
Towards an Interpreter for
Efficient Encrypted Computation

Christopher Fletcher
MIT CSAIL

cwfletch@mit.edu

Marten van Dijk
RSA Laboratories

marten.vandijk@rsa.com

Srinivas Devadas
MIT CSAIL

devadas@mit.edu

ABSTRACT
Fully homomorphic encryption (FHE) techniques are capable of
performing encrypted computation on Boolean circuits, i.e., the
user specifies encrypted inputs to the program, and the server com-
putes on the encrypted inputs. Applying these techniques to general
programs with recursive procedures and data-dependent loops has
not been a focus of attention. In this paper, we take a first step
toward building an interpreter that, given programs with complex
control flow, schedules efficient code suitable for the application of
FHE schemes.

We first describe how programs written in a small Turing-
complete instruction set can be executed with encrypted data and
point out inefficiencies in this methodology. We then provide
examples of scheduling (a) the greatest common divisor (GCD)
problem using Euclid’s algorithm and (b) the 3-Satisfiability
(3SAT) problem using a recursive backtracking algorithm into
path-levelized FHE computations. We describe how path leveliza-
tion reduces control flow ambiguity and improves encrypted com-
putation efficiency. Using these techniques and data-dependent
loops as a starting point, we then build support for hierarchical pro-
grams made up of phases, where each phase corresponds to a fixed
point computation that can be used to further improve the efficiency
of encrypted computation.

In our setting, the adversary learns an estimate of the number of
steps required to complete the computation, which we show is the
least amount of leakage possible.

Categories and Subject Descriptors
I.1.3 [Computing Methodologies]: Languages and Systems—
Evaluation Strategies; E.3 [Data]: Data Encryption

Keywords
Encrypted computation, Fully homomorphic encryption, Code in-
terpreters

1. INTRODUCTION
Fully homomorphic encryption (FHE) techniques are capable

of performing encrypted computation on Boolean circuits. In en-
crypted computation a program receives encrypted inputs and com-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’12, October 19, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1665-1/12/10 ...$15.00.

putes an encrypted result based on the encrypted inputs. Only the
user who knows the decryption key can decrypt and interpret the
result. Applying these techniques to general programs with recur-
sive procedures, data-dependent loops and complex control flow
has not received significant attention. In this paper, we show how
to improve the efficiency of encrypted computation that uses FHE
schemes by applying path levelization and conditional fixed point
techniques during the scheduling step of a program with complex
control constructs.

Since the server deals with encrypted data it may not know what
instruction to execute in the case of programs with complex control
flow, and therefore it may need to execute many instructions at each
time step or clock cycle. This ambiguity may make encrypted com-
putation prohibitively expensive, even with efficient FHE schemes.
We illustrate this by describing the execution of programs written
using a small Turing-complete instruction set with encrypted data.

To decrease this control flow ambiguity, we show how a program
can be transformed to a path levelized form, even when there are
complex control flow constructs such as recursion in the original
program description. We then show how the decomposition of a
program into hierarchical phases, where each phase corresponds to
a fixed point computation, can be used to significantly improve the
efficiency of encrypted computation.

In our setting, given a program with encrypted inputs, the server
performs encrypted computation for a specified number of steps,
which the user or server believes is “more than enough.” When the
server exceeds its budget, it sends the most current program state
back to the user. The user then determines whether the program
state corresponds to the final result, or an intermediate result. The
program is written so it either takes a deterministic amount of time,
or reaches a fixed point after the final result is computed; in the
latter case, the result is not corrupted even if there is additional
encrypted computation. The adversary learns an estimate of the
number of clock cycles required to complete the computation. We
show that revealing an estimate on the number of cycles is the least
amount of leakage possible.

Organization: The rest of this paper is organized as follows.
In Section 2, we define the two-interactive protocol and security

model that we assume. We briefly describe the process of trans-
lation from a Turing machine to a circuit which can be evaluated
under encryption.1 We then show how arbitrary programs written
in a small Turing-complete instruction set can be executed with en-
crypted data and point out the inefficiency in this approach.

In Section 3, we introduce path levelization as one way of reduc-
ing control flow ambiguity and fixed point computation as a way to
protect program results. We demonstrate these ideas by transform-
ing an algorithm that calculates the greatest common divisor (GCD)

1A detailed translation is given in [9].

of two encrypted numbers, using Euclid’s algorithm, and showing
how the transformed algorithm is more efficient under encryption.

In Section 4, we describe a programming model where a pro-
gram is decomposed into phases, and each phase corresponds to
a fixed point computation. We provide an example of transform-
ing a program that solves the 3-Satisfiability (3SAT) problem on an
encrypted SAT formula using a recursive backtracking algorithm.
Both path levelization and fixpoint computation techniques are ap-
plied. We provide peformance analysis that quantify gains due to
path levelization on our two examples in Section 5.

We show that the two-interactive protocol results in the least
amount of leakage to the server in Section 6, assuming a semi-
honest server. We provide background in FHE methods and discuss
related work in Section 7. Section 8 concludes the paper.

2. FRAMEWORK
To start, we introduce a general framework for performing com-

putation under encryption for arbitrary programs. We will expand
and optimize this framework in the later sections of the paper.

In this paper we use the notation FHE.Enc, FHE.Dec, FHE.Add
and FHE.Mult for FHE encryption, FHE decryption, and addition
and multiplication under FHE, respectively. We assume the exis-
tence of these operations and use FHE as a “black-box” module
in our translation of programs into flows of instructions that can
be evaluated under encryption. This translation can be viewed as
a first step toward developing an interpreter for computation un-
der encryption using FHE (as opposed to Fairplay [20] which is a
compiler for secure function evaluation based on garbled circuits
[27]). We show how the translation can be made significantly more
efficient in Section 3, through techniques that reduce control flow
ambiguity.

2.1 Two-Interactive Protocols
We model general computation with a two-interactive protocol

between a user and server. Formally, a two-interactive protocol Π
for computing a deterministic algorithm A : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ runs as follows:

1. The user wants the server to evaluate algorithm A on inputs
from the user, collectively denoted by x, and inputs from the
server, collectively denoted by y.

2. By using FHE.Enc, the user encrypts its inputs to form the
ciphertextM0 and then chooses a number of steps S, where
a step is some atomic unit of work (M0 is notation for “the
encrypted state after zero steps”). The user then transmits to
the server the pair (M0, S) together with algorithm A if A
has not already been transmitted to the server.

3. After receiving the pair (M0, S), the server evaluates A un-
der encryption onM0 and its own inputs y by using FHE.Add
and FHE.Mult for S steps (see Section 2.5). The result is a
ciphertextMS , which the server transmits to the user.

4. By using FHE.Dec, the user decrypts MS and checks
whether S was sufficient to complete A(x, y). Without loss
of generality, we assume that the algorithm outputs an “I am
done” message as part of its final result.

A correct execution of Π outputs to the client the evaluation
A(x, y) (if S was sufficient) or some intermediate result.

The disadvantage of only two interactions is that the user may
receive an intermediate result (rather than the final one) indicating
that the computation was not finished. The advantage is no addi-
tional unnecessary privacy leakage about the final result, i.e., the
server does not gain additional understanding about the output of
the algorithm evaluated on the unencrypted inputs besides what the
server is already able to extract from the algorithm itself, the num-

ber and sizes of the encrypted inputs, and other a-priori knowledge.
We will prove in Section 6 that this leakage is optimal.

2.2 Security Model
We assume the semi-honest model: the server is “honest but cu-

rious.” The server is honest in that it executes A under encryption
for the required number of steps and sends back the result exactly
as specified (no deviations, malicious or otherwise). In particular,
the server does not send back to the user the result produced by exe-
cuting a different algorithm, or evaluatingA on different inputs, or
evaluatingA on the user’s input for less than S steps. The server is
curious in that it may try to learn as much as possible about the in-
put of the user from its view; its view is the algorithm and encrypted
inputs as given by the user (and possibly other a-priori informa-
tion). This means that the server may execute other algorithms on
other inputs in order to satisfy its curiosity (e.g., a small deviation
of the specified algorithm, or the specified algorithm where some
intermediate results are altered). We want the view of the server to
not leak more knowledge (i.e., not compromise more privacy) than
necessary.

2.3 A Turing Machine Approach
A first (straightforward) approach to general computation un-

der encryption is to use Turing machines (TMs) to model program
execution. This methodology would translate TMs to arithmetic
circuits which can be evaluated under encryption through FHE
schemes. A TM consists of a finite-state control unit and a tape
(which we refer to as M). Communication between the two is
provided by a single head, which reads symbols from M and is
also used to change the symbols on M. The program tape M is
analogous to the encrypted input M from Section 2.1 and each
movement of the TM head can be viewed as one step.

The control unit operates in discrete steps. At each step it per-
forms one of two functions in a manner dependent on its current
state and the symbol currently scanned onM: (1) Write a symbol
on M at the square currently scanned, replacing the one already
there; or (2) move the read/write head one square onM to the left
or right. A TM is fully described by its state, the position of its
head, and the content ofM.

Since state, position of the head, and the content ofM are en-
crypted, any possible combination needs to be taken into account
in each TM iteration. This means that each TM iteration involves a
computation on the position of the head, each square onM and the
state. This is costly and turns out not to be necessary. Over the next
several subsections, we introduce a program structure approach in
which the TM state corresponds to a global program counter and
M corresponds to the program’s state (memory)—both of which
are encrypted. We will then present efficiency improvements to
this base model in Sections 3 and 4.

2.4 Program Structure
An arbitrary programA is represented as a set B of basic blocks.

(We refer to the jth basic block as Bj for j = 1 . . . |B|). Each basic
block is made up of an ordered sequence of instructions and has one
entry and one exit point. Basic blocks are evaluated atomically—
program flow enters at the top of a basic block and all instructions
within the basic block are evaluated in the specified order. Each
basic block has a public, fixed address that corresponds to a unique
program counter, denoted PC.

Programs contain two types of instructions: sub (for subtract)
and branch. The sub, a, b operation performs:

M[b] =M[b]−M[a]

where M is the program data memory (equivalent to the Turing

Table 1: Summary of data used by the server during an encrypted
computation.

Encrypted Unencrypted
Data memory (M) Instruction memory
Program inputs The program A
Intermediate values Boolean networks for each b ∈ B
Results PC addresses for each b ∈ B
PC′ S, a number of steps to run for

machine tape from Section 2.3). Each basic block is terminated by
a branch a, BBX, BBY instruction, which performs

if M[a] < 0 : PC = PC(BBX)

else : PC = PC(BBY)

where PC(BBX) is notation for “the PC address of basic block
BBX .” Together, these instructions are Turing-complete [16]. If
instruction branch a, BBX, BBY occurs in Bj for some j, we say
that BBX and BBY are the successor basic blocks to Bj (with-
out loss of generality, each basic block can have at most two suc-
cessors from its branch exit point). Likewise, we say that Bj is a
predecessor to BBX and BBY (every basic block other than the
entry block to the program must have at least one predecessor). To
logically terminate the program, we use a special basic block whose
PC address is PCdone and has an unconditional branch instruction
back to PCdone.

2.5 Computation under Encryption
We now show how to map an unencrypted program A from the

previous section to an FHE scheme. We focus on two-party com-
putation between a trusted user and semi-honest server as has been
described so far. A summary of the encrypted and unencrypted
values used by the server is shown in Table 1.

To perform computation under encryption, the server converts
each basic block Bj for j = 1 . . . |B| to a Boolean network that
can be used to perform FHE-based computation on encrypted in-
puts. Since A is public, each Boolean network Bj and its corre-
sponding PC(Bj) is not encrypted and is known to the server—we
say that the server stores these values in an unencrypted instruction
memory. The user then augmentsM with an encrypted PC called
PC′, which is updated under encryption after each basic block is
evaluated. PC′ corresponds to the program’s data-dependent con-
trol flow, which is not known to the server. An important point is
that the server can deduce the value of PC′ at the beginning of
the program, and also at certain points during execution (e.g., if
straight-line code is being executed). The server also knows where
PC′ is located inM.

The user starts an algorithm by sending the server (a) an unen-
crypted number of steps S and (b) an encrypted initial data memory
M0 as described in Section 2.1. For s = 0 . . . S − 1, the server
performs the following state update operation:

Ms+1 =

|B|∑
j=1

cj ∗ Bj(Ms) (1)

where cj is given by:

if PC(Bj)
?
= PC′ : cj = 1 (2)

else : cj = 0

and Bj(Ms) is the new program state after Bj is applied toMs.
All operators in the update are mapped to the primitive FHE oper-
ations that we specified at the beginning of Section 2.

Notice that at any point in the computation, PC(Bj) is equal
to PC′ for exactly one Bj ; we are assuming sequential program
semantics. Thus, the server makes forward progress in A after
every step. The server evaluates every basic block in parallel at
each step because it does not know the true value of PC′.

Equivalently, one can perform the state update operation per-
instruction instead of per-basic block. For simplicity and efficiency
reasons, we treat basic blocks as the atomic unit of work in this
paper.

After S steps, the server returnsMS back to the user. IfA given
M0 requires S′ basic blocks to complete without encryption and
S ≥ S′, PC′ ?

= PCdone holds andMS corresponds to the final
program state. In a realistic setting, the user cannot always know
S for an arbitrary A given arbitrary inputs. If the user decrypts
PC′ and sees that PC′ ?

= PCdone is false,MS corresponds to an
intermediate result.

2.6 Efficiency Under Encryption
Let S be large enough such that when an arbitrary input is run on
A, PC′ ?

= PCdone holds at some step s ≤ S. With the above state
update function, O(S ∗ |B|) basic blocks are evaluated in order to
complete A; we call this the absolute computation performed by
the server.

Assuming an RLWE FHE scheme and N initial noise on M0,
the noise after running A will be O(N2S). The noise comes from
two flavors of FHE.Mult operations:

1. Since the server does not know PC′, we perform an
FHE.Mult operation between each cj and Bj(Ms) as shown
in Eqn. 1.

2. For the j such that cj = 1, the server does not know what
branch direction will be taken in Bj . Let x = M[a] < 0.
Then the PC′ update operation can be viewed as

PC′ = x ∗ PC(BBX) + (1− x) ∗ PC(BBY),

which results in an additional FHE.Mult and a corresponding
increase of noise on PC′. This noise factor is not added for
basic blocks with a single successor.

We do not count additive noise through FHE.Add operations.

3. EFFICIENT COMPUTATION
The program transformation in Section 2 is theoretically useful

for its generality, but is not an efficient transformation. Suppose
that A can be completed in S steps. Clearly, the server can com-
plete A on unencrypted data after evaluating O(S) basic blocks
because A’s data-dependent control flow is known to the server
in this situation. Thus, in addition to the overhead of performing
operations under encryption, the construction from Section 2.5 per-
forms a factor of O(|B|) additional work because the server does
not know PC′.

To address this efficiency issue, we propose a scheduling tech-
nique and a program transformation technique. The first tech-
nique is called path levelization, which lowers the O(S ∗ |B|) and
O(N2S) bounds from Section 2.5 by reducing PC ambiguity. The
second technique is a program-level notion of fixed point behav-
ior. After explaining the transformations, we demonstrate how to
transform and evaluate Euclid’s Greatest Common Divisor (GCD)
algorithm under encryption.

For the rest of this section, we considerA to be an arbitrary data-
dependent loop with a single entry basic block and a single exit ba-
sic block. The exit block transitions to entry to start another itera-
tion, or exits the loop. (A can be viewed as a do while loop). We

expand the scope of our transformations to larger programs (such
as those with data-dependent recursive calls) in Section 4.

3.1 Program Counter Ambiguity
Our transformations are based on trying to decrease program

counter (PC) ambiguity. If a program A executes exactly s steps
for some s, PC′ points to some basic block in set Cs where
Cs ⊆ B. While evaluating under encryption for some number of
steps s, the server needs to assume that any Bj ∈ Cs might satisfy
PC(Bj)

?
= PC′.

Let BBX(Bj) and BBY(Bj) be the target basic blocks for the
branch instruction in Bj . Then

Cs+1 = {BBX(Bj) : Bj ∈ Cs} ∪ {BBY(Bj) : Bj ∈ Cs}

Given an arbitrary A, Cs could be as large as B at some step s <
S, which means that the only way to guarantee forward progress
under encryption is to perform the state update given by Eqn. 1
(cf. Section 2.5). If |Cs| = 1 for some step s, we say that PC′ is
unambiguous at s.

3.2 Path Levelization
The idea behind path levelization is to evaluate the basic blocks

in A by level to shrink program counter ambiguity. Given basic
blocks X and Y and number of steps L, path levelization ensures
that the following property holds:

∀s : Cs = {X} ⇒ Cs+L = {Y }

For the remainder of this section, we assume that basic block X is
set to the entry basic block inA, that Y is set to the exit block, and
that L is the longest path (in terms of basic blocks) between the
entry and exit. In this context, the property is saying that ambiguity
on PC′ is independent of the number of data-dependent iterations
in A.

To levelize A, each Bj is assigned to a level (a set) Ll for l =
1 . . . L, relative to the entry block such that

Ll = {Bj : (1 + distance(entry,Bj))
?
= l,Bj ∈ B}

where distance(entry,Bj) is the maximum path length (in terms
of basic blocks) from entry to Bj .

Figure 1 shows an example loop A overlaid with levels. C1 =
{A} and C2 = {B,C} correspond to level 1 and level 2. At step
3, however, C3 6= L3 because the branch in block C may jump to
level 3 or level 4. Eventually (when s > 12), this slip causes Cs =
B. Thus, the state update function from Section 2.5 must evaluate
every basic block at each subsequent step to make progress. We
now show how levelization prevents the slip.

To perform computation on a levelized loop, we use the follow-
ing state update function:

if dominator(Ll,1) : Ms+1 = Ll,1(Ms) (3)

else : Ms+1 =

|Ll|∑
j=1

cj ∗ Ll,j(Ms) +

1−
|Ll|∑
j=1

cj

 ∗Ms

︸ ︷︷ ︸
identity operation

(4)

where l = (smodL)+1,Ll,j corresponds to the jth basic block in
level l, Ll,1 is the first basic block in level l, and each cj is defined
in the same way as in Eqn. 2.

Eqn. 3 is an optimization: when PC ambiguity disappears, we
do not have to perform a multiplication with cj . dominator(Ll,1)
returns true if Ll,1 is a dominator basic block—that is, if every
path from the entry to the exit block must pass through Ll,1—and

A

B C

D E F

G

Level 1

Level 2

Level 3

Level 4

Exit condition

a = 0 a = 1

b = 0 b = 1 c = 0

c = 1

Figure 1: Control flow diagram for an example loop, overlaid by
the 4 levels of execution. Arrows indicate legal branch transitions;
branch directions are given by lowercase letters for their basic block
(e.g., a is the branch direction for basic block A). When control
transitions from basic block C to G, level 3 does not make forward
progress.

false otherwise. Notice that when the server evaluates A level by
level, |Cs| = 1 ⇒ dominator(Ll,1) ⇒ |Ll| = 1 (we refer to
this case with dominator() to aid the reader). Thus, the server can
decide when to evaluate Eqn. 3 by keeping track of C at each step.

The identity operation term corresponds to the case when Cs 6=
Ll and means that evaluating the current level does not necessarily
update the state. Note that when Cs = Ll (which the server can
detect), the server does not need to evaluate the identity operation
(e.g., level 2 in Figure 1).

Putting these ideas together, the schedule of basic blocks that the
server evaluates (per step) for Figure 1 are:

L = [{A}•, {B,C}, {D,E, F}, {G}•]

(read left to right). We mark each Ll with ‘•’ if dominator(Ll,1)
holds (meaning that multiplications were optimized away). Going
back to our example, notice that C3 = {D,E, F,G} but level 3
only has {D,E, F}. If basic block C transitions to H , no forward
progress is made in the loop when level 3 is evaluated. This en-
sures that when level 4 is evaluated: C = {G}. Thus, for any loop
iteration, the server knows that when it evaluates level 1: C = {A}.

To perform S steps of computation on A, the state update func-
tion evaluates each level in order from left to right and repeats until
it evaluates I = S

L
loop iterations.

3.3 Fixed Point
We say that A is in fixed point form if the following property

holds: ifA completes in S′ steps and S > S′, useful program state
in M is not corrupted. We say that useful program state is that
which is used by the user after the computation. Since A is a data-
dependent loop that depends on M, the server cannot generally
guess when to exit and we have to protect state from getting cor-
rupted. To put A in fixed point form, the programmer or compiler
performs four steps:

1. AugmentM with an encrypted done flag (true/false).
2. Remove the data-dependent loop condition and replace it

with a condition that loops until I iterations are reached,
where I is public.

3. Add a header basic block to A that is only evaluated dur-
ing the first step in the computation. This header initializes
done to false and then unconditionally transitions to the en-

try basic block in A. It is the programmer or compiler’s re-
sponsibility to wrap A’s useful program state in if (not
done) {...} logic to prevent it from being corrupted.

4. Evaluate a transition check that performs the following op-
eration once, after the Ith iteration of A completes (say this
happens at some step s):

PC′s+1 = done ∗ PC(BBnext) + (1− done) ∗ PC′s
Where BBnext is the basic block that A’s loop exits to.
Note that when done

?
= false holds, PC’ gets stuck at

the entry basic block of A. This rule will be used in Sec-
tion 4.1.1 to support programs with multiple and hierarchical
data-dependent loops.

The done flag is a program-level construct that may seem redundant
because of the cj terms (which also implement fixed point-like be-
havior for each basic block) from Section 2.5. We have introduced
a second level of fixed point behavior to enable the optimization in
Eqn. 3 from Section 3.2 where we remove certain cj terms.

3.4 Efficiency with Transformations
Consider the “worst case input” a to A which flows through L

basic blocks per iteration and runs for some number of iterations I .
Adding fixed point done flags to A yields A′; by the definition of
path levelization, the longest path through A is the same sequence
of basic blocks as that through A′. (We assume that fixed point
logic adds a negligible number of basic blocks to A).

3.4.1 Absolute computation
Let L follow the description from Section 3.2. Recall that ab-

solute computation using the update function from Section 2.5 re-
quires O(S ∗ |B|) basic blocks to be evaluated, which is equiva-
lent to O(I ∗ L ∗ |B|). Notice that per-iteration, the path-levelized
scheme evaluates each basic block once, plus potentially an iden-
tity operation per-level. Thus, A′ can be completed by evaluating
O(I ∗ (L+ |B|)) basic blocks.

3.4.2 Noise
Since the maximum path length after path levelization is no

worse than before path levelization, the upper bound on the noise
after our transformations is still O(N2S). The compiler in [20]
uses single variable assignment for program values. We adapt
this technique to computation under encryption to reduce noise on
M. Given Ms for some step s, break M bitwise into Ms,b for
b = 1 . . . B where B is the encrypted bit-length of M. We say
that Ms,b only incurs noise during step s if some basic block in
Ll (where l = (smodL) + 1) updatesMs,b and makes forward
progress in A′ (Ll is public).

With the single variable assignment technique, prior to any op-
timization, we make the following observation: the noise limiting
variable in M is PC′. At step s, noise is contributed to every
variable modified in a basic block in Ll. Since, PC′ is changed in
every basic block, it accumulates the most noise between two steps
s1 and s2 where s2 > s1.

When dominator(Ll,1) holds for some l, two optimizations to
the noise occur:

1. Any variable modified in basic block Ll,1 incurs one less
multiplication operation because the corresponding cj term
has been eliminated. For example, if k is the number of levels
where dominator(Ll,1) holds, the noise added to PC′ in the
path levelized program is O(N2S−k∗I).

2. PC′ can be reset to PC(Ll,1)—a constant value known to
the server. This operation performs an implicit refresh opera-
tion on PC′, eliminating any noise it has accumulated. Thus,

if the RLWE FHE scheme permits at least N2L noise on
PC′, PC′ will never have to be explicitly refreshed.2 This is
true because dominator(Ll,1) holds at the entry basic block
in A′ by design.

Conceptually, the noise limiting variable (vlimit) becomes the
variable that is modified at least one time in the most levels. vlimit

can be determined by the server and is program dependent. Note
that for some A′, vlimit could still be PC′.

3.5 Alternate Approaches
Boolean network flattening. Path levelization updates PC′ af-

ter each level is evaluated. Another approach is to update PC′

once per iteration of A; that is, flatten A into a single Boolean net-
work and run that entire Boolean network as a single step, I times.
Expanding the resulting Boolean network, this approach evaluates
every possible path from the entry to exit basic block. Consider
the example in Figure 1, where lowercase letters are branch direc-
tions from the figure. LetMold be the state at the beginning of an
iteration; the equation needed to evaluate a single iteration is:

Mnew =((1− a) ∗ (1− b)) ∗G(D(B(A(Mold))))+

((1− a) ∗ b) ∗G(E(B(A(Mold))))+

(a ∗ (1− c)) ∗G(F (C(A(Mold))))+

(a ∗ c) ∗G(C(A(Mold)))

The number of paths from entry to exit can increase exponentially
with depth L. A smarter implementation can memoize common
subpaths (e.g., B(A(Ms)) is used twice) to save work. If the
server memoizes, it needs to copy some or all ofM for every entry
in the memoization table, which requires potentially exponential
space. The advantage of this scheme is that it reduces noise due
to multiplication operations by ∼ 1

2
—each path only needs to be

checked against the O(L) branch directions that form that path.
Event-driven algorithms. It is tempting to try and decrease PC

ambiguity with event-driven algorithms that maintain work queues
of basic blocks, and evaluate basic blocks that are “ready to fire.”
This approach performs more work and adds more noise than path
levelization because each basic block j in the queue would be eval-
uated using the update function:

Ms+1 = cj ∗ Bj(Ms) + (1− cj) ∗Ms︸ ︷︷ ︸
identity operation

This adds an additional multiplication’s worth of noise and absolute
computation in the identity operation per-step; the update function
from Section 3.2 only adds this computation per-level.

3.6 Example: Greatest Common Divisor
We now show how to apply path levelization and program-level

fixed points to Euclid’s Greatest Common Divisor (GCD) algo-
rithm, as shown in Algorithm 1, and then show how to run the
transformed program under an FHE scheme.3

The original algorithm (GCD) has a while loop that depends
on the GCD inputs (a and b). The transformation (GCD?, shown
graphically in Figure 2) runs for I iterations where I is independent
of a and b.

Suppose that for a given a and b, GCD? can find the GCD after
running for I ′ iterations. We have two cases for r, a, b after the Ith

iteration of A completes:

2Our technique is portable to other FHE schemes; the only differ-
ence is that one must respect different noise growth functions.
3Our GCD implementation assumes a subtract instead of a mod
operation for simplicity of presentation.

Algorithm 1 Original and transformed GCD algorithms. The main
loop in A is shown between lines 3 and 12 in GCD?.

GCD(a, b):
while true do

if a ?
= b then

return a
5: else if a < b then

b = b− a
else
a = a− b

end if
10: end while

GCD?(a, b):
d = 0
for i = 0; i < I; i++ do
d = a

?
= b

5: if d then
r = a

else if a < b then
b = b− a

else
10: a = a− b

end if
end for
return a, b, r

I ≥ I ′ : a ?
= b holds (d is true). r = GCD.

I < I ′ : a 6= b (d is false). r = invalid.

The behavior of variable d implements the done fixed point flag:
once d is set, a and b are no longer modified, regardless of S.

3.6.1 Transformed GCD to FHE
See Figure 2. Under encryption, the user sendsM0 which con-

tains encrypted values for a, b and the initial PC′. The server
synthesizes

LGCD = [{BB1}•, {BB2, BB3}, {BB4, BB5}]

and then evaluates BB0 one time to initialize d and then performs
I iterations worth of work. The server must evaluate both ba-
sic blocks in L2 = {BB2, BB3} because it does not know the

d = a == b
d

a < b

Header: BB0

Entry: BB1

BB2 BB3

Exit: BB6

d = 0

Level 1

Level 2 r = b

b = b - a a = a - b

BB4 BB5

Level 3

Figure 2: The control flow graph for GCD?. Basic blocks are pre-
fixed with BB. BB6 is not counted as a level and is only shown to
conceptually give the GCD? loop a single exit point.

value of PC′ after BB1’s branch; in L3, the server must evaluate
{BB4, BB5} as well as an identity operation in case BB3 transi-
tioned to BB6. After performing I iterations, the server performs
the transition check from Section 3.3; if d ?

= true holds, PC′ is set
to PCdone; otherwise it stays at PC(BB1), the entry block. After
PC′ is finalized, the server returns back an updatedM containing
r and PC′.

When the user receives a server response, it decrypts PC′ and
checks if PC′ ?

= PCdone. If the condition holds, the user decrypts
r which is the GCD. Otherwise, the user has received an interme-
diate result.

4. PROGRAM HIERARCHY
We will now broaden the scope of our transformations and evalu-

ation approach to larger programs. Section 4.1 expands our defini-
tion of A to include programs with multiple data-dependent loops
and introduces the notion of program phases. Section 4.2 then
explains how our method can be applied to programs with data-
dependent recursive calls. Using these ideas, we transform a recur-
sive backtracking 3-Satisfiability algorithm in Section 4.3.

4.1 Hierarchical Data-Dependent Loops
We now show how to transform a program A, containing a set

of (potentially) data-dependent loops and simple function calls, to
path levelized and fixed point form. We assume that each loop Pk
for k = 1 . . . |P| takes on the form described in Section 3. Loops
may be disjoint from other loops or contain other loops—we say
that a loop Pk is an inner-most loop if no basic block within Pk is
part of some other loop Pj for j = 1 . . . |P| ∧ k 6= j. We define
simple function calls as those that (a) are made up of basic blocks
and data-dependent loops (like A) and (b) are not recursive.

To transformA, we perform a two-step process. First, all simple
function calls inA are inlined. A is now composed of basic blocks,
some of which may be part of one or more loops. Second, if a loop
Pk is an inner-most loop, path levelize and apply fixed point trans-
formations to Pk as described in Section 3. This process assigns a
public iteration count Ik to Pk. Post-transformation, we make the
following observation for Pk: if (a) Pk requires I ′k iterations to
complete without encryption, (b) Lk is the number of levels in Pk,
and (c) Ik ≥ I ′k: then Pk can be thought of as a basic block that
requires Lk × Ik steps to complete (we call this a phase4). Phases
can be assigned to levels in the same way as basic blocks from
Section 3.2. Once all inner-most loops are turned into phases, we
form a new set of inner-most loops from P (not including existing
phases) and repeat the above process until all loops are transformed
into phases. Once all loops are turned into phases, we levelize the
outermost scope of A; A can be thought of as a phase that runs for
a single iteration.

The outcome of this process is shown in Figure 3 for an example
two-level loop. (We will use this example throughout the rest of
Section 4.1). First, the inner-most loop P2 is path levelized and
given fixed point logic. This gives P2 the appearance of a basic
block, so P2 is assigned to level 2 of the outer phase P1. Finally,
P1 can be path levelized, put into fixed point form, and given an
unconditional back-edge from D → A.

4.1.1 Computation with Program Phases
After the hierarchical transformation from Section 4.1,A is com-

posed of a hierarchy of phases and each phase is made up of basic
blocks and (possibly) other phases. The fundamental difference be-
tween executing basic blocks within a single phase and executing
4In the compiler community, a phase is a type of super block.

C

A

D

F

Phase P2 , I2 ~ B(p=.5, n=10)

ELevel 1

Level 2

Level 3

Phase P1

I1 = 100

Level 1

Level 2

Level 3

B

done1 = false

done2 = false

G

C

A

D

F

E

G

Entry1:

Header1:

Header2:

Entry2:

Exit2:

Exit1:

Figure 3: A hierarchical two-level loop that is mapped to two
phases, before transformations (left) and after (right). Values for
I1 and I2 are explained in Section 4.1.3.

across multiple phases is that with multiple phases, the server loses
track of PC′ when the server breaks out of a phase prematurely.
This happens when Ik < I ′k for some phase Pk and can be pre-
vented in program-specific circumstances5. In general, however,
the server cannot detect if Ik < I ′k for some k because PC′ is en-
crypted. The server only knows when it decides to transition from
one phase to another.

Because of ambiguity in each phase’s iteration count, we com-
pute on hierarchical programs with the following goals in mind:

1. Safety and recovery. If the server breaks out of a phase Pk
too early, any useful computation performed up to that point
should not be clobbered (safety). Furthermore, if some time
after breaking out of Pk the server decides to run Pk for
more iterations, Pk should be able to pick up where it left off
(recovery).

2. Efficiency. While the server is executing within a phase, the
system should get the efficiency advantage described in Sec-
tion 3.4.

With this in mind, a hierarchical program is evaluated using the
state update function (Eqns. 3 and 4) from Section 3.2, after a
change is made to each equation:

Eqn. 4: evaluating phases in levels. Suppose we start execut-
ing in some phase Pk. Each level in Pk is now made up of basic
blocks and possibly other phases. To evaluate a basic block within
a level, we evaluate the basic block’s term in Eqn. 4 as before. To
evaluate a phase Pj within a level, the server enters Pj and per-
forms Ij iterations worth of work in Pj . The cj term (multiplied to
Pj) is re-defined to

if PC(Pj)
?
= PC′ ∨ PCentry(Pj)

?
= PC′ : cj = 1 (5)

else : cj = 0

where PC(Pj) is the PC of the header basic block in Pj and
PCentry(Pj) is the PC of the entry basic block in Pj (e.g., after

the done flag is initialized to false). If PC(Pj)
?
= PC′ holds, it

was time to evaluatePj . If PCentry(Pj)
?
= PC′ holds, Pj was run

at some point in the past but the server transitioned out of Pj too
soon (i.e., Ij < I ′j and donej

?
= false holds). In this case, Pj can

continue executing where it left off. Note that by “stepping into”
Pj at step s,Ms must be saved while Pj(Ms) is being evaluated.

5For example, if the server can determine an upper-bound on the
size of a and b in GCD? based on ciphertext length, it may be able
to run for a conservative number of iterations.

After evaluating Pj , PC′ is updated using the transition check as
described in Section 3.3.

Eqn. 3: dominators in multi-phase programs. Suppose we
enter an arbitrary phase Pj (whose levels are given by L) at some
step s and have run s′ ≥ 1 steps in Pj so far; for simplicity, we
assume that each level in Pj takes a single step to evaluate, regard-
less of whether it has inner phases. The multiplication optimiza-
tion given by Eqn. 3 can only be applied in level l = s′mod |L|
if dominator(Ll,1) holds and no uncertain inner phase was evalu-
ated in any level from step s . . . s+s′−1. (By uncertain, we mean
a phase whose iteration count was not run for a guaranteed upper
bound number of iterations by the server). We can make this op-
timization whenever we enter a phase (or inner phase) Pj because
we evaluate cj ∗ Pj—i.e., we condition on cj and can therefore
assume that PC′ points to the start of Pj . We cannot make this op-
timization in Pj after an uncertain inner phase within Pj has been
evaluated because the server cannot assume that the inner phase
completed, and therefore cannot assume any value for PC′ while
in Pj .

Noise while evaluating phases. Suppose that we are currently
evaluating P1 (from Figure 3) and will now evaluate c2 ∗ P2(Ms)
where s is arbitrary. The noise on c2 is proportional to the noise
on PC′ after evaluating basic block A (call this PC′A). Thus, the
noise on variables modified within P2 will increase proportionally
to the noise on PC′A after c2 ∗ P2(Ms) completes. If P2 modifies
a large amount of state, PC′A may need to be explicitly refreshed
before applying the c2 ∗P2 operation. After evaluating c2 ∗P2, the
noise on PC′A increases in a manner proportional to the noise on
done2 (i.e., the done flag from P2) because of the transition check.

4.1.2 Computation Stalls
While executing within a phase Pj , efficiency is maximized

when Ij = I ′j (I ′j is the actual iteration count). If Ij > I ′j ,
the server performs extra work in Pj that does not make forward
progress but Pj completes. If Ij < I ′j , the server stalls in Pj
(e.g., PC′ gets stuck at PCentry(Pj)) and doesn’t make forward
progress until Pj is run for additional iterations (we call this a re-
covery).

The way we re-define cj for phases, in Eqn. 5, guarantees safe
execution but only limited recovery if the server stalls. For ex-
ample, consider a small change to the transformed two-level loop
from Figure 3 where P1 is itself an inner-loop in some phase
P3. If the server underestimates I2 during the final iteration of
P1, PC′ gets stuck at PC(E), the PC for basic block E, and

done2
?
= false holds. Since this happened in the last iteration

of P1, done1
?
= false will hold as well. Now, when P3 tries

to evaluate P1 again (to attempt to recover), c1 in c1 ∗ P1(M) is
guaranteed to equal 0 because PC′ = PC(E). Thus, the server is
stalled and cannot recover.

4.1.3 Probabilistic Efficiency Through Recovery
The server can trade-off confidence that it has not stalled with

efficiency by using probabilistic techniques and the recovery mech-
anism from Section 4.1.1. In the previous section (4.1.2), the server
stalled because it didn’t know I2 precisely. Suppose that the server
knows I1, the outer phase’s iteration count, and can model I2 as a
random variable with a known probability distribution. The server
wants to know how many iterations of P1 (call this value I ′1) it will
have to perform if it picks a fixed value for I2 and wants to stall
with very small probability.

Consider the following scenario. The server knows that I1 =
100 and that I2 ∼ Binomial (p = .5, n = 10). Thus, the upper
bound on the number of iterations P2 has to perform overall is

100 ∗ 10 = 1000; if the server runs for this long, it is guaranteed
to not stall. To decrease absolute computation, the server decides
to run P2 for 5 iterations always (even though it knows that I2 is
a random variable where Pr(I2 > 5) ≈ .37). Because of the re-
covery mechanism, the server will finish P2 after one (if I2 ≤ 5)
or two (if I2 > 5) tries. The server can model how many times it
will need to try twice as F ∼ Binomial (p = .37, n = 100). From
this, the server can calculate that Pr(F > 60) ≈ 9 × 10−7 = ε;
the server has chosen 60 to make the probability very small. Thus,
to finish P1 with 1 − ε probability, the server needs to to run P1

for I ′1 = 2 × 60 + (100 − 60) = 160 iterations. Even though
the server’s view of I2 was fuzzy, the server established with high
confidence that it could finish P1 while performing 160 ∗ 5 = 800
iterations of P2 instead of 1000.6

4.2 Data-Dependent Recursion
IfA has data-dependent recursion, we say that the recursive calls

inAwill form a call stackF , made of up to T call frames (for some
T), where each frame is denoted Ft for t = 1 . . . T . Call frames
are pushed onto (Ft transitions to Ft+1) and popped off (Ft →
Ft−1) of the call stack based on data-dependent conditions. Data-
dependent recursion is problematic under encryption because (a)
whether a Ft → Ft+1 or Ft → Ft−1 transition occurs depends on
encrypted data and (b) when Ft → Ft−1 transitions occur, control
flow may return to multiple places based on where the recursive
call took place in the program.

The key idea that we use to efficiently path levelize recursive pro-
grams is to decouple the call stack from the operation performed in
every call frame. Formally, if A denotes the recursive algorithm
and Fs is the call frame that will be computed on at step s (assume
that each frame is evaluated in 1 step for simplicity), this transfor-
mation creates the following frame update function:

Fs+1 = A(Fs)

where Fs+1 can be used as the call frame for the next call to A at
step s + 1. Note that if Fs corresponds to Ft (the tth call frame),
Fs+1 will correspond to Ft+t′ where (−t < t′ ≤ 1) ∧ (t′ 6=
0) ∧ (t + t′ ≤ T). t′ < −1 is allowed so that the program can
optimize tail calls.

4.3 Example: 3-Satisfiability
With recursion and phase hierarchy in hand, we are ready to

transform a recursive backtracking 3-Satisfiability (3SAT) algo-
rithm and show how to run it under encryption. This algorithm
(shown in Algorithm 2) is given a 3CNF formula (a set of clauses
F) and finds the satisfying assignment if one exists or reports that
no satisfying assignment exists (by returning false). Throughout
this section, N represents the number of unique variables in F .

For simplicity, we consider a simple backtracking algorithm that
assigns variables in a fixed (and public) order O. A stack data-
structure st, which implicitly maintains a head-of-stack pointer de-
noted st.h (st.h = 0 means the stack is empty), keeps track of
partial assignments to the 3CNF. O determines which variable is
added to/removed from the stack when a push/pop occurs. This
version of 3SAT uses the following helper functions:

stackFull(N, st) : Returns true if N ?
= st.h holds, and false

otherwise.

push(st, true/false) : Conceptually pushes true/false onto
6Note that I ′1 holds even if basic block A transitions to basic block
C for some of the iterations in P1. This is because evaluating C
will always take one step or “try.”

st. This operation writes true/false onto st at position
st.h; st.h then gets incremented and the new st is returned.

canBeSAT(F, st) : Returns true if F can possibly be SAT given
st, and false otherwise.

For the rest of this section, we assume that canBeSAT() is imple-
mented as a loop over the clauses in F , where each iteration can
perform random accesses to st. Note that we do not need a pop()
function to manage st—this is done implicitly through recursive
calls.

Conceptually, the canBeSAT() routine tries to prune subtrees
when possible, making the search tree that gets traversed depend
on F . This makes evaluation under encryption difficult because the
program call stack’s behavior depends on F ; note that when 3SAT
returns, control may be at line 7 or 11 in Algorithm 2 (3SAT, top).
Levelizing 3SAT using only techniques from Section 3 doesn’t
help, as each recursive call may take an exponential number of
steps to return. In fact, using the methodology of Section 2.5 would
be more efficient.

4.3.1 3SAT Transformation
To transform 3SAT, we first inline helper functions and trans-

form inner loops into phases. Inlining stackFull() and push()
is straightforward—both are straight-line code. canBeSAT() is
a loop over F , but has a guaranteed upper bound on its iteration
count—a maximum 3CNF size, F ′. To properly manage the stack
st under recursion, we also require a bound N ′ on the number of
unique variables in the 3CNF. F ′ and N ′ are public and must be
agreed upon by the user and the server. When canBeSAT()’s cur-
rent iteration reaches |F |, the done flag is toggled to true. Past that
point, canBeSAT() is in fixed point mode. With this transforma-
tion in hand, we will treat canBeSAT() as a single basic block for
the rest of the section.

Next, to handle the data-dependent recursive calls in 3SAT, we
decouple the call stack from the operation performed at every node
in the SAT search tree (the high-level idea is shown at the top of
Figure 4). The transformed algorithm, 3SAT?, is shown in psuedo-
code in Algorithm 2 and in control-flow form in Figure 4. d imple-
ments the done flag and r is a flag to indicate whether the formula
is SAT or not SAT. 3SAT? uses the following helper functions, in
addition to those introduced in Section 4.3:

pop(st) : Conceptually pops an element off of st. This operation
decrements st.h and then returns the element from st at the
new position st.h.

allFalse(st) : Returns true if every variable assignment in st is
false and returns false otherwise.

backtrack(st, n) : Sets st.h = n and then evaluates and returns
push(st, false). In Algorithm 2, this function conceptually
pops off elements from st until it sees a true, and then it
replaces that true with a false.

The call stack for 3SAT? consists of st (which is the same as st in
Section 4.3) and an independent stack ra which maintains the po-
sition of each assignment to true in st. The backtrack() function
performs the recursive function returns that were handled implic-
itly in the original algorithm. ra is used to efficiently implement
the backtrack() routine—this can be seen as a form of tail call
optimization.

If 3SAT? is run for I iterations and we can determine if F is SAT
in I ′ iterations, we have the following cases:

Algorithm 2 The original (recursive) and transformed 3SAT algo-
rithms. Explanations of helper functions are given in Sections 4.3
and 4.3.1. The main loop in A is shown between lines 4 and 23 in
3SAT?.

3SAT(N,F, st):
if stackFull(N, st) ∧ canBeSAT(F, st) then

return st // the satisfying assignment
else if stackFull(N, st) then

5: return false
end if
SAT = 3SAT(N,F,push(st, true))
if SAT 6= false then

return SAT
10: else

return 3SAT(N,F,push(st, false))
end if

3SAT?(N,F, st, ra):
d = false
r = false
for i = 0; i < I; i++ do

5: SAT = canBeSAT(F, st)
if SAT ∧ stackFull(N, st) then

d = true
r = true

end if
10: if allFalse(st) ∧ SAT ?

= false then
d = true
r = false

end if
if d ?

= false then
15: if SAT then

ra = push(ra, st.h)
st = push(st, true)

else
n = pop(ra)

20: st = backtrack(st, n)
end if

end if
end for
return d, r, st, ra

I ≥ I ′ : If F was SAT: d = true, r = true, and st is the sat-
isfying assignment. Otherwise: d = true, r = false, and
st = invalid.

I < I ′ : d = false. r = invalid. st is the last variable assign-
ment that was tested.

4.3.2 Transformed 3SAT to FHE
To evaluate 3SAT? under encryption, the user initially sends

a stack st (containing a single element, initialized to true), ra
(which contains a single element that points to the first element
in st), F , N and the initial PC′ as the encryptedM0. The server
synthesizes

L3SAT = [{BB1}•, {BB2}, {BB3}•, {BB4}, {BB5}•,
{BB6}, {BB7, BB8}]

where ‘•’ annotations follow the meaning from Section 3.2.
To start the computation, the server evaluates BB0 to initialize

d. After evaluating L3SAT I times, the server performs the transi-

d = true
r = true

SAT = canBeSAT(N, F, st)
SAT && stackFull(N, st)

allFalse(st) && !SAT

d = true
r = false

!d

SAT

ra = push(ra, st.h)
st = push(st, true)

n = pop(ra)
st = backtrack(st, n)

Header: BB0

Entry: BB1

BB2

BB3

BB4

BB6

BB7 BB8

!d && backtrack

d

!d && push

X1 = trueX1 = false

(X2 = true)

A

B C

A

B C

SAT search tree and state transitions

3SAT control flow diagram

d = false
r = false

BB5

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Exit: BB9

Figure 4: The top shows the SAT search tree overlaid with the work
done by one iteration of the 3SAT? main loop. The bottom shows
the control flow graph for 3SAT?. In the top part, each loop itera-
tion performs work on one node of the search tree (the shaded cir-
cle, or current state). Each iteration, state transitions to other nodes
(dashed green arrows) are evaluated and one is taken. Each state
transition is labeled A, B or C to show correspondence to the ba-
sic blocks in the bottom diagram that perform the same operation.
BB9 is not counted as a level and is only shown to conceptually
give the 3SAT? loop a single exit point.

tion check (Section 3.3) to finalize PC′ and then returns encrypted
values for the current st, r, and PC′.

As before, the user decrypts PC′ and checks PC′ ?
= PCdone.

If this condition holds, the user decrypts r. If r is true, the user
decrypts st—which is the satisfying assignment. If r is false, the
user knows that F was not SAT. If PC′ ?

= PCdone did not hold,
the user has received an intermediate result.

Broadly speaking, the program transformations for 3SAT are
non-obvious and significantly more sophisticated than the transfor-

Table 2: Comparison of the number of multiplications per-step,
per-variable, between a baseline state update function (Section 2.5)
and a levelized state update (Section 3.2).

Levelized
Variable Baseline l = 1 l = 2 l = 3
PC′ 2 refreshed, 1 2 1
d 1 1 0 0
a 1 0 0 1
b 1 0 0 1
r 1 0 1 0

mation applied to GCD. The benefit is that L3SAT is independent
F and that the largest level in L3SAT ({BB7, BB8}, with an ad-
ditional identity operation that is not shown) is significantly smaller
than the number of basic blocks in the program.

Any program within the scope of programs we have considered
can theoretically be written in path-levelized and fixed point form,
though it may be quite difficult to automatically transform arbitrary
program descriptions into such a form. In cases when automatic
transformation of a program or part of a program is difficult, one
can revert to the mechanical, albeit less-efficient, form introduced
in Section 2.5.

5. PERFORMANCE ANALYSIS

5.1 Efficiency for Transformed GCD
We analyze GCD? using the state update function from Sec-

tion 2.5 (baseline) and that from Section 3.2 (levelized). To perform
a single iteration’s worth of work with baseline, we must evaluate
5 + 5 + 5 = 15 basic blocks, as each iteration has a path length
of 3 basic blocks (e.g., while done is false) and the GCD? loop
contains 5 basic blocks. The same computation with levelized only
evaluates 1+2+3 = 6 basic blocks (|L1| = 1, |L2| = 2, |L3| = 2
and an identity operation is added).

Table 2 compares the noise between baseline and levelized.
Baseline performs 6 multiplications per iteration on PC′ while lev-
elized performs 4. In addition, levelized implicitly refreshes the
noise on PC′ after each iteration—it almost certainly will not need
to be explicitly refreshed. Note that we need two multiplications
on PC′ in levelized (l = 2) because there is PC ambiguity and
BB2 can transition to one BB4 or BB5. PC′ only requires one
multiplication during levelized (l = 3) because all basic blocks in
l = 3 unconditionally transition to BB6. Baseline requires 3×
multiplications for variables a, b, r and d since the server makes no
assumptions about where it is in the program.

5.2 Efficiency for Transformed SAT
To estimate speedup for 3SAT? (Section 4.3) we once again

compare the levelized and baseline schemes. Notice that there
are seven calls to expensive operations in Figure 4 (these
are canBeSAT(), stackFull(), allFalse(), push(), pop() and
backtrack()). An expensive operation is one that expands into
O(N ′) sub/branch instructions (since st.h is encrypted, all of st
must be scanned to ensure that these operations complete). The
other operations (e.g., the assignment operations in BB2) cost rel-
atively little time.

To guarantee that one iteration of 3SAT? completes, the baseline
scheme must evaluate 7 ∗ 5 = 35 expensive operations. Each it-
eration has a longest-path of 5 basic blocks (which costs 5 steps)
and all seven expensive operations must be evaluated per-step. No-
tice that the longest-path for the baseline scheme is not seven basic
blocks, since BB2 and BB4 do not get evaluated until the pro-
gram has reached a fixed point (this assumption can only be made
because the baseline scheme does not perform the noise reduction

optimizations from Section 3.4.2). The levelized scheme is guar-
anteed to complete one iteration after evaluating seven expensive
operations—that is, each operation gets evaluated one time. Thus,
the approximate improvement for the levelized version is 5×.

6. PRIVACY LEAKAGE OF APPROACH
We show that the privacy leakage in our approach is optimal. We

start by considering the two-interactive protocol described in Sec-
tion 2.1. We prove that if the server is able to figure out when the
computation is finished (such that the user always receives the final
result), then the underlying FHE can be broken in that the server ob-
tains a means to decrypt any message of its liking. This means that
intermediate results cannot be avoided, unless the user can guaran-
tee an upper bound on the number of steps required for the com-
putation. Without this guarantee, to obtain the final result, the user
may need to interact more than two times by asking for more com-
putation and this necessarily leaks some additional privacy. At the
end of this section, we discuss multi-interactive protocols.

6.1 Privacy of Two-Interactive Protocols
In the two-interactive protocol Π of Section 2.1, we assume that
A imposes a known relation on the sizes (the length of the bit rep-
resentations) of x and y, i.e., |y| = f(|x|) for some invertible func-
tion f . E.g., |y| = 0 if the server does not supply any inputs, or
y represents some part of a database over which the user wishes
to search, or |y| indicates a number of random bits, proportional
to |x|, supplied by the server. The server only receives the pair
(M, S) from the user and no other messages that depend on some
intermediate computations performed by the server. This means
that the only information about A(x, y) given to the server in Π
comes from the pair (M, S) and its own input y. The view of the
server viewΠ

server(x, y) is defined as the triple (M, S, y).
Privacy w.r.t. semi-honest server behavior is defined as follows

[17]. We say that Π privately computes (an intermediate result of)
A if there exists a probabilistic polynomial time (ppt) algorithm,
denoted P , such that

{P (y)}x,y∈{0,1}∗
S≡ {viewΠ

server(x, y)}x,y∈{0,1}∗ (6)

where |y| = f(|x|).
Since the used FHE scheme is assumed to be secure,M cannot

be distinguished from any other ciphertext of size |M|. Hence, P
can simulate M by encrypting a random bit string of size |x| =
f−1(|y|). Only if the user in Π computes the number of steps S
by using some ppt algorithm A′ (based on A) on inputsM and y,
P is able to simulate S. We conclude that Π privately computes
A if Π uses a ppt algorithm A′ to compute the number of steps
S ← A′(M, y) based on inputsM and y. E.g., S can be a function
of |x| = f−1(|y|).

In the GCD example the user wants to outsource the computation
of the greatest common divisor of a and b while keeping as much
information about a and b hidden. If each bit of a and b is encrypted
separately, the sizes of a and b leak. This does not mean that the
computation under encryption is not private; the computation itself
is private in that no extra privacy is leaked beyond the encryptions
of a and b. To limit privacy leakage through its inputs, the user
may arbitrarily increase the sizes of a and b by adding encryptions
of dummy zeroes to represent extra most significant bits.

Suppose that a and b are a-priori set to say 100-bit representa-
tions such that the sizes of compact bit representations do not leak,
and therefore no information about the ranges of a and b leaks. The
GCD is privately computed if the number of steps does not depend
on the actual integer values of a and b. E.g., the user knows that
O(log b) iterations are enough to complete the GCD algorithm. If

the user’s strategy (which is known to the server) is to ask the server
to compute for S = O(log b) cycles, then the server knows that b
is in the range 2S . Even though the encryption of the 100-bit rep-
resentation of b keeps the range of b private, S reveals the range of
b.

Similarly, for the 3SAT problem, the user may decide on a fixed
strategy, where he always asks for exactly 1 hour of computation. If
the user receives an intermediate result, he concludes that the 3SAT
problem is likely not satisfiable.

6.2 Teaching the Server when to Stop
We may want to improve the two-interactive protocol such that

the user is always guaranteed to receive the final result A(x, y).
This is possible if there exists an upperbound u(|x|, y) on the total
number of iterations required to compute A(x, y) under encryp-
tion; the user chooses the number of steps S such that the server
executes at least u(|x|, y) iterations. In order to compute u(|x|, y),
the user may need to ask the server (assumed to be semi-honest)
information about y. Since the number of steps is a function of |x|
and y, no additional privacy is leaked.

For the 3SAT problem, such an upperbound is exponential in |x|.
On average the 3SAT problem may be solved much sooner (much
less than, e.g., the 1 hour computation the user is willing to pay
for). For this reason we want to give the server some algorithm
D to decide whether the computation under encryption reached the
final state. However, we will show that an honest-but-curious server
can use such an algorithm D to decrypt any ciphertext of its liking.

Let I(x, y) denote the exact number of iterations needed by
A(x, y) to finish its computation under encryption. We assume
that x and y represent inputs for which I(x, y) < S. I.e., the com-
putation of A(x, y) finishes in less the maximum number of steps
the user is willing to pay for. In other words x and y represent an
instance for which D reduces the cost for the user.

We first consider the case which supposes that

∃k>0 Probx” s.t. |x”|=|x|[I(x”, y) 6= I(x, y)] > 1/|x|k. (7)

Suppose that the server executes A under encryption on inputs
M and y and uses the encrypted state as input to D to decide
whether the computation is finished or not. Suppose that the com-
putation finishes after exactly i = I(x, y) < S iterations within
the allotted number of steps. Then, the server is able to learn i by
using D.

Suppose the server constructs an encryption e of 1. With a
slight abuse of notation, let x = (x1, . . . , xm) ∈ {0, 1}m and
let M = (M1, . . . ,Mm) be a bit by bit encryption of x, i.e.,
Mj is a ciphertext of bit xj . By adding e to arbitrary positions
inM, an encryption of some random bit string x” is constructed:
M+(x”−x)e is the bit by bit encryption of x+(x”−x) ·1 = x”.
See Eqn. 7—the server only needs to try a polynomial number |x|k
of possible values x” in order to find one with I(x”, y) 6= I(x, y).

If I(x”, y) 6= I(x, y), then the computation based on the encryp-
tion of x” and y does not finish after exactly i = I(x, y) iterations.
As soon as this happens, any ciphertext w can be decrypted as fol-
lows. The server adds w instead of e to the selected positions in
M. This results inM+(x”−x)w which is a bit by bit encryption
of x + (x” − x) · 0 = x if w is an encryption of 0. It results in
the encryption of the bit string x + (x” − x) · 1 = x” if w is an
encryption of 1. So, if the computation ofA on the encrypted input
M+ (x”− x)w takes exactly i iterations, then w is an encryption
of 0. If this computation takes less or more iterations, then w is an
encryption of 1.

We conclude that either algorithm D enables the server to de-
crypt any ciphertext of its liking or Eqn. 7 is not true.

Notice that if Eqn. 7 is not true, then I(x”, y) = I(x, y) with
probability > 1 − negl(|x|). This means that, except for a neg-
ligible fraction of inputs x, the user knows a precise tight upper
bound u(|x|, y) that can be used to choose the number of steps.
This means that algorithm D does not help in improving the proto-
col’s performance.

We conclude that either algorithm D enables the server to de-
crypt any ciphertext of its liking or does not help in improving the
protocol’s performance. A two-interactive protocol for computing
A cannot guarantee for general A without additional privacy leak-
age that the user receives the final result and not an intermediate
one.

7. BACKGROUND AND RELATED WORK
In his seminal paper [11], Craig Gentry presented the first fully

homomorphic encryption (FHE) scheme [23, 10] that allows a
server to receive encrypted data and perform, without access to
the secret decryption key, arbitrarily-complex dynamically-chosen
computations on that data while it remains encrypted. Until re-
cently, subsequent FHE schemes [7, 26, 24, 13, 6, 5] followed the
same outline as in Gentry’s construction: to construct a somewhat
homomorphic encryption (SWHE) scheme (which is an encryption
scheme capable of evaluating “low-degree” polynomials homomor-
phically), to squash the decryption circuit of the SWHE scheme (by
adding a “decryption hint”) such that it can be evaluated under en-
cryption by the SWHE scheme itself (using an encrypted secret key
that is given as one of the components of the public key), and to use
Gentry’s bootstrapping which refreshes a ciphertext (such that the
ciphertext can be used in new homomorphic evaluations of low-
degree polynomials).

The efficiency of FHE is measured by ciphertext/key size, en-
cryption/decryption time, and the per-gate computation overhead
defined as the ratio between the time it takes to compute a circuit
homomorphically to the time it takes to compute it in the clear.
The FHE schemes that follow the outline as in Gentry’s original
construction are inefficient in that their per-gate computation over-
head is a large polynomial in the security parameter (see also the
implementation results in [13, 6]).

In more recent developments, Gentry and Halevi [12], and Brak-
erski and Vaikuntanathan [4, 5] introduced new methods to con-
struct FHE without using the squashing step, but still based on
bootstrapping and an SWHE scheme. Even though their per-gate
computation is still a large degree polynomial, their results have led
to even more recent constructions that achieve dramatic (asymptoti-
cal) efficiency improvements: In [3] Brakerski, Gentry and Vaikun-
tanathan achieve asymptotically very efficient FHE schemes; their
RLWE based FHE scheme that uses “bootstrapping as an opti-
mization” has Õ(λ2) per-gate computation and is based on the
ring-LWE problem [19] with quasi-polynomial approximation fac-
tor that has 2λ security against known attacks ([4] bases secu-
rity on LWE for sub-exponential approximation factors). We use
this scheme throughout the paper to determine asymptotical perfor-
mance when performing computation under encryption. They also
present an L-leveled RLWE FHE scheme (which is able to evaluate
circuits up to depth L) that does not use the bootstrapping proce-
dure and which has Õ(λL3) per-gate computation (quasi-linear in
the security parameter λ) and is based on the ring-LWE problem
with approximation factor exponential in L that has 2λ security
against known attacks. Both schemes apply the idea of modulus
switching [4] which is used to refresh ciphertexts and manage the
“noise” in the FHE scheme: Noise grows quadratically with every
multiplication before refreshing. Modulus switching is used after
each multiplication to reduce the noise growth to linear.

The most recent work of Brakerski [2] presents a new tensor-
ing technique for LWE-based fully homomorphic encryption. This
technique reduces the noise growth to linear with every multiplica-
tion. The resulting FHE scheme is scale-invariant in that its prop-
erties only depend on the ratio between the used modulus q and the
initial noise level N . The scheme uses the same modulus through-
out the evaluation process without the need for modulus switching
and allows a modulus that is a power of 2. Finally, its security can
be classically reduced to the worst-case hardness of the GapSVP
problem with quasi-polynomial approximation factor (whereas pre-
vious constructions only exhibit a quantum reduction to GapSVP).
The scheme can be generalized to RLWE which improves the ef-
ficiency even more. This has been detailed in [8], which also in-
troduces optimizations and, based on [18], provides concrete pa-
rameter settings: for a 128-bit security level, plaintexts are bits and
ciphertexts/public key each consist of two elements in Rq where
q = 21358 is the modulus and R is the ring Z[x]/(x210

+ 1).
In comparison, the SWHE scheme of [5] (without refresh proce-

dures or noise reduction techniques) has been implemented in [22]
for a 120-bit security level and is based on a ring Rq with q ≈ 258

andR = Z[x]/(x211

+1). Plaintexts are bits and ciphertexts/public
key each consist of two or three elements in Rq . Key-generation
runs in 250 ms, encryption takes 24 ms and decryption takes 15-26
ms. Homomorphic addition takes less than 1 ms and homomorphic
multiplication takes about 41 ms. For completeness, we notice that
adding or multiplying a ciphertext with a plaintext bit is almost in-
stantaneous since the plaintext bit does not need to be encrypted
with noise.

The most recent implementation paper [15] manages to exe-
cute one AES-128 encryption homomorphically in eight days using
AES-specific optimizations (and using methods based on [25, 14]).
Using single-instruction multiple-data (SIMD) techniques, close to
100 blocks are processed in each evaluation, yielding an amortized
rate of roughly 2 hours per block.

A domain-specific language based on Haskell for
cryptographically-secure cloud computing was proposed in
[1]; simple programs without data-dependent loops were compiled
for FHE application. [21] shows how information flow tagging
can limit leakage due to control flow constructs. In our work we
transform programs with complex control flow including recursion
ensuring minimum leakage.

In encrypted computation based on garbled circuits (GC) and
oblivious transfer (OT) one party (called constructor) “encrypts”
a function A (using symmetric keys) and the other party (called
evaluator) obliviously (using OT) obtains the keys corresponding
to both parties’ inputs and the garbled function. Each secure eval-
uation of A requires construction and transfer of a new garbled
function (which can be done in a pre-computation phase). In our
use case, the user only needs to transmit A once or the server sup-
plies A without the need for the user to see it.

8. CONCLUSION
In this paper we take a first step toward building an interpreter

for encrypted computation of general programs. This problem has
not received much attention to date, with most encrypted compu-
tation examples being restricted to fixed-iteration loops or Boolean
circuits (e.g., AES).

We have addressed issues arising from complex control flow in
programs and provided a mechanical, albeit inefficient, method for
encrypted computation. We have shown how to improve efficiency
by reducing the PC ambiguity seen by the server while maintaining
optimal leakage in a two-interactive protocol. The two techniques
of path levelization and fixed point computation are broadly appli-

cable to programs. Using two examples, GCD and 3SAT, we have
shown how these techniques significantly reduce the absolute com-
putation required in encrypted computation.

The expensive operations in Section 5.2 allude to an additional
hurdle that general programs with indirect memory addressing will
face before efficient FHE schemes become practical. This data am-
biguity results from losing track of st.h in 3SAT, or indirect point-
ers in more general programs. Ambiguity in the data causes PC
ambiguity to be O(|M|) in pathological programs and addressing
this overhead is an important direction for future work.

Additional future work involves building an optimizing compiler
front-end for automatic transformation of programs for efficient en-
crypted computation. While we have treated FHE as a black box, it
is worthwhile to investigate how a compiler back-end that assumes
a particular FHE scheme can be built to improve efficiency further.

9. REFERENCES
[1] Alex Bain, John Mitchell, Rahul Sharma, Deian Stefan, and Joe Zimmerman. A

domain-specific language for computing on encrypted data. In FSTTCS 2011.
LIPIcs, December 2011. Invited paper.

[2] Z. Brakerski. Fully Homomorphic Encryption without Modulus Switching from
Classical GapSVP. IACR eprint archive, 2012.

[3] Z. Brakerski, G. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In ITCS 2012, pages 309–325, 2012.

[4] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) lwe. In FOCS’11, 2011.

[5] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from
ring-lwe and security for key dependent messages. In CRYPTO’11, 2011.

[6] J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully homomorphic
encryption over the integers with shorter public-keys. In Crypto’11, 2011.

[7] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In EUROCRYPT’10, LNCS 6110, Springer, 2010.

[8] J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic Encryption.
IACR eprint archive, 2012.

[9] Christopher Fletcher, Marten van Dijk, and Srinivas Devadas. Compilation
techniques for efficient encrypted computation. Cryptology ePrint Archive,
Report 2012/266, 2012.

[10] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009.

[11] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC’09,
pages 169–178, 2009.

[12] C. Gentry and S. Halevi. Fully homomorphic encryption without squashing
using depth-3 arithmetic circuits. In FOCS’11, 2011.

[13] C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption
scheme. In EUROCRYPT’11, LNCS 6632, Springer, pages 129–148, 2011.

[14] C. Gentry, S. Halevi, and N.P. Smart. Fully homomorphic encryption with
polylog overhead. IACR eprint archive, 2012.

[15] C. Gentry, S. Halevi, and N.P. Smart. Homomorphic Evaluation of the AES
Circuit. IACR eprint archive, 2012.

[16] W. F. Gilreath and P. A. Laplante. Computer Architecture: A Minimalist
Approach. Springer, 2003.

[17] O. Goldreich. Foundations of Cryptography: Volume II (Basic Applications).
University Press, 2004.

[18] R. Lindner and C. Peikert. Better Key Sizes (and Attacks) for LWE-Based
Encryption. In Topics in Cryptology - CT-RSA 2011, LNCS 6558, Springer,
pages 319–339, 2011.

[19] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with
errors over rings. In EUROCRYPT’10, LNCS 6110, Springer, pages 1–23, 2010.

[20] D. Malkhi, N. Nisan, B. Pinkas, and Yaron Sella. Fairplay: a secure two-party
computation system. In Proc of the 13th Usenix Security Symposium, 2004.

[21] J.C. Mitchell, R. Sharma, D. Stefan, and J. Zimmerman. Information-flow
control for programming on encrypted data. Cryptology ePrint Archive, Report
2012/205, 2012. http://eprint.iacr.org/.

[22] M. Naehrig, K. Lauter, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In CCSW 2011, ACM, pages 113–124, 2011.

[23] R. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy
homomorphisms. Foundations of Secure Computation, pages 169–180, 1978.

[24] N.P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In PKC’10, LNCS 6056, Springer, 2010.

[25] N.P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations. IACR
eprint archive, 2011.

[26] D. Stehle and R. Steinfeld. Faster Fully Homomorphic Encryption. In Advances
in Cryptology - ASIACRYPT 2010, LNCS 6477, Springer, pages 377–394, 2010.

[27] A.C. Yao. How to generate and exchange secrets. In Proceedings of the 27th
IEEE Symposium on Foundations of Computer Science, pages 162–167, 1986.

