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Abstract—We present HORNET, a parallel, highly configurable,
cycle-level multicore simulator based on an ingress-queued worm-
hole router NoC architecture. The parallel simulation engine
offers cycle-accurate as well as periodic synchronization; while
preserving functional accuracy, this permits tradeoffs between
perfect timing accuracy and high speed with very good accuracy.
When run on 6 separate physical cores on a single die, speedups
can exceed a factor of over 5, and when run on a two-die 12-core
system with 2-way hyperthreading, speedups exceed 11×.

Most hardware parameters are configurable, including mem-
ory hierarchy, interconnect geometry, bandwidth, crossbar di-
mensions, and parameters driving power and thermal effects. A
highly parametrized table-based NoC design allows a variety of
routing and virtual channel allocation algorithms out of the box,
ranging from simple DOR routing to complex Valiant, ROMM,
or PROM schemes, BSOR, and adaptive routing. HORNET can
run in network-only mode using synthetic traffic or traces,
directly emulate a MIPS-based multicore, or function as the
memory subsystem for native applications executed under the
Pin instrumentation tool.

HORNET is freely available under the open-source MIT license
at http://csg.csail.mit.edu/hornet/.

I. INTRODUCTION

In the recent years, architectures with several distinct CPU

cores on a single die have become the standard: general-

purpose processors now include as many as eight cores [1]

and multicore designs with 64 or more cores are commercially

available [2]. Experts predict that by the end of the decade we

could have as many as 1000 cores on a single die [3].
For a multicore on this massive scale, connectivity is a major

concern. Current interconnects like buses, all-to-all point-to-

point connections, and even rings clearly do not scale beyond

a few cores. The relatively small scale of existing network-

on-chip (NoC) interconnects has allowed plentiful on-chip

bandwidth to make up for simple routing [4], but this will

not last as scales grow from the 8×8 mesh of a 64-core chip

to the 32×32 dimensions of a 1000-core: assuming all-to-all

traffic and one flow per source/destination pair, a link in an

8×8 mesh with XY routing carries at most 128 flows, but in

a 32× 32 mesh, the worst link could be on the critical path

of as many as 8,192 flows.
Future multicores will, therefore, require a relatively high-

performance network and sophisticated routing. In such com-

plex systems, complex interactions make real-world perfor-

mance difficult to intuit, and designers have long relied on

cycle-level simulations to guide algorithmic and architectural

decisions; NoCs are no different. On a multicore scale, how-

ever, a cycle-level system simulator has high computation
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Fig. 1. A multicore system simulated by HORNET. The gray tiles (top) can
be trace-driven packet injectors, cycle-level MIPS core models, or threads of
an executable run under Pin; the blue tiles (bottom) are cycle-level models
of a flit-based virtual-channel wormhole router. While the illustration shows
a 2D mesh, HORNET can construct a system with any interconnect geometry.

requirements, and taking advantage of the parallel execution

capabilities of today’s systems is critical.

With this in mind, we present HORNET, a highly con-

figurable, cycle-level multicore simulator with support for a

variety of memory hierarchies, interconnect routing and VC

allocation algorithms, as well as accurate power and thermal

modeling. Its multithreaded simulation engine divides the

work equally among available host processor cores, and per-

mits either cycle-accurate precision or increased performance

at some accuracy cost via periodic synchronization. HORNET

can be driven in network-only mode by synthetic patterns or

application traces, in full multicore mode using a built-in MIPS

core simulator, or as a multicore memory hierarchy using

native applications executed under the Pin instrumentation

tool [5].

Specifically, using HORNET, we

• show that results from small-scale NoC simulations can-

not be used to guide architectural decisions on a 1000-

core scale;

• identify key factors for parallelizing NoC simulators and

show how to take advantage of them for linear perfor-

mance scaling as the number of host cores grows;

• show that without cycle-level simulation, and, in particu-

lar, accurate modeling of congestion, various properties of

the NoC being simulated (e.g., packet latencies) can suffer

significant (e.g., 2×) errors in measurement, and that the

detailed information provided by cycle-level simulation

can drive architectural decisions;

• demonstrate that end-to-end integration with a processor
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Fig. 2. Basic datapath of an NoC router modeled by HORNET. Packets arrive
flit-by-flit on ingress ports and are buffered in ingress virtual channel (VC)
buffers until they have been assigned a next-hop node and VC; they then
compete for the crossbar and, after crossing, depart from the egress ports.

model is necessary for accurate modeling of application

performance;

• describe how simulated power and thermal profiles over

the application’s runtime and available on a per-tile

granularity can drive such decisions as thermal constraint

selection and sensor placement, as well as offer opportu-

nities for power-aware routing algorithm design.

In the remainder of the manuscript, we first outline the de-

sign and features of HORNET in section II. Next, in section IV,

we review the capabilities of HORNET and discuss speed vs.

accuracy tradeoffs using complete runs of selected SPLASH-2

applications [6] as well as simulations using synthetic traffic

patterns. Finally, we review related research in section V and

offer concluding remarks in section VI.

II. DESIGN AND FEATURES

In this section, we outline the range of systems that can

be simulated by HORNET, and discuss the techniques used to

parallelize simulations.

A. Network model

Figure 2 illustrates the basic datapath of a NoC router

modeled by HORNET. There is one ingress port and one egress

port for each neighboring node, as well as for each injector (or

CPU core) connected to the switch; each ingress port contains

any number of virtual channel buffers (VCs), which buffer flits

until they can traverse the crossbar into the next-hop node.

As in any ingress-buffered wormhole router, packets arrive

at the ingress ports flit-by-flit, and are stored in the appro-

priate virtual channel buffers. When the first flit of a packet

arrives at the head of a VC buffer, the packet enters the

route computation (RC) stage and the next-hop egress port

is determined according to the routing algorithm. Next, the

packet waits in the VC allocation (VA) stage until granted a

next-hop virtual channel according to the chosen VC allocation

scheme. Finally, in the switch arbitration (SA) stage, each flit
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(c) two-phase ROMM

Fig. 3. Example routes for a flow between a source (node 6) and a destination
(node 2) for three oblivious routing algorithms. A single path is highlighted
in dark gray while other possible paths are shown in light gray.

of the packet competes for access to the crossbar and transits

to the next node in the switch traversal (ST) stage. The RC and

VA steps are active once per packet (to the head flit), while

the SA and ST stages are applied per-flit.

1) Interconnect geometry: The nodes in a system modeled

by HORNET can be configured with pairwise connections to

form any geometry, including rings, multi-layer meshes (see

Figure 4), and tori. Each node may have as many ports as

desired: for example, most nodes in the 2D mesh shown in

Figure 1 have five ports (four facing the neighboring nodes and

one facing the CPU); the number and size of virtual channels

can be controlled independently for each port, allowing the

CPU↔switch ports to have different VC configuration from

the switch↔switch ports.

2) Routing: HORNET supports oblivious, static, and adap-

tive routing. A wide range of oblivious and static routing

schemes is possible by configuring per-node routing tables.

These are addressed by the flow ID and the incoming direction

〈prev node id,flow id〉, and each entry is a set of weighted

next-hop results
{〈next node id,next flow id,weight〉, · · ·}.

If the set contains more than one next-hop option, one is se-

lected at random with propensity proportionate to the relevant

weight field, and the packet is forwarded to next node id with

its flow ID renamed to next flow id.

For example, in the case of simple XY routing, shown

in Figure 3a, the routing tables for nodes 2, 5, 6, 7, and 8

would contain one entry for the relevant flow, addressed by

the previous node ID (or 6 for the starting node 6) and the

flow ID; the lookup result would direct the packet to the next

node along the red path (or 2 for the terminal node 2) with the

(a) 3D mesh–x1 (b) 3D mesh–x1y1 (c) 3D mesh–xcube

Fig. 4. Planar view of three example multilayer mesh interconnect geometries
which can be directly configured in HORNET.
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same flow ID and weight of 1.0. Static routing [7] is handled

similarly. For O1TURN routing [8], illustrated in Figure 3b,

the table at the start node (6) would contain two next-hop

entries (one with next-hop node 3 and the other with next-hop

node 7) weighted equally at 0.5, and the destination node (2)

would have two entries (one arriving from node 1, and the

other from node 5); the remaining tables do not differ from

XY.

HORNET’s table-driven routing directly supports probabilis-

tic oblivious routing algorithms such as PROM [9]. Proba-

bilistic routing algorithms which first route the packet to a

random intermediate node (say via XY routing) and only then

to the final destination (e.g., Valiant [10] and its minimum-

rectangle variant ROMM [11]). For example, the red path in

Figure 3c shows one possible route from node 6 to node 2

in a two-phase ROMM scheme: the packet is first routed to

node 4 and then to its final destination. To fill the routing

tables, we must solve two problems: (a) remember whether

the intermediate hop has been passed, and (b) express several

routes with different intermediate destinations but the same

next hop as one table entry. The first problem is solved by

changing the flow ID at the intermediate node, and renaming

the flow back to its original ID once at the destination node;

the second problem corresponds to sending the flow to one of

two possible next-hop nodes weighted by the ratio of possible

flows going each way regardless of their intermediate nodes.

Consider, as an example, the routing entries at node 4 for a

flow from node 6 to node 2. A packet arriving from node

3 must have passed its intermediate hop at node 4 (because

otherwise XY routing to the intermediate node would have

restricted it to arriving from node 7) and can only continue

on to node 5 without renaming the flow. A packet arriving at

node 4 from node 7 must not have passed its intermediate node

(because otherwise it’s out of turns in its second XY phase and

it can’t get to its destination at node 2); the intermediate node

can be either node 1 (with one path) or node 4 itself (also

with one path), and so the table entry would direct the packet

to node 1 (without flow renaming) or to node 5 (with flow

renaming) with equal probability.

3) Virtual channel allocation: Like routing, virtual channel

allocation (VCA) is table-driven. The VCA table lookup

uses the next-hop node and flow ID computed in the

route computation step, and is addressed by the four-tuple

〈prev node id,flow id,next node id,next flow id〉. As with

table-driven routing, each lookup may result in a set of

possible next-hop VCs
{〈next vc id,weight〉, · · ·}, and the

VCA step randomly selects one VC among the possibilities

according to the weights.

This directly supports dynamic VCA (all VCs are listed

in the result with equal probabilities) as well as static set

VCA [12] (the VC is a function of on the flow ID). Most

other VCA schemes used to avoid deadlock, such as that

of O1TURN (where the XY and YX subroutes must be

on different VCs), Valiant/ROMM (where each phase has a

separate VC set), as well as various adaptive VCA schemes

like the turn model [13], are easily implemented as a function

of the current and next-hop flow IDs.

Finally, HORNET supports VCA schemes where the next-

hop VC choice depends on the contents of the possible next-

hop VCs, such as EDVCA [14] or FAA [15].

4) Bidirectional links: HORNET allows inter-node connec-

tions to be bidirectional: links can optionally change direction

as often as on every cycle based on local traffic conditions,

effectively trading off bandwidth in one direction for band-

width in the opposite direction [16]. To achieve this, each link

is associated with a modeled hardware arbiter which collects

information from the two ports facing each other across the

link (for example, number of packets ready to traverse the link

in each direction and the available destination buffer space)

and suitably sets the allowed bandwidth in each direction.

5) Avoiding adversarial traffic patterns: The performance

of routing and VC allocation algorithms can be heavily af-

fected by the regular nature of the synthetic traffic patterns

often used for evaluation: for example, a simple round-robin

VCA scheme can exhibit throughput unfairness and cause

otherwise equivalent flows to experience widely different

delays if the traffic pattern injects flits in sync with the round-

robin period. Worse yet, a similarly biased crossbar arbitration

scheme can potentially block traffic arriving from one neighbor

by always selecting another ingress port for crossbar traversal.

While relatively sophisticated arbitration algorithms have

been developed (e.g., iSLIP [17]), the limited area and power

in an NoC, together with the requirement for fast line-rate

decisions, restricts the complexity of arbitration schemes and,

consequently, their robustness to adversarial traffic patterns.

Instead of selecting one such algorithm, therefore, HORNET

employs randomness to break arbitration ties: for example,

the order in which next-in-line packets are considered for VC

allocation, and the order in which waiting next-in-line flits are

considered for crossbar traversal, are both randomized. While

the pseudorandom number generators are by default initialized

from an OS randomness source, the random seeds can be set

by the user when exact reproducibility is required.

B. Power and thermal modeling

To enable power and thermal analysis, HORNET combines

a dynamic power model based on ORION 2.0 [18] with

a leakage power model; an accurate thermal model uses

HOTSPOT 5.0 [19]. At runtime, various system configuration

parameters (buffer sizes, port counts, etc.) and statistics (buffer

reads/writes, crossbar transits) are passed to the ORION library

for on-the-fly power estimation and to HOTSPOT for thermal

modeling: this enables not only the usual average and peak

power and thermal analysis for the entire chip but also per-

tile and per-time-period reporting.

C. Concurrency, synchronization, and correctness

HORNET takes advantage of modern multicore processors

by automatically distributing simulation work among the avail-

able cores; as we show in Section IV, this results in significant

speedup of the simulations.
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The simulated system is divided into tiles comprising a sin-

gle virtual channel router and any traffic generators connected

to it (cf. Figure 1), as well as a private pseudorandom num-

ber generator and any data structures required for collecting

statistics. One execution thread is spawned for each available

processor core (and restricted to run only on that core), and

each tile is mapped to a thread; thus, some threads may be

responsible for multiple tiles but a tile is never split across

threads. Inter-thread communication is thus limited to flits

crossing from one node to another, and some fundamentally

sequential but rarely used features (such as writing VCD

dumps).

Functional correctness requires that inter-tile communica-

tion be safe: that is, that all flits in transit across a tile-

to-tile link arrive in the order they were sent, and that any

metadata kept by the virtual channel buffers (e.g., the number

of flits remaining in the packet at the head of the buffer) is

correctly updated. In multithreaded simulation mode, HORNET

accomplishes this by adding two fine-grained locks in each

virtual channel buffer—one lock at the tail (ingress) end

of the VC buffer and one lock at the head (egress) end—

thus permitting concurrent access to each buffer by the two

communicating threads. Because the VC buffer queues are

the only point of communication between the two threads,

correctly locking the ends when updates are made ensures that

no data is lost or reordered.

With functional correctness ensured, we can focus on the

correctness of the performance model. One aspect of this is the

faithful modeling of the parallelism inherent in synchronous

hardware, and applies even for single-threaded simulation;

HORNET handles this by having a positive-edge stage (when

computations and writes occur, but are not visible when read)

and a separate negative-edge stage (when the written data are

made visible) for every clock cycle.

Another aspect arises in concurrent simulation: a simulated

tile may instantaneously (in one clock cycle) observe a set of

changes effected by another tile over several clock cycles. A

clock-cycle counter is a simple example of this; other effects

may include observing the effects of too many (or too few)

flit arrivals and different relative flit arrivals. A significant

portion of these effects is addressed by keeping most collected

statistics with the flits being transferred and updating them on

the fly; for example, a flit’s latency is updated incrementally

at each node as the flit makes progress through the system,

and is therefore immune to variation in the relative clock

rates of different tiles. The remaining inaccuracy is controlled

by periodically synchronizing all threads on a barrier. 100%

accuracy demands that threads be synchronized twice per

clock cycle (once on the positive edge and once on the negative

edge), and, indeed, simulation results in that mode precisely

match those obtained from sequential simulation. Less fre-

quent synchronizations are also possible, and, as discussed in

Section IV, result in significant speed benefits at the cost of

minor accuracy loss.

Characteristic Configuration

Topology 32×32 2D mesh, 8×8 2D mesh
Routing XY, O1TURN, ROMM
VC allocation dynamic, EDVCA
Link bandwith 1 flit/cycle
VCs per port 4, 8
VC buffer size 4, 8 flits
Avg. packet size 8 flits
Traffic workloads transpose, bit-complement,

shuffle, H.264 decoder profile;
SPLASH-2 traces: FFT, RADIX,
SWAPTIONS, WATER;
natively executed PARSEC

applications: BLACKSCHOLES

Warmup cycles 200,000 for synthetic traffic;
0 for applications

Analyzed cycles 2,000,000 for synthetic traffic;
full running time for applications

Server CPUs used 2× Intel Xeon X5680 6-core with HT;
Intel Core i7 4-core with HT

# HT cores used for simulation 1. . .24
Sync period clock-accurate, every 5 cycles

TABLE I
SYSTEM CONFIGURATIONS USED IN SIMULATION

D. Processor core integration

Figure 1 shows the system simulated by HORNET. Each tile

contains a flit-based NoC router, connected to other routers via

point-to-point links with any desired interconnect geometry,

and, optionally, one of several possible traffic generators.

These can be either trace-driven injectors, cycle-level MIPS

simulators, or instrumented threads of a native application

running under Pin. A common bridge abstraction presents a

simple packet-based interface to the injectors and cores, hiding

the details of DMA transfers and dividing the packets into flits

and facilitating the development of new core types.

1) Trace-driven injector: The simple trace-driven injector

reads a text-format trace of the injection events: each event

contains a timestamp, the flow ID, packet size, and possibly

a repeat frequency (for periodic flows). The injector offers

packets to the network at the appropriate times, buffering

packets in an injector queue if the network cannot accept them

and attempting retransmission until the packets are injected.

When packets reach their destinations they are immediately

discarded.

� � � �

���		
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Fig. 5. In a heavily loaded network, traffic on long-path routes can suffer
significantly more latency than those on short routes. In this case, flow A must
compete for the link with a short flow (B, C, and D) at every step of its route;
assuming locally fair arbitration between any two flows, this effect can result
in delays for A that are exponential in its path length.
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2) MIPS simulator: Each tile can be configured to simulate

a built-in single-cycle in-order MIPS core; the core can be

loaded with statically linked binaries compiled with a MIPS

cross-compiler such as GCC.

The MIPS core is connected to a configurable memory

hierarchy which supports an arbitrary number of private or

shared cache levels backed by a shared main memory. Mem-

ory coherence among the caches is ensured either by an

implementation of the MSI cache coherence protocol or via

a NUCA-style distributed shared memory with remote-access

reads and stores; either option uses the configured on-chip

network to communicate with main memories, directories, and

other caches.

To directly support MPI-style applications, the network can

also be directly exposed to the processor core via a system

call interface: the program can send packets on specific flows,

poll for packets waiting at the processor ingress, and receive

packets from specific queues. The sending and receiving pro-

cess models a DMA, freeing the processor while the packets

are being sent and received.

3) Pin-based native binary instrumentation: HORNET can

also be used to instrument native x86 executables using Pin [5].

In this case, the application of interest is run under Pin, and

its threads are mapped 1:1 to the simulated tiles as they

are spawned. Each instruction executed by the application is

intercepted and its memory accesses handled by the memory

hierarchy configured in HORNET; timing consists of a table-

driven model for the non-memory portion of each instruction

plus the memory access latencies reported by HORNET. In this

mode, direct application access to the network is not available,

and simulation relies on HORNET’s coherent memory hierarchy

to generate traffic on the network.

III. METHODS

To support our claims with concrete examples, we ran

HORNET simulations with various system configurations. The

salient configuration features used in various combinations in

our experiments are listed in Table I.

PARSEC benchmarks were scaled for 1024 cores and run

directly on the integrated MIPS model. SPLASH-2 traces were

obtained by running the benchmarks [6] in the distributed

x86 multicore simulator Graphite [20] with 64 application

threads; all network transmissions were logged and the traces

were then replayed in HORNET. To obtain significant network

congestion, the x86 core was assumed to run on a clock ten

times faster than the network. This was necessary because

the SPLASH benchmarks were written for a multiprocessor

environment where the cost of inter-processor communication

was much higher, and thus particular attention was paid to

frugal communication; the plentiful bandwidth and relatively

short latencies available in NoC-based multicores make this

kind of optimization less critical today.

Although each simulation collects a wide variety of statis-

tics, most reports below focus on average in-network latency

of delivered traffic—that is, the number of cycles elapsed

from the time a flit was injected into a network router ingress

port to the time it departed the last network egress port for

the destination CPU—as most relevant to current and future

cache-coherent shared-memory NoC multicores. For speedups,

we measured elapsed wall-clock times with HORNET as the

only significant application running on the relevant server.

Finally, to quantify the accuracy of the loosely synchronized

simulations, we first ran HORNET with full clock-accurate

synchronization to obtain a baseline; we then repeated the

experiment with different synchronization periods (but the

same random number seed etc.) and compared the reported

average latencies as an accuracy measurement.

To enable power and thermal analysis, we integrated HOR-

NET with a power model based on ORION 2.0 [18] and a

thermal model uses HOTSPOT 5.0 [19].

IV. DISCUSSION

A. Simulation challenges for large-scale multicores

Scaling multicores and their on-chip networks to thousand-

core levels presents challenges that do not arise in existing

systems with fewer than one hundred cores. On the one hand,

there is the simple challenge of significantly more traffic

concentrated on few nodes: the off-chip bandwidth grows

much more slowly than on-chip transistor counts [21], and the

resulting higher core-to-memory ratio will raise traffic centered

around the memory controller to unprecedented levels.

On the other hand, various congestion effects present but

not significantly detrimental in smaller networks are radically

amplified in on-chip interconnects on a 1000-core scale. For

example, while a single one-way link in an 8 × 8 mesh

with domain-ordered routing (DOR) might at worst be the

bottleneck for 128 distinct flows (assuming all-to-all traffic

and one flow per source/destination node pair), the most

encumbered link in a 1024-core 32× 32 mesh could be on

the critical path of as many as 8,192 flows.1 Worse yet,

local congestion can cause long-distance flows to experience

exponentially long latencies (see Figure 5): indeed, in long-

running high-traffic simulations of a 1024-core, 32×32 mesh

network, we observed that some flows delivered very few or

even no packets precisely because of this effect, whereas in a

64-core, 8×8 network this was never a problem.

Clearly, extrapolating architectural decisions for large-scale

on-chip networks from small-scale simulations runs severe

risks of missing significant performance bottlenecks, and ac-

curate simulation of large networks is a necessary step in the

design process.

B. Parallelization and performance

Since large-scale designs must be simulated directly, scala-

bility is a key consideration in simulator design. One possibil-

ity is to abstract away detail and give up cycle-level simulation,

but, as discussed is Section IV-C below, this is undesirable

for on-chip network design. Another is to implement the

system in FPGA directly or via a time-multiplexing system

1the number of flows on the most encumbered link for DOR on an n×n
mesh is n3

4 .
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(b) accuracy

Fig. 6. Parallelization speedup for cycle-accurate and loosely-synchronized simulations of 1024-core simulations of synthetic SHUFFLE traffic and the PARSEC

BLACKSCHOLES benchmark running in the MIPS frontend on a system with 24 hyperthreaded cores (left) shows that even cycle-accurate simulation scales
linearly up to the 6 physical cores on the same die (over 5× speedup). Pairing up threads using HT on the same physical cores offers more speedups for
synthetic traffic (which has small cache requirements) than for the MIPS code (simulating which requires more cache); on the other hand, crossing over to
the other processor die significantly increases inter-thread synchronization costs, and only becomes advantageous when threads are synchronized loosely. At
the same time, simulation fidelity (as measured by average packet latency deviation from cycle-accurate simulation of the synthetic traffic) is near 100%. (On
the left, we used a 12× Intel R© Xeon R© X5680 @ 3.33GHz, on two 6-core dies, each hyperthreaded 2-way for a total of 24 cores (cores 1–12 on core 0, with
7–12 virtual; cores 13–24 on core 1 with 19–24 virtual); on the right, single-die 4-core Intel R© CoreTM i7 960 @ 3.2GHz with 4 threads).
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(b) H.264 profile

Fig. 7. Performance benefits from fast-forwarding. Unlike low-traffic bit complement, which sends traffic in coordinated bursts and sees significant speedups
when the network is idle, the low-traffic H.264 profile gains little because packets are sent relatively constant frequency and the network is rarely fully drained.

like HaSIM [22]; while those approaches offer excellent

performance, they require a very low-level, time-consuming

design and verification process. In HORNET, we instead take

advantage of today’s commodity processors featuring several

cores on a single die: a single simulation can be split into

multiple threads running in parallel on as many cores as are

available.

Efficient parallel simulation requires designing the simulator

for concurrency from ground up. The key factor limiting

performance is inter-thread communication, which can be

divided into (a) communication within the simulated network

itself, (b) synchronization barriers for clock-accurate results,

and (c) any shared data structures; in HORNET, threads share

no structures other than queues that carry traffic among the

simulated routers, so communication only involves (a) and (b).

Clock synchronization (twice per cycle in cycle-accurate

mode) causes the most traffic because all threads must wait

on the same barrier. While this is inexpensive and allows

linear scaling when all cores are on the same die, barrier

communication across separate processor dies becomes time-

consuming and limits performance (cf. Figure 6). To allow

further speedup, HORNET allows barrier synchronization to be

performed instead once every few cycles. From a functional

correctness standpoint, this makes no difference, since all traf-

fic will still arrive subject to the original ordering constraints

and any deterministic algorithm running on the CPU cores will

have the same results. The loose synchronization does imply

some loss of fidelity in reported timing, but there HORNET

ensures high accuracy by accumulating statistics separately in

each thread, carrying measurements within each transmitted
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Fig. 8. The effect of congestion on flit latency for two SPLASH applications:
for RADIX, which generates a lot of network traffic, not modeling congestion
results in a nearly 2× network latency underestimate; for SWAPTIONS, which
has much less traffic, the difference, although present, is not significant. The
results for the remaining SPLASH applications were similar: the congestion
effect for high-traffic applications was similar to RADIX and for low-traffic
applications resembled SWAPTIONS. (64-core system with 4 VCs).

packet, and never basing measurements on relative values from

two cores. As a result, timing measurements retain near 100%

fidelity while scaling across separate dies and hyperthreaded

cores (Figure 6).

While communication due to simulated network traffic is

unavoidable, HORNET employs fine-grained locking to ensure

maximum parallelism. The virtual channel buffers—the only

communication points between any two tiles—have front and

back locks which can be separately held by different threads:

this allows HORNET to ensure that results from cycle-accurate

parallel simulations are identical to those from an equivalent

single-thread simulation (given the same randomness seeds),

and that intertile communication does not limit performance

(cf. Figure 6).

To further improve performance HORNET can fast-forward

the clocks in each tile when there are no flits buffered in the

network and no flits about to be injected for some period of

time. Because in that situation no useful work can possibly

result, HORNET advances the clocks to the next injection

event and continues cycle-by-cycle simulation from that point

without altering simulation results. Clearly, heavy traffic loads

will not benefit from fast-forwarding because the network

buffers are never drained and HORNET never advances the

clock by more than one cycle. Figure 7 shows that the benefit

on low-volume traffic depends intimately on the traffic pattern:

an application which, like bit complement, has long pauses

between traffic bursts, will benefit significantly; an application

which spreads the small amount of traffic it generates evenly

over time like the H.264 profile will rarely allow the network

to fully drain and therefore will benefit little from fast-

forwarding.

���	����� ,���-
�

*�

���

�*�

���

�*�

+��

.
��
)
/

�%
0

�
$
��

�
%1

"%
1%
�

�#







�2�-�'�1����%
�2�-�'342�.
�2�-�'�1����%
�2�-�'342�.
�2�-�'�1����%
�2�-�'342�.

Fig. 9. In-network latency for different VC buffer configurations. Coun-
terintuitively, increasing the number of VCs from 2 to 4 while keeping the
VC sizes constant at 8 flits actually increases in-network latency because
packets can be buffered inside the network. When total VC memory size is
held constant, doubling the number of VCs to 4 (and correspondingly halving
their capacities to 4 flits) decreases latency as expected. We ran the same
experiment on other applications (WATER, and FFT) but the results exhibited
the same pattern and so we omit them for brevity.
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Fig. 10. The effect of routing and VC configuration on network transit
latency in a relatively congested network on the WATER benchmark: while
O1TURN and ROMM clearly outperform XY, the margin is not particularly
impressive. (The remaining application benchmarks are broadly similar except
for scaling due to higher or lower network load, and are not shown).

C. Congestion and cycle-level simulation

High-level architectural simulators tend to assume an ideal-

ized interconnect network and generally either do not consider

congestion or approximate it with an analytical model. For

interconnect network design itself, however, congestion effects

are of prime importance, as they dictate, for example, what

routing algorithms should be employed. To estimate the effect

of congestion, we performed simulations of the SPLASH

benchmark suite in the congestion-accurate configuration and
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Fig. 11. The effect of varying the number of memory controllers on in-
network latency (and therefore memory system performance) running traces
from the RADIX benchmark. While multiple memory controllers significantly
reduce congestion, replacing one memory controller (1 MC) with five (5 MC)
does not increase performance anywhere close to five-fold.

in a congestion-oblivious configuration where injection band-

width was limited as in the accurate model but the transit

latencies were simple hop-counts. As Figure 8 shows, ignoring

congestion effects can cause the simulation to significantly

underestimate simulation-time measurements: depending on

the amount of network traffic generated by the benchmark,

the effect ranged from 2× to negligible.

When congestion must be modeled accurately, cycle-

accurate simulation is indispensable. For example, network

congestion can have significant effects on how the net-

work configuration—say the number and size of the virtual

channels—affects in-network latency (i.e., the latency incurred

after the relevant flit is seen by the processor as successfully

sent). Intuitively, adding more virtual channels should gener-

ally allow more packets from different flows to compete for

transmission across the crossbar, increase crossbar efficiency,

and therefore reduce observed packet latency. While this holds

when traffic is light, it may have an opposite effect in a

relatively congested network: as Figure 9 illustrates on two

SPLASH-2 applications, doubling the number of VCs while

holding the size of each VC constant causes the observed in-

network latency in a relatively congested network to actually

increase. This is because the total amount of buffer space in the

network also doubled, and, when traffic is heavy and delivery

rates are limited by the network bandwidth, the flits at the

tails of the VC queues must compete with flits from more

VCs and thus experience longer delays. Indeed, when the VC

queue sizes are halved to keep the total amount of buffer space

the same, the 4-VC setup exhibits shorter latencies than the

2-VC equivalent as originally expected.

While in a lightly loaded network almost any routing and

VC allocation algorithm will perform well, heavier loads lead

to different congestion under different routing and VC algo-
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Fig. 12. Trace-based simulation lacks the feedback loop from the network
to the sending (or receiving) core; this allows cores to inject packets unrealis-
tically fast and permits the application to finish much earlier than realistically
possible.

rithms and performance is significantly affected; again, accu-

rately evaluating such effects calls for a cycle-level simulator

and real applications. Figure 10 shows the effect of routing and

VC allocation scheme on performance of the SPLASH-2 WA-

TER benchmark in a relatively congested network. While the

algorithms with more path diversity (O1TURN and ROMM)

do lower observed in-network latency, the performance in-

crease is not as much as might be expected by considering

the increased bandwidth available to each flow.

Modern multicore designs can reduce on-chip network

congestion by placing several independent memory controllers

in different parts of the network. Since in a cache-coherent

system a memory controller generally communicates with all

processor cores, modeling congestion is critical in evaluating

the tradeoff between adding memory controllers and control-

ling chip area and pin usage. For example, Figure 11 shows

in-network latency for two cache-coherent systems: one with

one memory controller and the other with five. Although

performance clearly improves with five memory controllers,

the improvement does not approach five-fold reduction es-

pecially for the more congestion-friendly routing and VC

allocation schemes. More significantly, the two choices impose

different constraints on selecting the routing and VC allocation

logic: while the congestion around a central memory controller

makes controlling congestion via routing and VC allocation,

the average latency in a system with five memory controllers

does not vary significantly under different routing algorithms

and EDVCA, and the designer might choose to save area and

reduce implementation complexity in the network switch.

D. Processor model integration

Much of the research in network-on-chip microarchitecture

relies on synthetic traffic patterns or application traces col-

lected under the assumption of an ideal interconnect network.
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Fig. 13. Temperature traces over the runtime of different SPLASH applications. While for OCEAN a peak (or, indeed, mean) temperature estimate might be
used to choose thermal constraints, the activity-dependent temperature variation in radix RADIX means that neither the mean nor the peak provides the best
architectural tradeoff.

This approach generally ignores the interdependencies among

the various flows and the delays caused by instructions that

must wait until network packets are delivered (for example,

memory accesses that miss the per-core cache hierarchy). For

these reasons, a precise evaluation of the performance of NoC-

based multicores in running real applications requires that the

CPU core and the network be simulated together.

To quantify the differences between trace-driven and real

application traffic, we implemented Cannon’s algorithm for

matrix multiplication [23] in C using message-passing and

targeting the MIPS core simulator that ships with HORNET.

We ran the simulation on 64 cores and applied it to a 128×128

matrix; to stress the network, cores were mapped randomly,

per-cell data sizes were assumed to be large, and computations

were taken to be relatively fast. For the trace version, we

assumed an ideal single-cycle network, logged each network

transmission event, and later replayed the traces in HORNET;

for the combined core+network version, we ran the benchmark

with the MIPS cores simulated by HORNET directly interacting

with the on-chip network.

The results, shown in Figure 12, illustrate that the processor

cores may have to spend significant amounts of time waiting

for the network. On the one hand, a destination node waiting

for a packet may block until the packet arrives. On the other

hand, the sending node may have to wait for the destination

core to make progress: when the destination is nearby (e.g.,

adjacent), even a relatively short packet can exceed the total

buffer space available in the network, and the sending core

may have to stall before starting the following packet until

the current packet has been at least somewhat processed by

the destination core and network buffers have freed up.

E. Thermal effects

While processor core and cache thermal effects have been

extensively studied, available interconnect network models

report only steady-state averages for the entire chip. Figure 13

shows that choosing thermal constraints based merely on

average or peak temperature data can be misleading: for

applications in which network load varies significantly over

time, basing interconnect design decisions on the mean values

runs the risk of thermal runaways when the application enters

a heavy-traffic phase, while using worst-case peak values

may result in over-provisioned, expensive thermal packaging.

Instead, the designer might choose a design point based on

the temperature profiles of the target applications, and ensure

that application execution—and hence network traffic—are

throttled when temperature rises above some maximum.

Such throttling requires attaching thermal sensors to the die

itself; although placing more sensors on the die would provide

a more accurate thermal picture, the sensors themselves are

relatively expensive and power-hungry, and generally very few

are present on a chip. We reasoned that, since our SPLASH

runs were done with one memory controller in one corner

of the mesh, the switches bordering might become a thermal

hotspot and the memory controller would be a good place

for a sensor. As illustrated in Figure 14, however, the thermal

hotspot in our simulations varied in magnitude but remained in

the center of the chip regardless of the benchmark and routing

algorithm: this is because the XY routing algorithm we used

(and, indeed, nearly all available algorithms) route a greater

proportion of the traffic via the central region of the mesh.

This result suggests that placing a sensor in the central area

of the die should suffice.

The availability of time- and space-resolved thermal mea-

surements within HORNET allows us to investigate routing

algorithms which can reroute traffic on possibly longer paths

(e.g., near the edges of the mesh) instead of throttling down

performance when temperature rises; the development of such

power-adaptive routing schemes remains an interesting topic

of future research.
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Fig. 14. Steady-state temperature distribution over an 8× 8 mesh NoC for two SPLASH applications. While the overall magnitude varies significantly (in
this case by over 5◦C), the overall distribution remains the same: even though the memory controller is located in the lower-left corner, the central nodes
suffer the highest temperatures (the remaining SPLASH benchmarks and routing algorithms other than XY show similar temperature profiles).

V. RELATED WORK

One NoC simulator that stands out among the many simple,

limited-purpose software NoC simulators is Garnet [24]. Like

HORNET, Garnet models an NoC interconnection network at

the cycle-accurate level: the model allows either a standard

ingress-queued virtual channel router with a rigid five-stage

pipeline or a flexible egress-queued router. Integration with

GEMS provides a full-system simulation framework and a

memory model, while integration with ORION [25] provides

power estimation. RSIM [26] simulates shared-memory mul-

tiprocessors and uniprocessors designed for high instruction-

level parallelism; it includes a multiprocessor coherence pro-

tocol and interconnect, and models contention at all resources.

SICOSYS [27] is a general-purpose interconnection network

simulator that captures essential details of low-level simula-

tion, and has been integrated in RSIM. Noxim [28] models a

mesh NoC and, like HORNET, allows the user to customize

a variety of parameters like network size, VC sizes, packet

size distribution, routing scheme, etc.; unlike HORNET, how-

ever, it’s limited to 2D mesh interconnects and is traffic-

pattern-driven rather than integrated with a processor frontend.

Booksim [29] allows for more network geometries but is also

driven by synthetic traffic patterns. None of these simulators

significantly exploit available multicore parallelism.

Highly configurable, parallelized architectural modeling is

not a new idea. The Simplescalar toolset [30] can model a

variety of processor architectures and memory hierarchies, and

enjoys considerable popularity among computer architecture

researchers. Graphite [20] is a Pin-based multicore simulator

that stands out for its ability to model thousands of cores

by dividing the work among not just multiple cores on the

same die but multiple networked computers; unlike HORNET’s

Pin frontend, however, it does not interface with a cycle-

level network model and its latency and congestion models

are probabilistic. Finally, the growth in complexity and the

need for ever-increasing amounts of verification has led to

the development of FPGA-based simulators like HaSIM [22]

and FPGA-level emulator platforms like RAMP [31], which,

though far more difficult to configure, are much faster than

software solutions.

VI. CONCLUSION

We have introduced HORNET, a highly configurable, cycle-

accurate network-on-chip simulator that can be driven by

network traces, a built-in MIPS simulator, or by native applica-

tions instrumented with Pin. HORNET’s parallelized simulation

engine can scale nearly linearly with the number of physical

cores in the processor while preserving cycle-accurate behav-

ior, and allows the user to obtain even more speed via loose

synchronization, which preserves correctness but can introduce

some inaccuracy in performance measurements.
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