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Outline

What is ParalLearn?

— Introduction: Terminology and objective
— Motivation: Learning the structure of cell signaling networks
— Algorithm and architectural overview

Results
— Design {scalability, flexibility}
— End-to-End runtime

Sources of speedup
Closing
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Introduction

Paralearn is a specialized computer for
conducting research on interaction networks

e We use software for: G °

1. Control infrastructure

2. Less computationally intensive steps G
 We use hardware (FPGAs) for:

Accelerating the algorithm kernel G

4 node interaction network:
A, B, C, D are nodes
A and C are parents of B
{A, C}is the parent set of B
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Cell Signaling Networks

Goal: Given flow cytometry ‘CyTof" data, learn the structure of cell signaling networks

Closing

* Flow Cytometry * Cell Signaling Networks
— Data in the form of “raw” —
qguantitative observations

Structures that model
protein signaling pathways

— Modeling perturbations to a network can
help uncover the cause of human disease

— Measurement of proteins & other
components inside cells

This talk
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Signal Transduction Networks

‘STN’s: The cell’'s communication medium

e Carry extra-cellular signals

" Signals

mitogen

(heat, cold, pressure, etc)
throughout the cell

* Span from membrane = nucleus

Cyclin D1 = P21
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in a complex network
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Bayesian Networks

Sprinkler Rain
o “Belief Network” R;‘” |£ '; |T2 ';
— Directed acyclic graph T ‘ 01 .99 ‘ '

— Structure encodes...

* Conditional independence
e Causal relationships

Parent Set for node V Grass Wet

P(V,,....V )—HP(\/ |.) ot | T E

F T 8 .2

e Bayesian Score ¥ $ :89 :(])-1

— A basis for comparing Bayesian Structures

— Based on prior belief and observations
Experimental data

P(D(Q) = P(G)P(D |G)

Graph

Courtesy of Tom Griffiths (U.C. Berkeley)

Prior probablllty
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Macro Approach

Goal: Determine which network best explains the data

End-to-end computation
(1) Pre-processor: Calculate local scores per parent set
(2) “Order Sampler”: Determine the high scoring orders (algorithm kernel)
(3) “Graph Sampler”: Extract graphs from high scoring orders
(4) Post-processing: high-level analysis and normalization

Strategy
— Implement steps (1) and (4) in software
— Parallelize (and merge) steps (2) and (3) in hardware

June 2nd ParaLearn (ICS 2010)
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Kernel Considerations

* Learning graph structure is an NP-hard problem

— Search space grows super-exponentially with the graph’s node count
— Multiple local optima, encoding best-solutions, may exist

4 453
5 29281
10 4.7x10v7
20 2.34x1072
* Order sampler: |order space| < |graph space| e  MCMC sampling, “Restarts”: jump out of peaks

Likely e G
éﬂ o b
e~ N,
\‘/ e e ° wced Restart
)

‘\
e ((®) (©)(0)
1 Order 2+ Graphs _ _
Unlikely, but possible
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Micro Approach

Algorithm FPGA Implementation

Closing

N Software Pre-Processing (initialization)
score(<| D) =] ] >_LocalScore(V;,I1;;D,G) o A
i=1 IT;ell,

score (Order order): ENENEE P Y

/\

Scoring Core

Block RAM

Port A Port B

orderScore = 0
nScore = Integer.MIN VALUE
For each node (n):

For each parent set (ps):

If ps is “compatible” with order:
nScore = log(els[nllpsly gnScore,

Node i+1
Local Order i+1

orderScore = orderScore + nScore
nScore = Integer.MIN VALUE

>

/\) —~ /\J Threading

‘Gr)’\ 39' Cross-Thread
o Cross-Port

\‘(lr) Cross-Core

Node i

v From Node i-1
)

Q
l s
return {order, orderScore} [MCMCC@“m”H:%———Cy———mm< éﬁ
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Approach

Architecture

s

Scores Platform
Interconnect
If Network

MCMC

Controller

RCBIOS
Harness

June 2nd

. Graph
*{Sconnf CoreHSamlpler

. Graph
»—»{Scorlng CoreHSampler

Graph
Sampler

Scoring Core

From MCMC Controller

o]

Next Previous

Neighbor Neighbor
L
Node

Xilinx Virtex-5
LX155T FPGA

29 node system
3 scoring cores per node

ParaLearn (ICS 2010)

Results

FPGA Core

Optimizations

Closing

Block RAM

Scoring Core

Next Core

Key
o Scoring Data
] ] One node
O Scoring Logic
Point where Proposed
Score is produced
e Proposed Order
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Introduction

Abstract View vs. Actual Implementation

Approach

Architecture Results

Floorplanner

Optimizations

Closing
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Approach

RCBIOS — Part of GatelLib

— Scalable FPGA€< > Software communication

— Composed of Verilog, Java, and Apache ANT

Architecture

System Infrastructure

Results

Optimizations

Closing

Hardware : Software
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Architecture

FPGA Array

“MCMC Mesh”

Idea: Split larger problems across multiple FPGAs

* While maintaining the base design

Additional Infrastructure
(1) Inter-chip ring connections
(2) Inter-board Aurora high-speed links

(3) Platform Interconnect Network (PLiN)

built on (1) and (2)

June 2nd
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Scalability

Theme: Given a fixed network, vary hardware resources

Performance

700000 - —1FPGA
——2 FPGAs
3 FPGAs
—— 4 FPGASs
——8 FPGAs
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CyTof Network

— 22 nodes
— 4 indegree - 7547 parent sets per node

*OPS: “Orders per second”
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Flexibility

Theme: Given fixed hardware, vary the network

Problems FPGA block RAM is limited FPGA CAD tools are slow

Solutions  Limit the indegree of the explored graphs Add hardware overhead to accommodate
any network up to a given size
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= = |[ndegree=3 L
90000 - Indegree=4 - =- General bitfile
80000 - 4x FPGAs 200,000 - — Specialized bitfile
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60000 - 150,000 -
Z e
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10000 - -
- -
- =
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8 16 24 32 40 16 22 24 32 40
Network Size Supported Network Size

June 2nd ParaLearn (ICS 2010) 15



Introduction Approach Architecture Results Optimizations Closing

OPS

June 2nd

Scalability + Flexibility

Theme: Given different networks, vary hardware resources
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End-to-End Runtime

* “Time to graphs” —this includes:
Pre-processing

1.
2. FPGAload time

3.  FPGA run time (includes order and graph sampling)
4,

Post-processor (overhead is hidden)

* Over the 22 node CyTof data, varying the number of restarts

Computation Step GPP FPGA GPP FPGA GPP FPGA

Pre-processing (Multinomial) 185
Pre-processing (Linear Gaussian) 50
Load time 0 4.5
Order sampler 5.2 0.44 44.6 22.1 78.8 44.15
Graph sampler 0.85 0 18.8 0 31.3 0
Total 6.05 4.94 63.4 26.6 110.1 48.65

* Times in seconds



Introduction Approach Architecture Results Optimizations Closing

Sources of Speedup & Caching
Considering FPGA and GPP implementations,

which architecture benefits in what ways? Baseline GPP 48500
We have considered... Optimized GPP 44.6
FPGA 4x 22.1

bitwise optimizations, threading/parallelism,
fixed vs. floating point, and caching

Caching
Insight: order N 2 score M

— Used by both GPU & GPP implementations m

— Can be made at an order or node granularity Baseline FPGA 22.1

Caching analytic model Order cache 21.98

— DRAM-based order and node caches, modeling: Meee e —

hash function, DRAM latency, hit rate, Both caches 8.53
all-or-nothing node cache hits Speedup 2.59x
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Performance Optimizations

* Pre-processing on FPGA
— (1) “Pre-processing” has become new bottleneck
— Map “Local score” generation to each FPGA in network
— Transport “observations” data to FPGAs

Insight: Observation files are small, score files are large

* Additional parallelism
— FPGA load time can overlap with the pre-processing step
(hides load time)
— The MCMC controller can be ‘threaded’ with multiple restarts
(hides result accumulation overhead)
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Closing

This work is an example of how a hand optimized, low- level
FPGA design can lead to significant performance and power
benefits over conventional processors and GPUs

Algorithm performance is having immediate impact on
work done by Biologists who are studying STNs

Our approach’s cost: large development and debug time

Our group is currently working on high-level programming abstractions
that will ease development effort, ideally without losing efficiency

June 2nd ParaLearn (ICS 2010) 20
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