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ABSTRACT
This paper compares an implementation of a Bayesian infer-
ence algorithm across several FPGAs and GPGPUs, while
embracing both the execution model and high-level architec-
ture of a GPGPU. Our study is motivated by recent work in
template-based programming and architectural models for
FPGA computing. The comparison we present is meant to
demonstrate the FPGA’s potential, while constraining the
design to follow the microarchitectural template of more pro-
grammable devices such as GPGPUs.

The FPGA implementation proves capable of matching
the performance of a high-end Nvidia Fermi-based GPU—
the most advanced GPGPU available to us at the time of
this study. Further investigation shows that each FPGA
core outperforms workstation GPGPU cores by a factor of
∼ 3.14×, and mobile GPGPU cores by ∼ 4.25× despite a
∼ 4× reduction in core clock frequency. Using these observa-
tions, we discuss the efficiency gap between these two plat-
forms, and the challenges associated with template-based
programming models.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems

General Terms
Design, Performance, Algorithms

Keywords
FPGA, GPGPU, OpenCL, Reconfigurable Computing,
Bayesian Networks

1. INTRODUCTION
FPGA designs are often highly specialized for their ap-

plication, employing custom architectures and a variety of
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execution models [6, 8, 9, 12]. Conversely, GPGPU (general-
purpose graphics processing unit) approaches follow well-
defined programming models such as CUDA and OpenCL
[13, 14]. The GPGPU’s execution model is rigid, causing ap-
plications that do not map well to the GPGPU architecture
to perform relatively poorly. FPGAs, on the other hand,
can adapt to the natural, optimal, and sometimes arbitrary
computation and architectures required by specific applica-
tions. For this reason, FPGAs make a compelling platform
for targeting classes of applications that do not easily map
to standard GPGPU methods of execution.

It is less clear whether FPGAs have value as targets for ap-
plications that do match a GPGPU in execution model and
map well to a GPGPU architecture. This paper considers
one such application, Bayesian inference, and characterizes
it on an FPGA using computation patterns akin to OpenCL.
To this end, we present a custom FPGA implementation
that naturally resembles an application-specific GPGPU at a
high level, but differs in its implementation of the arithmetic
modules (“cores”) and memory access scheduling. Specifi-
cally, this paper first contributes a new approach to Bayesian
inference on FPGAs and GPGPUs which allows us to char-
acterize both implementations using an OpenCL-like execu-
tion model. Secondly, we perform a study examining algo-
rithm kernel performance on FPGA and GPGPU platforms,
and normalize core performance across devices to help ex-
plain differences in their observed efficiency.

We have conducted this research alongside related work
in developing microarchitectural template-based program-
ming models for FPGA computing [11]. Both the GPGPU
and FPGA designs used in this work follow the same ex-
ecution model and feature similar many core-based archi-
tectures. The FPGA implementation, however, was de-
signed manually at the RTL level, while the GPGPU im-
plementation was described at a high level with OpenCL.
Related work proposes automatic mappings from CUDA
and OpenCL flows to the FPGA [7, 10]. We intentionally
avoided automatic hardware generation in this work to (a)
evaluate the FPGA as an implementation target for microar-
chitectural template-based programming models, and (b) es-
tablish and upper-bound on template-based FPGA perfor-
mance.

1.1 Bayesian Inference
Bayesian networks (BNs) are graph-based models that

have numerous applications in bioinformatics, finance, signal
processing, and computer vision. Bayesian inference is the
process by which a BN’s graph structure is learned from a
set of quantitative data, or “evidence,” that the BN seeks to
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model. Once a BN’s structure (a set of nodes {V1, . . . , VN })
is determined, and the conditional dependence of each node
Vi on its parent set Πi is tabulated, the joint distribution
over the nodes can be expressed as:

P (V1, . . . , VN ) =
NY

i=1

P (Vi|Πi)

Despite significant recent algorithmic advances, BN infer-
ence from evidence is an NP-hard problem and remains in-
feasible except for cases with only a small number of vari-
ables [3, 5].

The algorithm surveyed in this paper is the union of two
BN inference kernels, the order1 and graph samplers (jointly
called the order-graph sampler). The order sampler takes
a BN’s prior evidence (D or data), along with an initial
order to use as a starting point, and produces a set of “high-
scoring” BN orders (orders that best explain the evidence).
The graph sampler takes this set of high-scoring orders and
produces a single “highest-scoring” graph for each order.

We generate the prior evidence D, which consists of N
sets of P local score/parent set pairs, prior to invoking the
order-graph sampler. Following [4, 5, 12], the order-graph
sampler itself uses Markov chain Monte Carlo (MCMC) sam-
pling to perform an iterative random walk in the space of
BN orders—until the order score has converged. Each step
in the random walk (1) breaks the current order into N
disjoint “local orders,” and (2) iterates over each node’s par-
ent sets, accumulating each local score whose parent set is
compatible with the node’s local order. To decrease time
to convergence and to increase confidence in the results, O
distinct orders can be dispatched though a technique known
as parallel tempering, coupled with random restarts.

Computationally, the order-graph sampler is a compute
intensive set of nested loops (Algorithm 1) with an inner-
most kernel called the score function, given between lines 8
and 19. To put the number of loop iterations into perspec-
tive, typical parameter values for {I,O,N} are {10000, 512,
37}, where I is the number of MCMC iterations. Further-
more, P =

P4
i=0

`N−1
i

´
and |D| = N ∗ P.

Different degrees of parallelism and data locality can be
exploited in the loops within Algorithm 1. Traditionally,
the loop over O was placed outside the loop over I as O
contributed course-grained and dependency-free parallelism
[12, 14]. In this work, we have re-ordered the loops, moving
the O dispatches to within the loop over N , reducing the
communication requirement of the algorithm, and relaxing
loop dependencies. We classify the reformulated loop nest
as compute-intensive because of the relatively small amount
of input (a local order) needed for the inner-loop arithmetic
to compute per-node results.

1.2 The OpenCL Execution Model
OpenCL [1] is a programming and execution model for

heterogeneous systems (containing GPPs (general-purpose
processors), GPGPUs, FPGAs [10] and other accelerators)
designed to explicitly capture data and task parallelism in
an application. The OpenCL model distinguishes control
thread(s) (to be executed on a GPP host) from kernel threads
(data parallel loops to be executed on a GPGPU, or simi-
lar accelerator). The user specifies how the kernels map to

1
An order is a graph whose nodes have been topologically sorted (each

node is placed after its parents).

Algorithm 1 The order-graph sampler loop nest. ps, ls, and o[n]

are parent set, local score, and local order, respectively.

for i in I do
Setup (partition O orders into O ∗ N local orders)
for n in N do

for o in O do
5: so, sg ← −∞

g ← NULL
for p in P do

if compatible(D[n][p].ps, o[n]) then
d← D[n][p].ls− so

10: if d ≥ HIGH THRESHOLD then
so ← D[n][p].ls

else if d > LOW THRESHOLD then
so ← so + log(1 + exp(d))

end if
15: if D[n][p].ls > sg then

sg ← D[n][p].ls
g ← D[n][p].ps

end if
end if

20: end for
Teardown (post-process so, sg, and g)

end for
end for

end for

an n-dimensional dataset, given a set of arguments (such as
constants or pointers to device/host memory). The runtime
then distributes the resulting workload across available com-
pute resources on the device. Communication between con-
trol and kernel threads is provided by shared memory and
OpenCL system calls such as barriers and bulk memory copy
operations. With underlying SIMD principles, OpenCL is
well-suited for data-parallel problems, and maps well to the
parallel thread dispatch architecture found in GPGPUs.

2. IMPLEMENTATION
The order-graph samplers on both the FPGA and GPGPU

are many core-based systems that map instances of the score
function over a two-dimensional space (given by O×N ) ac-
cording to the OpenCL model. In this work, GPGPU cores
correspond to Nvidia CUDA cores while FPGA cores are
custom datapaths implementing the BN scoring kernel.

2.1 FPGA
The FPGA implementation is composed of compute cores

that are paired with block RAMs (BRAMs). Each core it-
erates over a disjoint subset of the score calls, while the
BRAMs are responsible for caching and streaming the data
needed by those score calls. All score function arithmetic
is built directly into the FPGA fabric to eliminate resource
contention. We implemented the log(1 + exp(d)) function
(Algorithm 1) as a table lookup, given that it is non-linear
over the narrow range of d that it is called. To maximize the
read bandwidth and throughput achievable by the BRAMs,
cores are replicated to the highest extent possible and fine-
grain multi-threaded across multiple iterations of the score
function.

To balance logic and BRAM utilization, each node’s score
operation is mapped onto multiple cores which run in paral-
lel and accumulate results upon completion. This technique
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reduces parallel completion time, yet requires increased com-
plexity to accumulate partial node scores at the end of the
score loop. To maximally hide this overhead, we chain cores
together, using a dedicated interconnect, and interleave the
cross-core partial result accumulation process with the next
local order’s scoring period. To simplify the accumulation
logic, we linearly reduce all threads across a core, and then
accumulate linearly across cores.

To better understand FPGA performance, the following
analytic model can be used to estimate the number of FPGA
core cycles needed to score O ∗ N local orders over subset S
of the data (where S is scored for each of the N nodes):

N ∗
"
O ∗

 
|S|
C

+ (T + 1)

!
+ (T2 + T ∗ C) + CyclesDRAM

#

CyclesDRAM is the number of cycles (normalized to the core
clock) required to page S into the cores’ BRAMs, C is the
number of cores assigned to subset S, and T is the number of
hardware threads per core. The T + 1 and T2 + T ∗ C over-
heads are due to cross-thread and cross-core accumulations,
respectively.

2.2 GPGPU
The primary strategies used to implement the GPGPU’s

score function were to optimize data placement in memory
and to minimize the latency of a single kernel thread. Upon
dispatching work to the GPGPU, we compacted the input
to the score function by order and then by node ([N ][O]),
based on the relatively large number of orders that are to
be processed per node. When possible, we aligned data in
memory—rounding both O and P to the next power of two,
to avoid false sharing in wide word memory operations, and
to improve data alignment. In the score loop, we found
that a direct implementation of the log(1+exp(d)) operation
performed better than a table lookup, most likely due to the
algorithm’s limited use of floating point arithmetic. Broadly
speaking, many of the strategies guiding our score function
optimization effort are outlined in [2].

3. RESULTS AND ANALYSIS
We evaluate the FPGA fabric’s efficiency relative to the

GPGPU by normalizing the score function’s performance to
device core count, for each device shown in Table 1.

Device BWi BWo Mc Cores fcore

(Gb/s) (Gb/s) (Kb) (MHz)
gt-330m n/a 204.8 128,0 48 1265
gtx-480 n/a 1419.2 512,6144 480 1401
v5-155t 3731 51.2 1640,7632
v6-240t 7322 51.2 3650,14976

Table 1: FPGA and GPGPU devices employed in each

study. BWi and BWo describe on-chip and off-chip memory

bandwidths, respectively. Mc describes the on-chip mem-

ory capacity ({distributed, block} RAM on FPGA and {lo-
cal, global L2$} on the GPGPU). “Core” denotes an Nvidia

CUDA core.

We have chosen to map to both the Virtex-5 LX155T
(v5-155t) and Virtex-6 LX240T (v6-240t) to show FPGA
core count scalability given additional fabric. The GT 330m
(gt-330m—a mobile GPGPU platform) is used because its
power envelope is known to be comparable to the FPGAs’.
The GTX 480 (gtx-480—a workstation GPGPU based on

the Nvidia Fermi architecture) allows us to compare the
highest-performing GPGPU available to us with the high-
est performing FPGA parameterization. All studies assume
single-socket systems (one FPGA/GPGPU paired with one
GPP for system initialization).

3.1 Methodology
The FPGA implementation (whose best-effort parameter-

izations are shown in Table 2) was written in Verilog HDL
and mapped to the device using Synplify Pro (Synopsys)
and the Xilinx ISE 12.1 flow for placement and routing
(PAR). We measured performance through cycle-accurate
traces taken from post-PAR simulation, after verifying that
the post-PAR netlist met timing closure and was function-
ally correct. To measure the GPGPU total iteration time,
we ran the application for 1000 iterations without profil-
ing code in the loop. We then calculated the percent time
spent in the score function through measuring (a) the score
time using timers placed around the inner loop, and (b) the
total time across 1000 iterations, with the timers from (a)
enabled.

Name N fcore LUT FF BRAM Cores
(MHz) (%) (%) (%)

v5-155t 32 250 66 79 95 48
v5-155t 37 250 70 83 95 48
v6-240t 32 300 80 64 99 120
v6-240t 37 300 83 67 99 120

Table 2: Best-effort FPGA configurations used.

3.2 Core Normalization Study
This study compares the absolute (TSc) and percent time

spent (% Sc) in the score function across both GPGPU and
FPGA. All sample points assume O = 512. The results for
experimental 32-node and synthetic 37-node networks are
given in Table 3. We chose these datasets for their signifi-
cant increase in complexity—previously surveyed networks
[6, 12] did not offer enough work per iteration to saturate
a GPGPU system. We focus on the score function and not
the outer-loop control logic (shown as Setup and Teardown
in Algorithm 1) because execution time is dominated by the
score function (as shown by the % Sc columns in Table 3).

Device TSc Ti % Sc TSc Ti % Sc
(s) (s) (s) (s)

v5-155t 0.051 0.051 99.0 0.110 0.110 99.3
v6-240t 0.018 0.018 97.7 0.036 0.037 98.4
gt-330m 0.180 0.217 82.6 0.394 0.458 86.1
gtx-480 0.014 0.020 71.4 0.027 0.037 73.5

Table 3: Absolute time (TSc) and percent time spent (%

Sc) in the score function, relative to the latency of a single

iteration (Ti). Results are given for the 32 node network

(left) and the 37 node network (right), over O = 512 orders.

TSc Speedup Ti Speedup
Network FPGA gt-330m gtx-480 gt-330m gtx-480

32 Nodes
v5-155t 3.55 .275 4.26 .392
v6-240t 10.0 .777 12.1 1.11

37 Nodes
v5-155t 3.58 .250 4.16 .336
v6-240t 10.9 .750 12.4 1.00

Table 4: Speedup achieved by FPGA systems relative to

GPGPU systems. TSc and Ti time is detailed in Table 3.
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To gain insight into the performance discrepancies be-
tween the FPGA and GPGPU, we normalize performance
to the number of compute cores available on each device.

The resulting metric, shown in Table 5, is given by Sc ∗ Cg

Cf

where Sc corresponds to a TSc speedup from Table 4, and
{Cg, Cf} refers to the number of {GPGPU, FPGA} cores
available on the device. We also scale the Virtex-5 FPGA
performance (by 300

250
) to compensate for its lower obtainable

frequency (in comparison with the Virtex-6 FPGA), in order
to show how normalized performance is consistent across all
FPGA sample points.

gt-330m gtx-480
v5-155t 4.26− 4.30 3.00− 3.30
v6-240t 4.00− 4.36 3.00− 3.11

Table 5: FPGA relative to GPGPU TSc speedup, normalized

to the number of compute cores available and to the FPGA

compute core frequency.

The algorithm is compute bound on both the FPGA and
the GPGPU platforms, which is underlined by the consistent
speedups in Table 5. We believe that the discrepancy in
normalized performance between GPGPUs is a function of
GPGPU architecture (g80 for the gt-330m and Fermi for the
gtx-480) and GPGPU datapath clock frequency (1265 MHz
for the gt-330m and 1401 MHz for the gtx-480).

4. DISCUSSION AND CONCLUSIONS
Notably, the application surveyed in this study does not

make significant use of floating point or off-chip memory
bandwidth, which are well-known strengths of the GPGPU
platform. Nevertheless, it is important to account for the
discrepancy in normalized performance (Table 5) between
the FPGA and GPGPU platforms, especially given the rel-
atively high GPGPU core clock frequencies. Tables 1 and
2 show that the FPGA core clocks fall between 250 and
300 MHz2 while GPGPU core clocks reach as high as 1265
and 1401 MHz. In the case of the mobile GPGPU, we must
rationalize why normalized performance falls in the FPGA’s
favor by a factor of ∼ 4.18×, while the core clock frequency
of the FPGA design is 4.21× less than that of the GPGPU.
Similarly in the case of the Nvidia Fermi GTX480, we must
account for the FPGA’s ∼ 3.05× gain in performance de-
spite a 4.67× loss in clock frequency.

We believe the performance gap predominantly results
from (a) the performance delta between programmable cores
and custom hardware datapaths, and, to a lesser extent (b)
the effect of optimizing the memory access pattern between
each FPGA core and its BRAM. Each FPGA core is built
with replicated arithmetic units and an application-specific
local memory system—which allows each FPGA core to com-
mit one score inner loop iteration per cycle in the steady
state. To better understand the score inner loop on the
GPGPU, we compiled the GPGPU OpenCL kernel to a va-
riety of GPP architectures using GCC. Using full optimiza-
tion, the compiler produces kernels with loops averaging 39
RISC-like instructions.3 This, coupled with the fact that

2
We normalize to 300 MHz for the rest of this discussion.

3
These instruction counts are estimates as we are unable to directly

examine the output of the OpenCL compiler.

not all inner loop iterations will pass the compatible() check
in Algorithm 1, helps explain FPGA core performance.

One metric by which FPGA devices continue to lag, in
the area of computing, is the time and expertise required
to design, verify, and “compile” to an FPGA platform. Re-
lated work in high-level tools for productive FPGA design,
using MIMD and SIMT many-core templates [11], has be-
gun to address this challenge. Perhaps this approach can be
extended to take advantage of a hierarchical tool flow, signif-
icantly reducing tool time. Looking forward, this approach
could allow rapid prototyping of high-performance FPGA
implementations with a design time and expertise require-
ment similar to the GPGPU programming environment.
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