
ParaLearn: A Massively Parallel,
Scalable System for Learning

Interaction Networks on FPGAs

Christopher W. Fletcher

Greg Gibeling

Dan Burke

John Wawrzynek

UC Berkeley

Narges B. Asadi

Eric Glass

Karen Sachs

Zoey Zhou

Wing Wong

Garry Nolan

Stanford

Outline

• What is ParaLearn?
– Introduction: Terminology and objective

– Motivation: Learning the structure of cell signaling networks

– Algorithm and architectural overview

• Results
– Design {scalability, flexibility}

– End-to-End runtime

• Sources of speedup

• Closing

June 2nd ParaLearn (ICS 2010) 2

Introduction

ParaLearn is a specialized computer for
conducting research on interaction networks

• We use software for:

1. Control infrastructure

2. Less computationally intensive steps

• We use hardware (FPGAs) for:

Accelerating the algorithm kernel

June 2nd ParaLearn (ICS 2010) 3

B

A

D

C

4 node interaction network:

A, B, C, D are nodes

A and C are parents of B

{A, C} is the parent set of B

Introduction Approach Architecture Results Optimizations Closing

Cell Signaling Networks

• Flow Cytometry
– Data in the form of “raw”

quantitative observations

– Measurement of proteins & other
components inside cells

• Cell Signaling Networks
– Structures that model

protein signaling pathways

– Modeling perturbations to a network can
help uncover the cause of human disease

June 2nd ParaLearn (ICS 2010) 4

Goal: Given flow cytometry ‘CyTof’ data, learn the structure of cell signaling networks

This talk

Introduction Approach Architecture Results Optimizations Closing

Signal Transduction Networks

June 2nd ParaLearn (ICS 2010) 5

Introduction Approach Architecture Results Optimizations Closing

• Carry extra-cellular signals

(heat, cold, pressure, etc)

throughout the cell

• Span from membrane nucleus

• Traditional model:

Linear/independent protein chains

• Modern model:

All proteins interact

in a complex network

‘STN’s: The cell’s communication medium

Signals

Bayesian Networks

• “Belief Network”
– Directed acyclic graph

– Structure encodes…

• Conditional independence

• Causal relationships

• Bayesian Score
– A basis for comparing Bayesian Structures

– Based on prior belief and observations

June 2nd ParaLearn (ICS 2010) 6

)|()(),(GDPGPGDP

Experimental data

Prior probability
Graph

Courtesy of Tom Griffiths (U.C. Berkeley)

Grass

Wet

RainSprinkler
Rain

F

T

T F

Sprinkler

.4 .6

.01 .99

T F

Rain

.2 .8

Sprinker Rain T F

Grass Wet

F F
F T
T F
T T

0 1
.8 .2
.9 .1
.99 .01

)|(),...,(
1

1

N

i

iiN VPVVP

Parent Set for node
iV

Introduction Approach Architecture Results Optimizations Closing

Macro Approach

• End-to-end computation
(1) Pre-processor: Calculate local scores per parent set

(2) “Order Sampler”: Determine the high scoring orders (algorithm kernel)

(3) “Graph Sampler”: Extract graphs from high scoring orders

(4) Post-processing: high-level analysis and normalization

• Strategy
– Implement steps (1) and (4) in software

– Parallelize (and merge) steps (2) and (3) in hardware

June 2nd ParaLearn (ICS 2010) 7

Introduction Approach Architecture Results Optimizations Closing

Goal: Determine which network best explains the data

• Order sampler: |order space| < |graph space|

Kernel Considerations
• Learning graph structure is an NP-hard problem

– Search space grows super-exponentially with the graph’s node count

– Multiple local optima, encoding best-solutions, may exist

June 2nd ParaLearn (ICS 2010) 8

Nodes Graphs

4 453

5 29281

10 4.7x1017

20 2.34x1072

Introduction Approach Architecture Results Optimizations Closing

1 Order

A B C D

E

B

A

D

C
E

2+ Graphs

• MCMC sampling, “Restarts”: jump out of peaks

A B C D E

A B C D

E

B

A

D

C
E

B

A

D

C
E

Likely

Unlikely, but possible

Forced Restart

score(Order order):

orderScore = 0

nScore = Integer.MIN_VALUE

For each node (n):

For each parent set (ps):

If ps is “compatible” with order:

nScore = log(e + e)

orderScore = orderScore + nScore

nScore = Integer.MIN_VALUE

return {order, orderScore}

Micro Approach

Algorithm FPGA Implementation

+

+

+

+

+

+

+

+

+

+

+

+

Cross-Thread

Cross-Port

Cross-Core

From Node i-1

Scoring Core

+

Node i+1

Port A Port B

Block RAM

+

Node N

Software Pre-Processing (initialization)

MCMC Controller

Loca
l O

rd
er N

L
o
c
a
l
O

rd
e
r

i

Local Order i+1

Node i

Threading

N

i

ii

i

GDVLocalScoreDscore
1

),;,()|(

nScorels[n][ps]

Introduction Approach Architecture Results Optimizations Closing

June 2nd ParaLearn (ICS 2010) 9

Scoring Post-Processor

Score Threads

Block RAM

E
n

a
b

le

log

Table

Score Threads

E
n

a
b

le

log

Table

+

Previous Core

Next Core

Scoring Core

Graph Sampler Graph Sampler

FPGA Core

June 2nd ParaLearn (ICS 2010) 10

MCMC

Controller

Platform

Interconnect

Network

RCBIOS

Harness

Scores

Node

Scoring Core

Scoring Core

Scoring Core

Graph

Sampler

Graph

Sampler

Graph

Sampler

+

+

F
ro

m
 M

C
M

C
 C

o
n

tr
o

ll
e

r

Next

Neighbor

Previous

Neighbor

Key

Scoring Data

Scoring Logic

Point where Proposed

Score is produced

One node

Proposed Order

29 node system

3 scoring cores per node

Xilinx Virtex-5

LX155T FPGA

Introduction Approach Architecture Results Optimizations Closing

Floorplanner

June 2nd ParaLearn (ICS 2010) 11

Abstract View vs. Actual Implementation

MCMC

Controller

Key

Red: Scoring Logic

Blue: Scoring Data

Ethernet

RCBIOS

Harness

Node

Node

Node

MCMC

Controller

Platform

Interconnect

Network

RCBIOS

Harness

Scores

PLiN

PLiN
PLiN

PLiN

Introduction Approach Architecture Results Optimizations Closing

System Infrastructure
• RCBIOS – Part of GateLib

– Scalable FPGASoftware communication

– Composed of Verilog, Java, and Apache ANT

– NoC (as opposed to bus) based

– XLink: physical link independent (UART/Ethernet/JTAG/VPI)

June 2nd ParaLearn (ICS 2010) 12

XLinkRCBIOS

MCMC

Kernel

NoC

Switch

RDMA

NoC

Switch

NoC

Switch

NoC

Switch

UART or

Ethernet
Register File

Register File

Stream

RDMA

Stream

ParaLearn

Pre-Processing

Parent Sets &

Local Scores

Post-Processing

Results

In
iti

al
iz
at

io
n Internet

Internet

RCBIOS ParaLearnXLink

Hardware Software

Introduction Approach Architecture Results Optimizations Closing

FPGA Array

June 2nd
ParaLearn (ICS 2010)

13

“MCMC Mesh”
Idea: Split larger problems across multiple FPGAs

* While maintaining the base design

• Additional Infrastructure

(1) Inter-chip ring connections

(2) Inter-board Aurora high-speed links

(3) Platform Interconnect Network (PLiN)

built on (1) and (2)

A B

C D

A B

C D

A B

C D

A B

C D

BEE3

BEE3

BEE3

BEE3

Slave

Slave

Slave Slave

Slave

Master FPGA

BEE3 BEE3

BEE3 BEE3

Orders

Orders

Scores

Scores

Scores

Scores

Introduction Approach Architecture Results Optimizations Closing

Scalability

Performance

Theme: Given a fixed network, vary hardware resources

Introduction Approach Architecture Results Optimizations Closing

0

10

20

30

40

50

60

70

80

90

100

P
o

w
e

r
(W

)
Power / FPGA

Power / Problem

FPGAs

2 3 4 8

CyTof Network
– 22 nodes

– 4 indegree 7547 parent sets per node

Power

0

50000

100000

150000

200000

250000

300000

350000

400000

1 11 21 31 41 51 61 71 81

FPGAs

O
P

S

0

100000

200000

300000

400000

500000

600000

700000

1 11 21 31 41 51 61 71 81 91

1 FPGA

2 FPGAs

3 FPGAs

4 FPGAs

8 FPGAs

Scoring Cores per Node

O
P

S

0

100000

200000

300000

400000

500000

600000

700000

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6

1 FPGA
2 FPGAs
3 FPGAs
4 FPGAs
8 FPGAs

Cores per Node

O
P

S *OPS: “Orders per second”

FPGA block RAM is limited

Limit the indegree of the explored graphs

Flexibility

June 2nd 15

Theme: Given fixed hardware, vary the network

FPGA CAD tools are slow

Add hardware overhead to accommodate

any network up to a given size

Problems

Solutions

ParaLearn (ICS 2010)

Introduction Approach Architecture Results Optimizations Closing

0

50,000

100,000

150,000

200,000

250,000

16 22 24 32 40

Max PPN

7547 PPN

Supported Network Size

O
P

S

General bitfile
Specialized bitfile

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

8 16 24 32 40

P
P

N

Indegree=3
Indegree=4
4x FPGAs

Network Size

Scalability + Flexibility

June 2nd 16

Introduction Approach Architecture Results Optimizations Closing

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 11 21 31 41 51 61 71 81 91

8 Nodes, PPN = 99

16 Nodes, PPN = 1941

22 Nodes, PPN = 7547

24 Nodes, PPN = 10903

32 Nodes, PPN = 4992

40 Nodes, PPN = 9920

O
P

S

Scoring Cores per Node

8 SCs per Node

9 SCs per Node

10 SCs per Node

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 11 21 31 41 51 61 71 81 91

8 Nodes, PPN = 99

16 Nodes, PPN = 1941

22 Nodes, PPN = 7547

24 Nodes, PPN = 10903

32 Nodes, PPN = 4992

40 Nodes, PPN = 9920

O
P

S

Scoring Cores per Node

8 SCs per Node

9 SCs per Node

10 SCs per Node

Theme: Given different networks, vary hardware resources

End-to-End Runtime

• “Time to graphs” – this includes:
1. Pre-processing

2. FPGA load time

3. FPGA run time (includes order and graph sampling)

4. Post-processor (overhead is hidden)

• Over the 22 node CyTof data, varying the number of restarts

June 2nd ParaLearn (ICS 2010) 17

0 Restarts 50 Restarts 100 Restarts

Computation Step GPP FPGA GPP FPGA GPP FPGA

Pre-processing (Multinomial) 185 “”

Pre-processing (Linear Gaussian) 50 “”

Load time 0 4.5 “”

Order sampler 5.2 0.44 44.6 22.1 78.8 44.15

Graph sampler 0.85 0 18.8 0 31.3 0

Total 6.05 4.94 63.4 26.6 110.1 48.65

* Times in seconds

Introduction Approach Architecture Results Optimizations Closing

Sources of Speedup & Caching

• Considering FPGA and GPP implementations,

which architecture benefits in what ways?

• We have considered…

bitwise optimizations, threading/parallelism,

fixed vs. floating point, and caching

• Caching

Insight: order N score M

– Used by both GPU & GPP implementations

– Can be made at an order or node granularity

• Caching analytic model

– DRAM-based order and node caches, modeling:

hash function, DRAM latency, hit rate,

all-or-nothing node cache hits

June 2nd ParaLearn (ICS 2010) 18

Setup Time (s)

Baseline FPGA 22.1

Order cache 21.98

Node cache 8.63

Both caches 8.53

Speedup 2.59x

Introduction Approach Architecture Results Optimizations Closing

Platform OS Time (s)

Baseline GPP 48500

Optimized GPP 44.6

FPGA 4x 22.1

Performance Optimizations

• Pre-processing on FPGA
– (1) “Pre-processing” has become new bottleneck

– Map “Local score” generation to each FPGA in network

– Transport “observations” data to FPGAs

Insight: Observation files are small, score files are large

• Additional parallelism
– FPGA load time can overlap with the pre-processing step

(hides load time)

– The MCMC controller can be ‘threaded’ with multiple restarts

(hides result accumulation overhead)

June 2nd ParaLearn (ICS 2010) 19

Introduction Approach Architecture Results Optimizations Closing

Closing

This work is an example of how a hand optimized, low- level

FPGA design can lead to significant performance and power

benefits over conventional processors and GPUs

Algorithm performance is having immediate impact on

work done by Biologists who are studying STNs

Our approach’s cost: large development and debug time

Our group is currently working on high-level programming abstractions
that will ease development effort, ideally without losing efficiency

June 2nd ParaLearn (ICS 2010) 20

Introduction Approach Architecture Results Optimizations Closing

Acknowledgements

For making this work possible, the authors thank:

– NIH / Cancer Research Institute Grant #130826-02

– M. Linderman et al.

– Stanford Nolan Lab

– Members of the Berkeley Reconfigurable Computing Group

– UC Berkeley Wireless Research Center (BWRC)

– Contributors to the GateLib research library

June 2nd ParaLearn (ICS 2010) 21

Introduction Approach Architecture Results Optimizations Closing

