ParaLearn: A Massively Parallel, Scalable System for Learning Interaction Networks on FPGAs

Christopher W. Fletcher Greg Gibeling Dan Burke John Wawrzynek Narges B. Asadi Eric Glass Karen Sachs Zoey Zhou Wing Wong Garry Nolan

UC Berkeley

Stanford

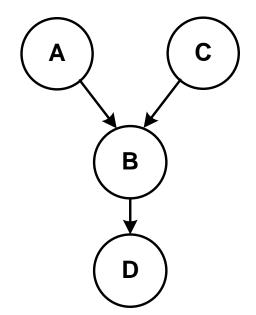
Outline

- What is ParaLearn?
 - Introduction: Terminology and objective
 - Motivation: Learning the structure of cell signaling networks
 - Algorithm and architectural overview
- Results
 - Design {scalability, flexibility}
 - End-to-End runtime
- Sources of speedup
- Closing

Introduction

ParaLearn is a specialized computer for conducting research on interaction networks

- We use software for:
 - 1. Control infrastructure
 - 2. Less computationally intensive steps
- We use hardware (FPGAs) for: Accelerating the algorithm kernel



4 node interaction network: A, B, C, D are **nodes** A and C are **parents** of B {A, C} is the **parent set** of B

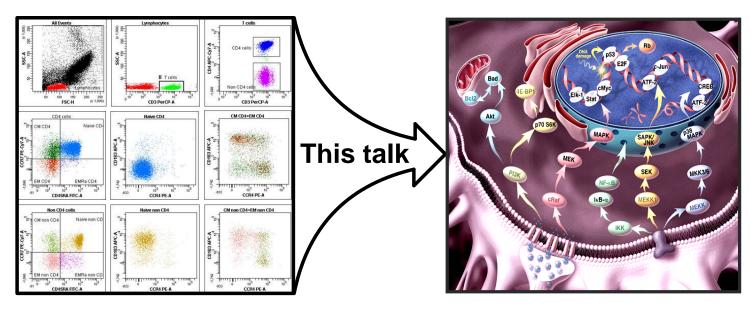
3

Cell Signaling Networks

Goal: Given flow cytometry 'CyTof' data, learn the structure of cell signaling networks

- Flow Cytometry
 - Data in the form of "raw" quantitative observations
 - Measurement of proteins & other components inside cells

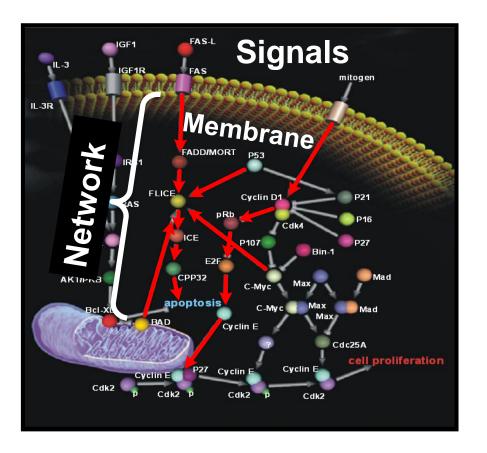
- Cell Signaling Networks
 - Structures that model protein signaling pathways
 - Modeling perturbations to a network can help uncover the cause of human disease



Introduction Approach Architecture Results Optimizations Closing

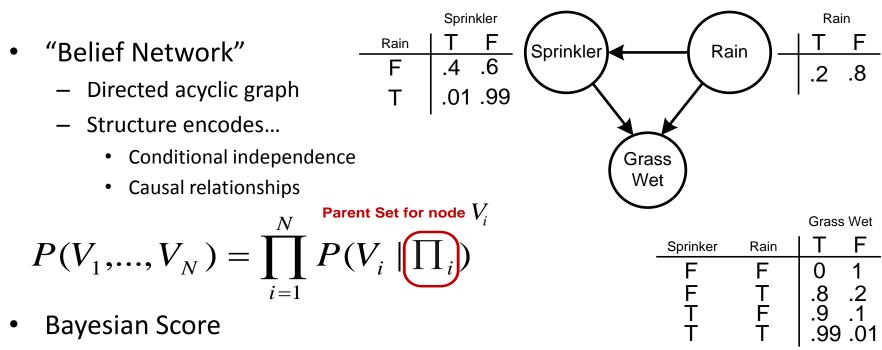
Signal Transduction Networks

'STN's: The cell's communication medium



- Carry extra-cellular signals (heat, cold, pressure, etc) throughout the cell
- Span from membrane \rightarrow nucleus
- Traditional model: Linear/independent protein chains
- Modern model:
 All proteins interact
 in a complex network

Bayesian Networks



- A basis for comparing Bayesian Structures
- Based on prior belief and observations
 Experimental data

$$P(D,G) = P(G)P(D|G)$$

Prior probability

Graph

ity ParaLearn (ICS 2010) Courtesy of Tom Griffiths (U.C. Berkeley)

Macro Approach

Goal: Determine which network best explains the data

- End-to-end computation
 - (1) Pre-processor: Calculate local scores per parent set
 - (2) "Order Sampler": Determine the high scoring orders (algorithm kernel)
 - (3) "Graph Sampler": Extract graphs from high scoring orders
 - (4) Post-processing: high-level analysis and normalization

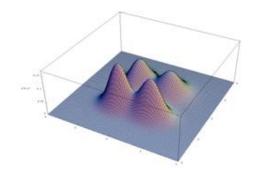
- Strategy
 - Implement steps (1) and (4) in software
 - Parallelize (and merge) steps (2) and (3) in hardware

Kernel Considerations

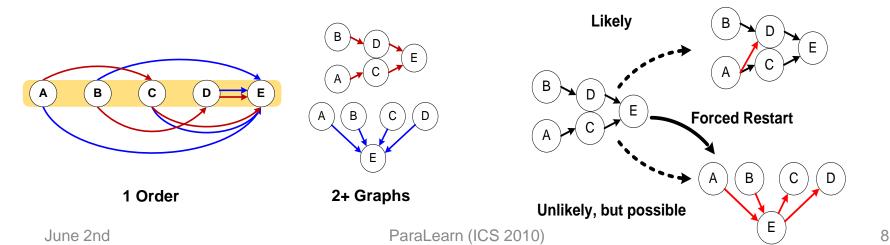
- Learning graph structure is an NP-hard problem
 - Search space grows super-exponentially with the graph's node count
 - Multiple local optima, encoding best-solutions, may exist

Nodes	Graphs
4	453
5	29281
10	4.7x10 ¹⁷
20	2.34x10 ⁷²

• Order sampler: |order space| < |graph space|



• MCMC sampling, "**Restarts**": jump out of peaks



Micro Approach

Architecture

Algorithm

Introduction

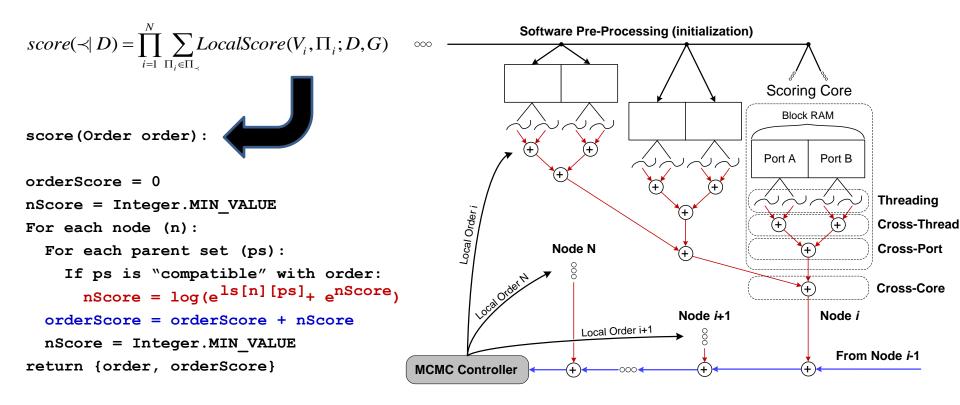
Approach

FPGA Implementation

Results

Optimizations

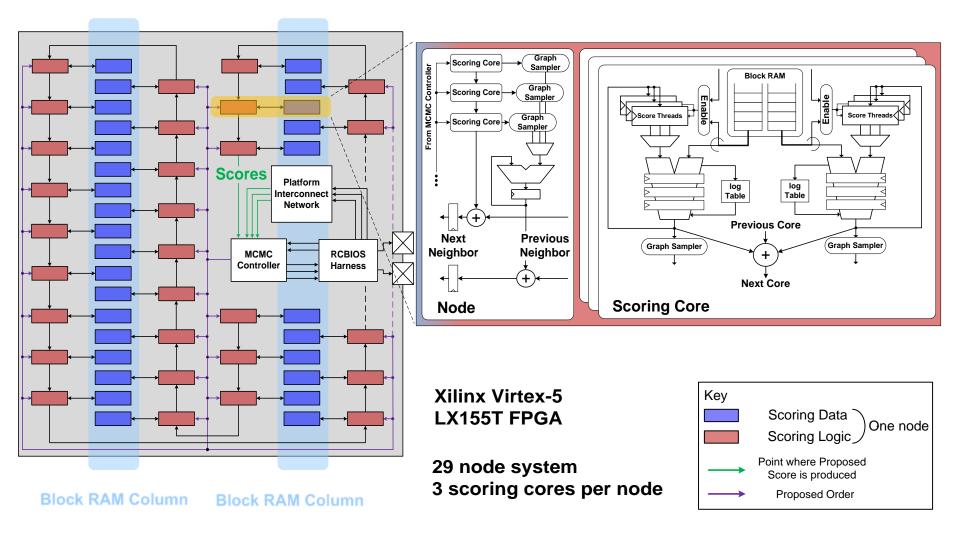
Closing



Optimizations

Closing

FPGA Core

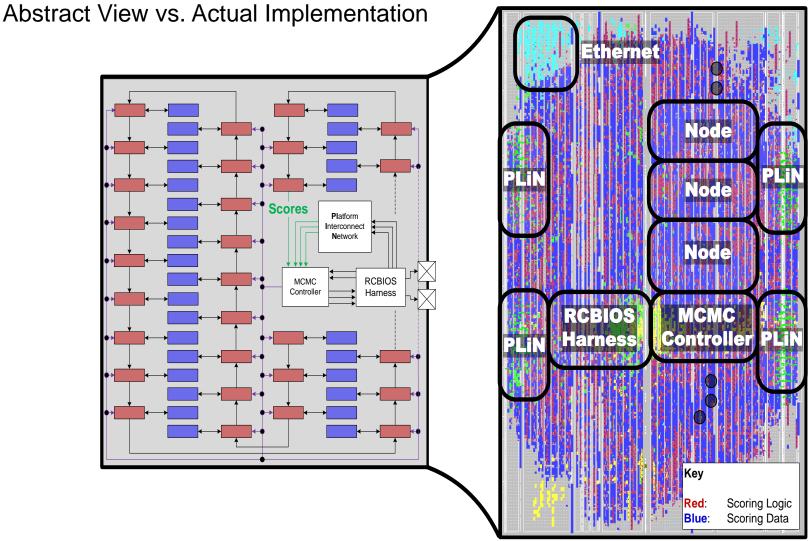


Floorplanner

Results

Optimizations

Architecture



Introduction

Approach

Closing

System Infrastructure

Results

Optimizations

Closing

Interne

Architecture

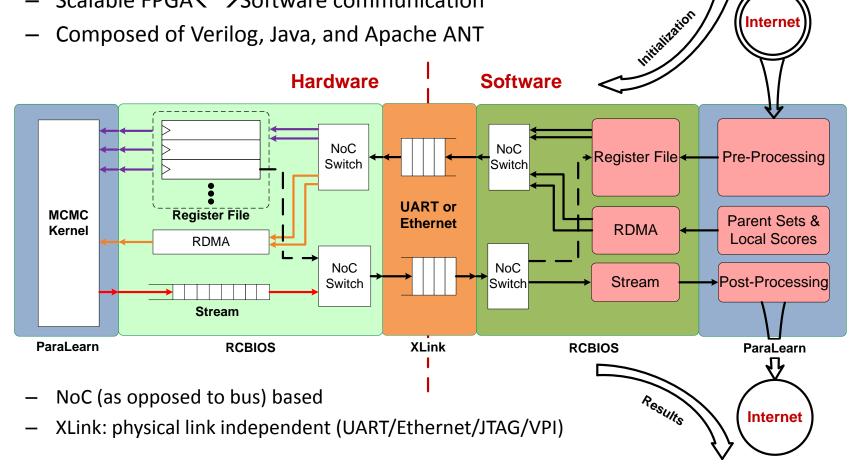
RCBIOS – Part of GateLib

Introduction

Scalable FPGA $\leftarrow \rightarrow$ Software communication

Approach

Composed of Verilog, Java, and Apache ANT



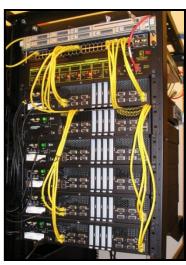
Closing

FPGA Array

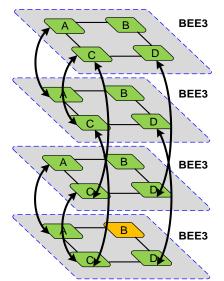
"MCMC Mesh"

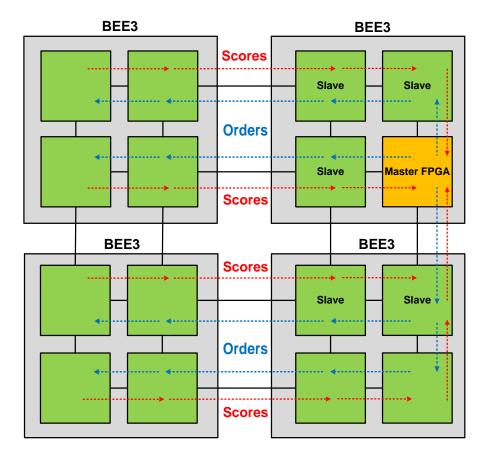
Idea: Split larger problems across multiple FPGAs

- * While maintaining the base design
- Additional Infrastructure
 - (1) Inter-chip ring connections
 - (2) Inter-board Aurora high-speed links
 - (3) **Platform Interconnect Network (PLiN)** built on (1) and (2)



June 2nd

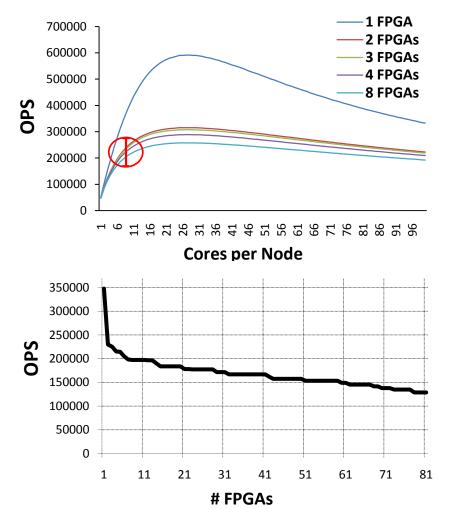




Scalability

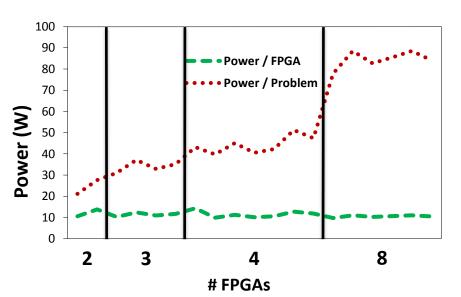
Theme: Given a fixed network, vary hardware resources

Performance



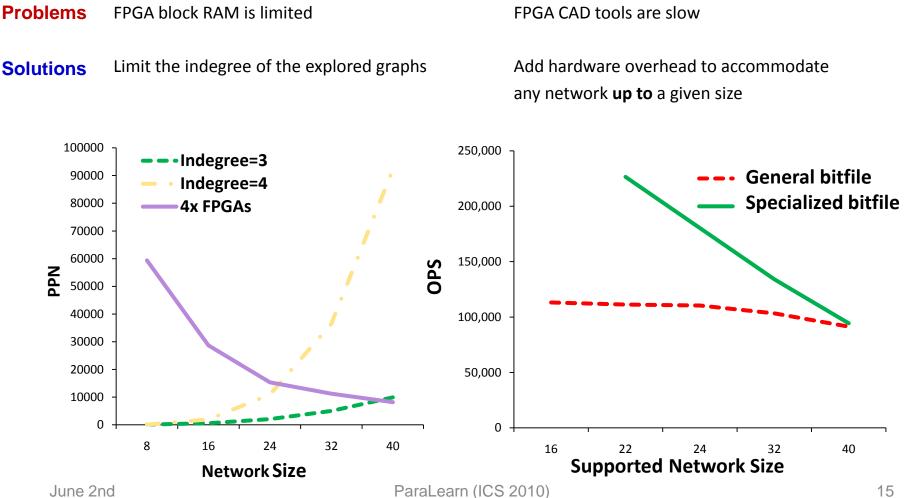
CyTof Network

- 22 nodes
- − 4 indegree \rightarrow 7547 parent sets per node
- *OPS: "Orders per second"



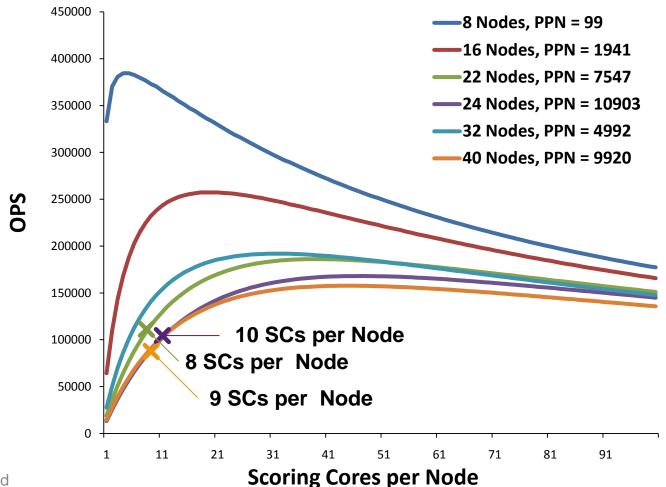
Flexibility

Theme: Given fixed hardware, vary the network



Scalability + Flexibility

Theme: Given different networks, vary hardware resources



End-to-End Runtime

• "Time to graphs" – this includes:

- 1. Pre-processing
- 2. FPGA load time
- 3. FPGA run time (includes order and graph sampling)
- 4. Post-processor (overhead is hidden)
- Over the 22 node CyTof data, varying the number of **restarts**

	0 Restarts		50 Restarts		100 Restarts	
Computation Step	GPP	FPGA	GPP	FPGA	GPP	FPGA
Pre-processing (Multinomial)	185			un		
Pre-processing (Linear Gaussian)	50			un		
Load time	0	4.5	un			
Order sampler	5.2	0.44	44.6	22.1	78.8	44.15
Graph sampler	0.85	0	18.8	0	31.3	0
Total	6.05	4.94	63.4	26.6	110.1	48.65

* Times in seconds

Closing

Sources of Speedup & Caching

- Considering FPGA and GPP implementations, which architecture benefits in what ways?
- We have considered...

bitwise optimizations, threading/parallelism, fixed vs. floating point, and caching

Caching

Insight: order N \rightarrow score M

- Used by both GPU & GPP implementations
- Can be made at an order or node granularity
- Caching analytic model
 - DRAM-based order and node caches, modeling: hash function, DRAM latency, hit rate, all-or-nothing node cache hits

Platform	OS Time (s)		
Baseline GPP	48500		
Optimized GPP	44.6		
FPGA 4x	22.1		

Setup	Time (s)		
Baseline FPGA	22.1		
Order cache	21.98		
Node cache	8.63		
Both caches	8.53		
Speedup	2.59x		

Performance Optimizations

- Pre-processing on FPGA
 - (1) "Pre-processing" has become new bottleneck
 - Map "Local score" generation to each FPGA in network
 - Transport "observations" data to FPGAs
 - Insight: Observation files are small, score files are large
- Additional parallelism
 - FPGA load time can overlap with the pre-processing step (hides load time)
 - The MCMC controller can be 'threaded' with multiple restarts (hides result accumulation overhead)

Closing

This work is an example of how a hand optimized, low-level FPGA design can lead to significant performance and power benefits over conventional processors and GPUs

Algorithm performance is having immediate impact on work done by Biologists who are studying STNs

Our approach's cost: large development and debug time

Our group is currently working on high-level programming abstractions that will ease development effort, ideally without losing efficiency

Acknowledgements

For making this work possible, the authors thank:

- NIH / Cancer Research Institute Grant #130826-02
- M. Linderman et al.
- Stanford Nolan Lab
- Members of the Berkeley Reconfigurable Computing Group
- UC Berkeley Wireless Research Center (BWRC)
- Contributors to the GateLib research library