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Outline

• What is ParaLearn?
– Introduction: Terminology and objective

– Motivation: Learning the structure of cell signaling networks

– Algorithm and architectural overview

• Results
– Design {scalability, flexibility}

– End-to-End runtime

• Sources of speedup

• Closing

June 2nd ParaLearn (ICS 2010) 2



Introduction

ParaLearn is a specialized computer for 
conducting research on interaction networks

• We use software for:

1. Control infrastructure

2. Less computationally intensive steps

• We use hardware (FPGAs) for:

Accelerating the algorithm kernel
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4 node interaction network:

A, B, C, D are nodes

A and C are parents of B

{A, C} is the parent set of B 
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Cell Signaling Networks

• Flow Cytometry
– Data in the form of “raw” 

quantitative observations

– Measurement of proteins & other 
components inside cells

• Cell Signaling Networks
– Structures that model 

protein signaling pathways

– Modeling perturbations to a network can 
help uncover the cause of human disease
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Goal: Given flow cytometry ‘CyTof’ data, learn the structure of cell signaling networks

This talk
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Signal Transduction Networks
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• Carry extra-cellular signals 

(heat, cold, pressure, etc) 

throughout the cell

• Span from membrane  nucleus

• Traditional model:

Linear/independent protein chains

• Modern model:

All proteins interact 

in a complex network

‘STN’s: The cell’s communication medium

Signals



Bayesian Networks

• “Belief Network”
– Directed acyclic graph

– Structure encodes…

• Conditional independence

• Causal relationships 

• Bayesian Score
– A basis for comparing Bayesian Structures

– Based on prior belief and observations
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Macro Approach

• End-to-end computation
(1) Pre-processor: Calculate local scores per parent set

(2) “Order Sampler”: Determine the high scoring orders (algorithm kernel)

(3) “Graph Sampler”: Extract graphs from high scoring orders

(4) Post-processing: high-level analysis and normalization

• Strategy
– Implement steps (1) and (4) in software 

– Parallelize (and merge) steps (2) and (3) in hardware

June 2nd ParaLearn (ICS 2010) 7

Introduction        Approach Architecture         Results          Optimizations          Closing

Goal: Determine which network best explains the data



• Order sampler: |order space| < |graph space|

Kernel Considerations
• Learning graph structure is an NP-hard problem

– Search space grows super-exponentially with the graph’s node count

– Multiple local optima, encoding best-solutions, may exist
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Nodes Graphs

4 453

5 29281

10 4.7x1017

20 2.34x1072
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score(Order order):

orderScore = 0

nScore = Integer.MIN_VALUE

For each node (n):

For each parent set (ps):

If ps is “compatible” with order:

nScore = log(e         + e      )

orderScore = orderScore + nScore

nScore = Integer.MIN_VALUE

return {order, orderScore}

Micro Approach
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Floorplanner
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Abstract View vs. Actual Implementation
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System Infrastructure
• RCBIOS – Part of GateLib

– Scalable FPGASoftware communication

– Composed of Verilog, Java, and Apache ANT

– NoC (as opposed to bus) based

– XLink: physical link independent (UART/Ethernet/JTAG/VPI)
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FPGA Array

June 2nd
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“MCMC Mesh”
Idea: Split larger problems across multiple FPGAs

* While maintaining the base design

• Additional Infrastructure

(1) Inter-chip ring connections

(2) Inter-board Aurora high-speed links

(3) Platform Interconnect Network (PLiN) 

built on (1) and (2)
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Scalability

Performance

Theme: Given a fixed network, vary hardware resources
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FPGA block RAM is limited

Limit the indegree of the explored graphs

Flexibility
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Theme: Given fixed hardware, vary the network 

FPGA CAD tools are slow

Add hardware overhead to accommodate 

any network up to a given size

Problems

Solutions

ParaLearn (ICS 2010)
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Scalability + Flexibility
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End-to-End Runtime

• “Time to graphs” – this includes:
1. Pre-processing

2. FPGA load time

3. FPGA run time (includes order and graph sampling)

4. Post-processor (overhead is hidden)

• Over the 22 node CyTof data, varying the number of restarts
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0 Restarts 50 Restarts 100 Restarts

Computation Step GPP FPGA GPP FPGA GPP FPGA

Pre-processing (Multinomial) 185 “”

Pre-processing (Linear Gaussian) 50 “”

Load time 0 4.5 “”

Order sampler 5.2 0.44 44.6 22.1 78.8 44.15

Graph sampler 0.85 0 18.8 0 31.3 0

Total 6.05 4.94 63.4 26.6 110.1 48.65

* Times in seconds
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Sources of Speedup & Caching

• Considering FPGA and GPP implementations, 

which architecture benefits in what ways? 

• We have considered…

bitwise optimizations, threading/parallelism, 

fixed vs. floating point, and caching

• Caching

Insight: order N  score M

– Used by both GPU & GPP implementations

– Can be made at an order or node granularity

• Caching analytic model

– DRAM-based order and node caches, modeling:

hash function, DRAM latency, hit rate,

all-or-nothing node cache hits
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Setup Time (s)

Baseline FPGA 22.1

Order cache 21.98

Node cache 8.63

Both caches 8.53

Speedup 2.59x
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Platform OS Time (s)

Baseline GPP 48500

Optimized GPP 44.6

FPGA 4x 22.1



Performance Optimizations

• Pre-processing on FPGA
– (1) “Pre-processing” has become new bottleneck

– Map “Local score” generation to each FPGA in network

– Transport “observations” data to FPGAs

Insight: Observation files are small, score files are large

• Additional parallelism
– FPGA load time can overlap with the pre-processing step 

(hides load time)

– The MCMC controller can be ‘threaded’ with multiple restarts

(hides result accumulation overhead)

June 2nd ParaLearn (ICS 2010) 19

Introduction        Approach         Architecture         Results          Optimizations Closing



Closing

This work is an example of how a hand optimized, low- level 

FPGA design can lead to significant performance and power 

benefits over conventional processors and GPUs

Algorithm performance is having immediate impact on 

work done by Biologists who are studying STNs

Our approach’s cost: large development and debug time

Our group is currently working on high-level programming abstractions 
that will ease development effort, ideally without losing efficiency
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