to achieve a 2× speedup with
10 threads running on a quad core/8 thread machine. The
cross-thread communication in the result accumulation step
seems to weigh down the pthreads speedup. The FPGA can
best take advantage of parallelism because of fine-grained
BRAM access and because it can optimize the result accu-
mulation step at the gate level.
Second, we implemented a fixed point implementation of

the baseline GPP model so that it can more closely be com-
pared to the FPGA, which is also fixed point. Fixed point on
the GPP does not improve performance. This may be due to
the fact that the floating point units are nearly as optimized
and fast as the integer units on modern processors.
Third, we compare the effect of caching on the GPP to the

FPGA. Caching works by pairing orders with their scores,
which is valid because a given order will always have the
same score. We did not implement caching on the FPGA
because it requires dedicated logic and makes execution time
problem dependant (unlike this work’s “orders per second”
metric). Work done by [17] (which provided data for the op-
timized GPP in Tables 3 and 4) shows how different problem
configurations have different cache performance. The ben-
efit achieved through caching is based on how long it takes
the problem to converge.
Caching is naturally suited for the GPP/GPU because

these platforms have built-in caches that don’t come at ex-
tra design cost. After paying the logic penalty, however,
caching can be implemented on FPGAs. In order to con-
struct an analytic model of cache performance, we consider
the following types of caches:

Order: A cache that sits next to the MCU and caches whole
orders.

Node: A cache at each node that stores only local orders
and their partial scores. A GPP benefits from every
hit in every node cache. The FPGA only benefits if
every5 node’s cache hits in the same iteration.

Both caches’ performance will depend on their capacity and
hash function. On an FPGA, we have two options for cache
storage: off-chip memory (we assume DRAM) and on-chip
BRAM. DRAM requires a DRAM controller and has gi-
gabytes of capacity, however carries an access latency that
varies with address and locality. BRAM requires only the
minimum support logic as is necessary and is single-cycle
access, however takes up BRAMs that would otherwise be
used for SCs. In order to maximize cache capacity, we will

5If a single node misses in the cache, the rest of the system
has to wait for the partial score to be computed at that
node.
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Architecture Time (s)
100,000 iterations, 0 restarts 100,000 iterations, 50 restarts 100,000 iterations, 100 restarts

GPP (baseline) 0 +970+ 20 = 990 0 +48500+ 60 = 48560 0 +97000+ 60 = 97060
GPP (optimized) 0 + 5.2 +0.85= 6.05 0 + 44.6 +18.8= 63.4 0 + 78.8 +31.3= 110.1

FPGA (2x) 4.5+0.81+ 0 = 5.31 4.5+ 40.6 + 0 = 45.1 4.5+ 81.3 + 0 = 85.8
FPGA (3x) 4.5+0.51+ 0 = 5.01 4.5+ 25.5 + 0 = 30.0 4.5+ 51.1 + 0 = 55.6
FPGA (4x) 4.5+0.44+ 0 = 4.94 4.5+ 22.1 + 0 = 26.6 4.5+44.15+ 0 = 48.65

Table 4: MCMC Kernel end-to-end performance comparison against an optimized GPP solution. Times are
broken into: Load T ime + Order Sampler + Graph Sampler.

# FPGAs Time (s) Speedup
Baseline Order Node Both

3 25.50 25.47 10.17 10.07 2.53×
4 22.1 21.98 8.63 8.53 2.59×

Table 5: FPGA speedup when using both order and
node caches. This test compares 22 node CyTof data
over 100,000 iterations and 50 restarts.

assume DRAM-based caches. Since DRAM is centralized,
logic dedicated to hash functions and cache control are a one
time cost.
Work done by [17] has shown us that when running the

22 node CyTof data with 100,000 iterations and 50 restarts,
there are 22,978 hits in the order cache, 103,757,230 hits
in the node caches (∼ 95% GPP node cache hit rate), and
3,274,755 iterations that hit in every node’s cache (∼ 65%
FPGA node cache hit rate). Given this, we construct an
analytical model of cache benefit on the FPGA:

CPO =
Raw × (Total−Oh −Nh) + Oa ×Oh +Na ×Nh

Total

where CPO is “cycles per order,” O{h,a} are the order cache
hit count and access time (in cycles), N{h,a} are the same
figures for the node cache, Raw is cycles per order without
caching and Total is the number of orders proposed to the
system. Table 5 shows a theoretical study of how the FPGA
implementation would fare with the caching optimization.
We assume a pipelined hash function initiates back-to-back
DRAM reads for node cache lookups and a single read for
an order lookup. Thus, cache lookup latency is given by:

Oa = TMCU +Th +DRAMa = 5 + 10 + 25 = 40

Na = TMCU +Th +DRAMa +NS = 5 + 10 + 25 + 22 = 62

where TMCU is the mandatory overhead in the MCU, Th is
a conservative cycle latency for the pipelined hash function,
DRAMa is a conservative DRAM access time (in cycles), and
NS is the network size (in nodes). This study assumes that
all FPGA caches are non-blocking and proceed with order
scoring during the cache look-up. Furthermore, we assume
that partial scores retrieved from the node cache accumulate
as each new score arrives, hiding the result accumulation
step’s latency. For this data set, we observe ≈ 2.59× im-
provement against the baseline FPGA implementation when
using both caches. Furthermore, the caching FPGA attains
a ≈ 4.86× improvement over the optimized GPP.

7. DISCUSSION AND CONCLUSIONS
Graphical models and in particular Bayesian Networks are

of great importance in our data intensive era. They can

help scientists learn causal interactions and are useful tools
in personalized medicine where there are substantial high-
throughput experiments to measure gene expressions, DNA
sequence and protein abundance. In this paper we demon-
strated ParaLearn’s usability in learning network structure
and used the STN in human T-cells as a motivating example.
ParaLearn’s accelerated and integrated solution enables sci-
entists and physicians to use computationally intensive BN
inference algorithms in real time settings.
As discussed in Section 5, the learned graphs can be quite

different for different CPD formulations. While conventional
BN structure learning techniques limit their search to one
or few CPD models because of computation complexities,
ParaLearn can execute many of these possible CPDs in par-
allel. We would like to further explore this MetaSearch ap-
proach in our future work. We will study how the differ-
ent learned graphs can be validated and compared or inte-
grated to produce a final model. We believe that the novel
MetaSearch approach increases the robustness of the algo-
rithms and makes BN modeling a more useful and reliable
tool for scientists.
In Section 5.2, we provided power results for currently

attainable FPGA configurations. Comparing our power re-
sults to the GPP shown in Section 5.2, we show a 2.74×
power improvement (considering only the FPGA and GPP
die) using our most aggressive configuration over 4 FPGAs.
Furthermore, our lowest performance 2 FPGA configuration
from Table 1 shows a 6.15× power advantage and maintains
1.02× the performance of the optimized GPP in Table 3.
We used GPP TDP to perform power analysis meaning that
our power advantage is an upper bound. In a complete sys-
tem, the infrastructure around both the FPGA and GPP
costs additional power. Unlike a GPP, however, ParaLearn
does not require any external devices except for an Ethernet
PHY, reducing off-FPGA power overhead.
In Section 5.2, we also projected how performance will in-

crease with larger and more FPGAs. To help meet projected
speedups, the new generation of Xilinx FPGAs, the Virtex-6
family, which retails in 2010, provides up to 5× the BRAMs
(our limiting factor) and 3× the logic of the FPGAs used in
this work. Architecturally, these new FPGAs are the same
as our current FPGAs. Thus, ParaLearn can be ported to
this new platform to realize the projected speedup. Tak-
ing into account larger FPGAs, without caching, we project
4.88× speedup relative to the current optimized GPP (a
single Virtex-6 can accommodate the 22 parameter CyTof
problem).
As we presented in Section 5.3, the pre-processing step

that currently runs on a single GPP has become the bottle-
neck relative to the FPGA kernel. We are currently explor-
ing a parallel implementation of the pre-processing step for
different CPD methods. The pre-processing step for discrete
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data maps best to an FPGA as it involves bit operations
and popcount functions. The continuous data pre-processing
would probably benefit most from a GPU implementation
because of the heavy usage of floating point matrix opera-
tions. On the FPGA, however, pre-processing would have
the added benefit of eliminating the Load T ime bottleneck
revealed in Section 5.3 and 6.
In Section 6, we observed how caching, and other opti-

mizations, have benefitted GPP implementations by several
orders of magnitude over a baseline. We plan to explore
different caching implementations on the FPGA in order
to learn about the performance/area tradeoff in that space.
Factoring caching into our projected speedup with larger
FPGAs, we have a 8.15× advantage over the current opti-
mized GPP.
ParaLearn is a framework and design suite for conduct-

ing interaction networks research. We have shown different
approaches and performed a design space exploration at the
pre-processing, order, and graph sampling steps. Through
this work, our goal is to make interaction network studies
tractable as technology, such as CyTof, produces data sets
at orders of magnitude greater size and complexity than ever
seen before.
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