
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 439141, 15 pages
doi:10.1155/2012/439141

Research Article

Exploring Many-Core Design Templates for FPGAs and ASICs

Ilia Lebedev,1 Christopher Fletcher,1 Shaoyi Cheng,2 James Martin,2 Austin Doupnik,2

Daniel Burke,2 Mingjie Lin,2 and John Wawrzynek2

1 CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Department of EECS, University of California at Berkeley, CA 94704, USA

Correspondence should be addressed to Ilia Lebedev, ilebedev@csail.mit.edu

Received 2 May 2011; Accepted 15 July 2011

Academic Editor: Claudia Feregrino

Copyright © 2012 Ilia Lebedev et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present a highly productive approach to hardware design based on a many-core microarchitectural template used to implement
compute-bound applications expressed in a high-level data-parallel language such as OpenCL. The template is customized on a
per-application basis via a range of high-level parameters such as the interconnect topology or processing element architecture.
The key benefits of this approach are that it (i) allows programmers to express parallelism through an API defined in a high-level
programming language, (ii) supports coarse-grained multithreading and fine-grained threading while permitting bit-level resource
control, and (iii) reduces the effort required to repurpose the system for different algorithms or different applications. We compare
template-driven design to both full-custom and programmable approaches by studying implementations of a compute-bound
data-parallel Bayesian graph inference algorithm across several candidate platforms. Specifically, we examine a range of template-
based implementations on both FPGA and ASIC platforms and compare each against full custom designs. Throughout this study,
we use a general-purpose graphics processing unit (GPGPU) implementation as a performance and area baseline. We show that
our approach, similar in productivity to programmable approaches such as GPGPU applications, yields implementations with
performance approaching that of full-custom designs on both FPGA and ASIC platforms.

1. Introduction

Direct hardware implementations, using platforms such as
FPGAs and ASICs, possess a huge potential for exploiting
application-specific parallelism and performing efficient
computation. As a result, the overall performance of custom
hardware-based implementations is often higher than that
of software-based ones [1, 2]. To attain bare metal perfor-
mance, however, programmers must employ hardware
design principles such as clock management, state machines,
pipelining, and device specific memory management—all
concepts well outside the expertise of application-oriented
software developers.

These observations raise a natural question: does there
exist a more productive abstraction for high-performance hard-
ware design? Based on modern programming disciplines, one
viable approach would (1) allow programmers to express
parallelism through some API defined in a high-level progra-
mming language, (2) support coarse-grain multithreading

and fine-grain threading while permitting bit-level resource
control, and (3) reduce the effort required to repurpose the
implemented hardware platform for different algorithms or
different applications. This paper proposes an abstraction
that constrains the design to a microarchitectural template,
accompanied by an API, that meets these programmer re-
quirements.

Intuitively, constraining the design to a template would
likely result in performance degradation compared to fully-
customized solutions. Consider the high-level chart plotting
designer effort versus performance, shown in Figure 1. We
argue that the shaded region in the figure is attainable by
template-based designs and warrants a systematic explo-
ration. To that end, this work attempts to quantify the perfor-
mance/area tradeoff, with respect to designer effort, across
template-based, hand-optimized, and programmable appro-
aches on both FPGA and ASIC platforms. From our anal-
ysis, we show how a disciplined approach with architectural
constraints, without resorting to manual hardware design,



2 International Journal of Reconfigurable Computing

GPP
GPU

FPGA
(HDL) ASIC

MARC

E
as

e-
of

-d
es

ig
n

Performance
Low

Lo
w

High

H
ig

h

Figure 1: Landscape of modern computing platforms. Ease of
application design and implementation versus performance (GPP
stands for general purpose processor).

may reduce design time and effort while maintaining accep-
table performance.

In this paper; we study microarchitectural templates in
the context of a compute-intensive data-parallel Bayesian
inference application. Our thesis, therefore, is that we can
efficiently map our application to hardware while being con-
strained to a many-core template and parallel programming
API. We call this project MARC, for Many-core Approach to
Reconfigurable Computing, although template-based archi-
tectures can be applied outside the many-core paradigm.

We think of a template as an architectural model with a
set of parameters to be chosen based on characteristics of the
target application. Our understanding of which aspects of the
architecture to parameterize continues to evolve as we in-
vestigate different application mappings. However, obvious
parameters in the many-core context are the number of pro-
cessing cores, core arithmetic-width, core pipeline depth,
richness and topology of an interconnection network, and
customization of cores—from addition of specialized instru-
ctions to fixed function datapaths as well as details of the
cache and local store hierarchies. In this study we explore
a part of this space and compare the performance/area bet-
ween MARC and hand-optimized designs in the context of a
baseline GPGPU implementation.

The rest of the paper is organized as follows: Section 2
introduces the Bayesian network inference application, the
case study examined in this paper. Section 3 describes the
execution model used by OpenCL, the high-level language
used to describe our MARC and GPGPU implementations.
The application mapping for the GPGPU platform is detailed
in Section 4. We discuss the hand-optimized and MARC
implementations in Section 5. Section 6 covers hardware
mappings for both the hand-optimized and MARC designs
as well as a comparison between FPGA and ASIC technology.
Finally, in Section 7, we compare the performance/area bet-
ween the MARC hand-optimized and GPGPU implementa-
tions.

1.1. Related Work. Numerous projects and products have
offered ways to ease FPGA programming by giving develop-
ers a familiar C-style language in place of HDLs [3]. Early
research efforts including [4–6] formed the basis for recent
commercial offerings: Catapult C from Mentor Graphics,
ImpulseC, Synfora Pico from Synopsys, and AutoESL from

Xilinx, among others. Each of these solutions requires de-
velopers to understand hardware-specific concepts and to
program using a model that differs greatly from standard
C—in a sense, using an HDL with a C syntax. Unlike these
approaches, the goal of MARC is to expose software pro-
gramming models applicable to design of efficient hardware.

There has been a long history of mapping conventional
CPU architectures to FPGAs. Traditionally, soft processors
have been used either as a controller for a dedicated com-
puting engine, or as an emulation or prototyping plat-form
for design verification. These efforts have primarily employ-
ed a single or small number of processor cores. A few FPGA
systems with a large number of cores have been imple-
mented, such as the RAMP project [7]. However, the primary
design and use of these machines have been as emulation
platforms for custom silicon designs.

There have been many efforts both commercially and
academically on customization of parameterized processor
cores on an application-specific basis. The most widely used
is Xtensa from Tensilica, where custom instructions are
added to a conventional processor architecture. We take pro-
cessor customization a step further by allowing the in-
struction processors to be replaced with an application-
specific datapath that can be generated automatically via our
C-to-gates tool for added efficiency and performance. We
leverage standard techniques from C-to-gates compilation to
accomplish the generation of these custom datapaths.

More recently, there have been several other efforts in
integrating the C-to-gates flow with parallel programming
models, [8, 9]. These projects share with MARC the goal of
exploiting progress in parallel programming languages and
automatically mapping to hardware.

2. Application: Bayesian Network Inference

This work’s target application is a system that learns Bayesian
network structure from observation data. Bayesian networks
(BNs) and graphical models have numerous applications
in bioinformatics, finance, signal processing, and computer
vision. Recently they have been applied to problems in sys-
tems biology and personalized medicine, providing tools for
processing everincreasing amounts of data provided by high-
throughput biological experiments. BNs’ probabilistic nature
allows them to model uncertainty in real life systems as well
as the noise that is inherent in many sources of data. Unlike
Markov Random Fields and undirected graphs, BNs can
easily learn sparse and causal structures that are interpretable
by scientists [10–12].

We chose to compare MARC in the context of Bayesian
inference for two primary reasons. First, Bayesian inference is
a computationally intensive application believed to be partic-
ularly well suited for FPGA acceleration as illustrated by [13].
Second, our group, in collaboration with Stanford University,
has expended significant effort over the previous two years
developing several generations of a hand-optimized FPGA
implementation tailored for Bayesian inference [13, 14].
Therefore, we have not only a concrete reference design but
also well-corroborated performance results for fair compar-
isons with hand-optimized FPGA implementations.



International Journal of Reconfigurable Computing 3

2.1. Statistics Perspective. BNs are statistical models that cap-
ture conditional independence between variables via the
local Markov property: that a node is conditionally indepen-
dent of its nondescendants, given its parents. Bayesian infer-
ence is the process by which a BN’s graph structure is learned
from the quantitative observation, or evidence, that the BN
seeks to model. Once a BN’s structure (a set of nodes
{V1, . . . ,VN }) is determined, and the conditional depen-
dence of each node Vi on its parent set Πi is tabulated, the
joint distribution over the nodes can be expressed as

P(V1, . . . ,VN ) =
N∏

i=1

P(Vi | Πi). (1)

Despite significant recent progress in algorithm develop-
ment, computational inference of a BN’s graph structure
from evidence is still NP-hard [15] and remains infeasible
except for cases with only a small number of variables [16].

The algorithm surveyed in this paper is the union of two
BN inference kernels, the order and graph samplers (jointly
called the “order-graph sampler”). An order is given by a
topological sort of a graph’s nodes, where each node is placed
after its parents. Each order can include or be compatible
with many different graphs. The order sampler takes a BN’s
observation data and produces a set of “high-scoring” BN
orders (orders that best explain the evidence). The graph
sampler takes this set of high-scoring orders and produces a
single highest-scoring graph for each order. The observation
data is generated in a preprocessing steps and consists of N
(for each node) sets of P local-score/parent-set pairs (which
we will refer to as “data” for short). A local score describes
the likelihood that a given parent set is a node’s true parent
set, given an order. A postprocessing step is performed after
the order-graph sampler to normalize scores and otherwise
clean up the result before it is presented to the user.

In this work, we only study the order and graph sam-
pler steps for two reasons. First, the order-graph sampler is
responsible for most of the algorithm’s computational com-
plexity. Second, the pre- and postprocessing phases are cur-
rently performed on a GPP (general purpose processor) plat-
form regardless of the platform chosen to implement the
order-graph sampler.

Following [14, 16, 17], the order-graph sampler uses
Markov chain Monte Carlo (MCMC) sampling to perform
an iterative random walk in the space of BN orders. First,
the algorithm picks a random initial order. The application
then iterates as follows (1) the current order is modified by
swapping two nodes to form a “proposed order,” which is
(2) scored, and (3) either accepted or rejected according to
the Metropolis-Hastings rule. The scoring process, itself, (1)
breaks the proposed order into N disjoint “local orders,” and
(2) iterates over each node’s parent sets, accumulating each
local score whose parent set is compatible with the node’s
local order. For a network of N nodes, the proposed order’s
score can be efficiently calculated by [18]

Score
(
Op |D

)
=

N∏

i=1

∑

Πi∈ΠP

LocalScore
(
Vi,Πi; D , Op

)
,

(2)

where D is the set of raw observations that are used by the
preprocessor to generate local scores, and Op is the proposed
order. This iterative operation continues until the score has
converged.

To decrease time to convergence, C orders (together
called a chain) can be dispatched over a temperature ladder
and exchanged per iteration in a technique known as parallel
tempering. Additionally, R independent chains (called mul-
tiple restarts) can be dispatched to increase confidence that
the optimum score is a global optimum.

2.2. Compute Perspective. The order-graph sampler is a com-
pute intensive set of nested loops, shown in Algorithm 1,
while the score() function arithmetic is shown in
Algorithm 2. To put the number of loop iterations into
perspec-tive, typical parameter values for {I, R∗C, N } are
{10000, 512, 32 or 37}, where I is the number of MCMC
iterations. Furthermore, P = ∑4

i=0

(
N−1
i

)
, which equates to

36457 and 66712 (N = 32 and N = 37, resp.) for the design
points that we study (see Section 7).

We classify the reformulated loop nest as compute inten-
sive for two reasons. First, a relatively small amount of input
(a local order) is needed for the score() function to compute
per-node results over the R ∗ C orders. Second, D[n]
(shown in Algorithm 1) depends on N and not R∗C. Since
N ≈ 37 and R ∗ C = 512 (i.e., R ∗ C � N ), in practice
there is a large amount of compute time between when n in
D[n] changes.

3. The OpenCL Execution Model

To enable highly productive hardware design, we employ a
high-level language and execution model well suited for the
paradigm of applications we are interested in studying: data-
parallel, compute-bound algorithms. Due to its popularity,
flexibility, and good match with our goals, we employ
OpenCL (Open Computing Language) as the programming
model used to describe applications.

OpenCL [19] is a programming and execution model for
heterogeneous systems containing GPPs, GPGPUs, FPGAs
[20], and other accelerators designed to explicitly capture
data and task parallelism in an application. The OpenCL
model distinguishes control thread(s) (to be executed on a
GPP host) from kernel threads (data parallel loops to be
executed on a GPGPU, or similar, device). The user specifies
how the kernels map to an n-dimensional dataset, given a
set of arguments (such as constants or pointers to device or
host memory). The runtime then distributes the resulting
workload across available compute resources on the device.
Communication between control and kernel threads is pro-
vided by shared memory and OpenCL system calls such as
barriers and bulk memory copy operations.

A key property of OpenCL is its memory model. Each
kernel has access to three disjoint memory regions: private,
local, and global. Global memory is shared by all kernel
threads, local memory is shared by threads belonging to the
same group, while private memory is owned by one kernel
thread. This alleviates the need for a compiler to perform



4 International Journal of Reconfigurable Computing

for {r, c} in R ×C do
initialize(O[r][c])

end for
for i in I do

5: for {r, c} in R ×C do
Op[r][c]← swap(O[r][c])

Variable initialization:
Op[r][c] · So, Op[r][c] · Sg ← 0
Op[r][c] · G← []

10: end for
for n in N do

for {r, c} in R ×C do
(so, sg , g) = score(D[n], Op[r][c][n])
Op[r][c] · So ← Op[r][c] · So + so

15: Op[r][c] · Sg ← Op[r, c] · Sg + sg
Op[r][c] · G · append(g)

end for
end for
for r in R do

Metropolis-hastings:
20: for c in C do

if
1
Tc
× (Op[r][c] · So −O[r][c] · So) >

log(rand(0, 1)) then
O[r, c] · So ← Op[r][c] · So

save({Op[r][c] · Sg , Op[r, c] · G})
end if

25: end for
Parallel tempering:
for c in C do

d ← O[r][c] · So −O[r][c + 1] · So

if log(rand(0, 1)) < d × (
1
Tc
− 1

Tc+1
) then

30: exchange(O[r][c], O[r][c + 1])
end if

end for
end for

end for

Algorithm 1: The reformulated order-graph sampler loop nest. {So, Sg} and G are the current {order, graph} scores and graph associated
with an order. initialize() generates a random order, swap() exchanges nodes in an order, and save() saves a result for the postprocessing
step.

costly memory access analysis to recognize dependencies
before the application can be parallelized. Instead, the user
specifies how the application is partitioned into data-parallel
kernels. With underlying SIMD principles, OpenCL is well
suited for data-parallel problems and maps well to the para-
llel thread dispatch architecture found in GPGPUs.

4. Baseline GPGPU Implementation

To implement the order-graph sampler on the GPGPU, the
application is first divided to different parts according to
their characteristics. The scoring portion of the algorithm,
which exhibits abundant data parallelism, is partitioned into
a kernel and executed on the GPGPU, while the less para-
llelizable score accumulation is executed on a GPP. This
ensures that the kernel executed on the GPGPU is maximally
parallel and exhibits no interthread communication—an

approach we experimentally determined to be optimal.
Under this scheme, the latency of the control thread and
score accumulation phases of the application, running on
a GPP, are dominated by the latency of the scoring function
running on the GPGPU. Moreover, the score() kernel
(detailed in the following section) has a relatively low
bandwidth requirement, allowing us to offload accumulation
to the GPP, lowering total latency. The GPP-GPGPU imple-
mentation is algorithmically identical to the hardware imple-
mentations, aside from minor differences in the precision of
the log1p(exp(d)) operation, and yields identical results up
to the random sequence used for Monte Carlo integration.

4.1. Optimization of Scoring Kernel. We followed four main
strategies in optimizing the scoring unit kernel: (1) minimiz-
ing data transfer overhead between the control thread and
the scoring function, (2) aligning data in device memory, (3)



International Journal of Reconfigurable Computing 5

so, sg ← −∞
g ← NULL
for p in P do

if compatible(D[p] · ps, Ol) then
5: Order sampler:

d ←D[p] · ls− so
If d ≥HIGH THRESHOLD then

so ←D[p] · ls
else if d > LOW THRESHOLD then

10: so ← so + log(1 + exp(d))
end if
Graph sampler:
if D[p] · ls > sg then

sg ←D[p] · ls
15: g ←D[p] · ps

end if
end if

end for
Return:(so, sg , g)

Algorithm 2: The score(D , Ol) function takes the data D (made of parent set (ps) and local score (ls) pairs) and a local order (Ol) as input.
The scoring function produces an order score (so), graph score (sg), and graph fragment (g).

allocating kernel threads to compute units on the GPGPU,
and (4) minimizing latency of a single kernel thread.

First, we minimize data transfers between the GPP and
GPGPU by only communicating changing portions of the
data set throughout the computation. At application startup,
we statically allocate memory for all arrays used on the
GPGPU, statically set these arrays’ pointers as kernel argu-
ments, and copy all parent sets and local scores into off-chip
GPGPU memory to avoid copying static data each iteration.
Each iteration, the GPP copies R∗C proposed orders to the
GPGPU and collects R ∗ C ∗ N proposed order/graph
scores, as well as R∗C graphs from the GPGPU. Each order
and graph is an N × N matrix, represented as N 64 bit
integers, while partial order and graph scores are each 32 bit
integers (additional range is introduced when the partial
scores are accumulated). The resulting bandwidth require-
ment per iteration is 8 ∗ R ∗ C ∗ N bytes from the
GPP to the GPGPU and 16 ∗ R ∗ C ∗ N bytes from the
GPGPU back to the GPP. In the BNs surveyed in this paper,
this bandwidth requirement ranges from 128 to 256 KB
(GPP to GPGPU) and from 256 to 512 KB (GPGPU to
GPP). Given these relatively small quantities and the GPGPU
platform’s relatively high transfer bandwidth over PCIe, the
transfer latency approaches a minimal value. We use this to
our advantage and offload score accumulation to the GPP,
trading significant accumulation latency for a small increase
in GPP-GPGPU transfer latency. This modification gives
us an added advantage via avoiding intra-kernel communi-
cation altogether (which is costly on the GPGPU because
it does not offer hardware support for producer-consumer
parallelism).

Second, we align and organize data in memory to maxi
mize access locality for each kernel thread. GPGPU mem-
ories are seldom cached, while DRAM accesses are several
words wide—comparable to GPP cache lines. We therefore

coalesce memory accesses to reduce the memory access range
of a single kernel and of multiple kernels executing on a given
compute unit. No thread accesses (local scores and parent
sets) are shared across multiple nodes, so we organize local
scores and parent sets by [N ][P ]. When organizing data
related to the R∗C orders (the proposed orders, graph/order
scores, and graphs), we choose to maximally compact data
for restarts, then chains, and finally nodes ([N ][C][R]).
This order is based on the observation that a typical applica-
tion instance will work with a large number of restarts rela-
tive to chains. When possible, we align data in memory—
rounding both R, C and P to next powers of two to avoid
false sharing in wide word memory operations and to im-
prove alignment of data in memory.

Third, allocating kernel threads to device memory is
straightforward given the way we organize data in device
memory; we allocate multiple threads with localized memory
access patterns. Given our memory layout, we first try dispat-
ching multiple restarts onto the same compute unit. If more
threads are needed than restarts available, we dispatch multi-
ple chains as well. We continue increasing the number of
threads per compute unit in this way until we reach an
optimum—the point where overhead due to multithreading
overtakes the benefit of additional threads. Many of the stra-
tegies guiding our optimization effort are outlined in [21].

Finally, we minimize the scoring operation latency over
a single kernel instance. We allow the compiler to predicate
conditional to avoid thread divergence. Outside the inner
loop, we explicitly precompute offsets to access the [N ][P ]
and [N ][C][R] arrays to avoid redundant computation. We
experimentally determined that loop unrolling the score()
loop has minimal impact on kernel performance, so we allow
the compiler to unroll freely. We also evaluated a direct im-
plementation of the log1p(exp(d)) operation versus the use
of a lookup table in shared memory (which mirrors



6 International Journal of Reconfigurable Computing

the hand-optimized design’s approach). Due to the low utili-
zation of the floating point units by this algorithm, the direct
implementation tends to perform better than a lookup table
given the precision required by the algorithm.

4.2. Benchmarking the GPGPU Implementation. To obtain
GPGPU measurements, We mapped the data parallel com-
ponent to the GPGPU via OpenCL, and optimized the res-
ulting kernel as detailed in Section 4.1. We measured the rela-
tive latency of each phase of the algorithm by introducing a
number of GPP and GPGPU timers throughout the itera-
tion loop. We then computed the latency of each phase of
computation (scoring, accumulation, MCMC, etc.) and nor-
malized to the measured latency of a single iteration with no
profiling syscalls. To measure the iteration time, we ran the
application for 1000 iterations with no profiling code in the
loop and then measured the total time elapsed using the
system clock. We then computed the aggregate iteration
latency.

5. Architecture on Hardware Platforms

As with the GPGPU implementation, when the Bayesian in-
ference algorithm is mapped to hardware platforms (FPGA/
ASIC), it is partitioned into two communicating entities: a
data-parallel scoring unit (a collection of Algorithmic-cores
or A-cores) and a control unit (the Control-core, or C-core).
The A-cores are responsible for all iterations of the score()
function from Algorithm 1 while the C-core implements the
serial control logic around the score() calls. This scheme is
applied to both the hand-optimized design and the auto-
matically generated MARC design, though each of them has
different interconnect networks, memory subsystems, and
methodologies for creating the cores.

5.1. Hand-Optimized Design. The hand-optimized design
mapping integrates the jobs of the C-core and A-cores on the
same die and uses a front-end GPP for system initialization
and result collection. At the start of a run, network data and
a set of R∗C initial orders are copied to a DRAM accessible
by the A-cores, and the C-core is given a “Start” signal. At
the start of each iteration, the C-core forms R∗C proposed
orders, partitions each by node, and dispatches the resulting
N ∗R ∗ C local orders as threads to the A-cores. As each
iteration completes, the C-core streams results back to the
front-end GPP while proceeding with the next MCMC
iteration.

The hand-optimized design is partitioned into four clock
domains. First, we clock A-cores at the highest frequency
possible (between 250 and 300 MHz) as these have a direct
impact on system performance. Second, we clock the logic
and interconnect around each A-core at a relatively low freq-
uency (25–50 MHz) as the application is compute bound in
the cores. Third, we set the memory subsystem to the freq-
uency specified by the memory (∼200 MHz, using a DRAM
DIMM in our case). Finally, the C-core logic is clocked at 100
MHz, which we found to be ideal for timing closure and tool

Local order thread dispatch

Memory interface

Memory subsystem

Result arbiter

Control unit interface

4A-core clusters

Host I/O interface

Figure 2: The hand-optimized scoring unit (with 4 A-core clusters).

run time given a performance requirement (the latency of the
C-core is negligible compared to the A-cores).

5.1.1. Scoring Unit. The scoring unit (shown in Figure 2)
consists of a collection of clustered A-cores, a point-to-point
interface with the control unit, and an interface to off-chip
memory.

A scoring unit cluster caches some or all of a node’s data,
taking a stream of local orders as input and outputs order/
graph scores as well as partial graphs. A cluster is made up of
{A-cores, RAM} pairs, where each RAM streams data to its
A-core. When a cluster receives a local order, it (a) pages in
data from DRAM as needed by the local orders, strip-mines
that data evenly across the RAMs and (b) dispatches the local
order to each core. Following Algorithm 1, R∗C local orders
can be assigned to a cluster per DRAM request. Once data is
paged in, each A-core runs P f /Uc iterations of the score()
inner loop (from Algorithm 2), where P f is the subset of P
that was paged into the cluster, and Uc is the number of A-
cores in the cluster.

A-core clusters are designed to maximize local order
throughput. A-cores are replicated to the highest extent pos-
sible to maximize read bandwidth achievable by the RAMs.
Each A-core is fine-grained multithreaded across multiple
iterations of the score() function and uses predicated execu-
tion to avoid thread divergence in case of non-compatible
(!compatible()) parent sets. To avoid structural hazards in
the scoring pipeline, all scoring arithmetic is built directly
into the hardware.

Mapping a single node’s scoring operation onto multiple
A-cores requires increased complexity in accumulating par-
tial node scores at the end of the score() loop. To maximally
hide this delay, we first interleave cross-thread accumulation
with the next local order’s main scoring operation (shown
in Figure 3). Next, we chain A-cores together using a dedi-
cated interconnect, allowing cross-core partial results to be
interleaved into the next local order in the same way as
threads. Per core, this accumulation scheme adds T cycles



International Journal of Reconfigurable Computing 7

Time

Local order i scoring
Local order i + 1 scoring,

Local order i accumulating

Accumulation thread

P
ip

el
in

e
st

ag
e

n
u

m
be

r

ith local order completion point

Scoring threads 1–4

Figure 3: Thread accumulation over a 4-thread/stage core for two adjacent local orders.

of accumulation overhead to the scoring process, for a T-
thread datapath and a single additional cycle for cross-core
accumulation. To simplify the accumulation logic, we lin-
early reduce all threads across an A-core and then accumulate
linearly across A-cores. The tradeoff here is that the last local
order’s accumulation is not hidden by another local order
being scored and takes T2 + T ∗ Uc cycles to finish, where
Uc is the number of A-cores in the cluster.

Given sufficient hardware resources, more advanced A-
core clusters can be built to further increase system through-
put. First, the number of A-cores per RAM can be increased
to the number of read ports each RAM has. Second, since a
given node’s data (D[n]) does not change over the R ∗ C
local orders, A-core chains can be replicated entirely. In this
case, we say that the cluster has been split into two or more
lanes, where A-cores from each lane are responsible for a
different local order. In this setup, the cluster’s control strip-
mines local orders across lanes to initiate scoring. While
scoring, corresponding A-cores (the first A-core in each of
several lanes, e.g.) across the lanes (called tiles) read and
process the same data from the same RAM data stream. An
example of an advanced A-core cluster is shown in Figure 4.

The following analytic model can be used to estimate the
parallel completion time to score Ol local orders over the Pf

subset of the data (for a single cluster):

CyclesDRAM +
Ol

Ul
∗
(

P f

Uc
+ (T + 1)

)
+
(
T2 + T ∗Uc

)
,

(3)

where CyclesDRAM is the number of cycles (normalized to the
core clock) required to initialize the cluster from DRAM, Uc

is the number of A-cores per lane (doubles when two SRAM
ports are used, etc.), Ul is the number of lanes per cluster,
and T is the number of hardware threads per A-core.

5.1.2. Memory Subsystem. The scoring unit controls DRAM
requests when an A-core cluster requires a different subset
of the data. Regardless of problem parameters, data is always
laid out contiguously in memory. As DRAM data is streamed
to a finite number of RAMs, there must be enough RAM
write bandwidth to consume the DRAM stream. In cases
where the RAM write capability does not align to the DRAM
read capacity, dedicated alignment circuitry built into the
scoring unit dynamically realigns the data stream.

5.1.3. Control Unit. We implemented the MCMC control
unit directly in hardware, according to Figure 5. The MCMC
state machine, node swapping logic, parallel tempering logic,
and Metropolis-Hasting logic is mapped as hardware state
machines. Furthermore, a DSP block is used for multiplica-
tive factors, while log(rand(0, 1)) is implemented as a table
lookup. The random generators for row/column swaps, as
well as Metropolis-Hastings and parallel tempering, are built
using free-running LFSRs.

At the start of each iteration, the control unit performs
node swaps for each of the R ∗ C orders and schedules the
proposed orders onto available compute units. To minimize
control unit time when R ∗ C is small, orders are stored in
row order in RAM, making the swap operation a single cycle
row swap, followed by an N cycle column swap. Although
the control unit theoretically has cycle accurate visibility of
the entire system and can therefore derive optimal schedules,
we found that using a trivial greedy scheduling policy (first
come first serve) negligibly degrades performance with the
benefit of significantly reducing hardware complexity. To
minimize A-core cluster memory requirements, all R ∗ C
local orders are scheduled to compute units in bulk over a
single node.

When each iteration is underway, partial scores received
from the scoring unit are accumulated as soon as they are
received, using a dedicated A-core attached to a buffer that
stores partial results. In practice, each A-core cluster can only
store data for a part of a given node at a time. This means
that the A-core, processing partial results, must perform both
the slower score() operation and the simpler cross-node “+”
accumulations. We determined that a single core dedicated
to this purpose can rate match the results coming back from
the compute-bound compute units.

At the end of each iteration, Metropolis-Hastings checks
proceed in [R][C] order. This allows the parallel tempering
exchange operation for restart r to be interleaved with the
Metropolis-Hastings check for restart r + 1.

5.2. The MARC Architecture

5.2.1. Many-Core Template. The overall architecture of a
MARC system, as illustrated in Figure 6, resembles a scal-
able, many-core-style processor architecture, comprising one



8 International Journal of Reconfigurable Computing

4
ti

le
s

Lo
ca

lo
rd

er
(t

h
re

ad
)

ro
u

n
d-

ro
bi

n
di

sp
at

ch

Scoring unit interface

Serialization

Lo
ca

lo
rd

er
s

D
at

a
st

re
am

G
ra

ph
sa

m
pl

er

SRAM

P (2) ports

3 lanes

Dispatcher
Data

Start

GS

GS

GS

GS

GS

GS

C
lu

st
er

in
te

rf
ac

e

2
po

rt
s

(d
u

al
-p

or
te

d)

From previous A-core

To next A-core GS

En

Graph

sampler

Order
sampler

LOG
table

Data

A-core

Va
lid

(s
)

Tile
D

at
a

(l
oc

al
sc

or
es

,p
ar

en
t

se
ts

)
ro

u
n

d-
ro

bi
n

di
sp

at
ch

Initial scores
(Int.MIN value)

O
rd

er
s

G
ra

ph
s

Previous tile
lane (0)

Previous tile
lane (2)

Local
orders

Next tile
lane (0)

Next tile
lane (1)

Next tile
lane (2)

Lo
ca

lo
rd

er
la

n
e

(0
)

Lo
ca

lo
rd

er
la

n
e

(1
)

Lo
ca

lo
rd

er
la

n
e

(2
)

Figure 4: The hand-optimized A-core cluster. This example contains four tiles and three lanes and uses two RAM read ports per tile. “GS”
stands for graph sampler.

Control Processor (C-core) and multiple Algorithmic Pro-
cessing Cores (A-cores). Both the C-cores and the A-core can
be implemented as conventional pipelined RISC processors.
However, unlike embedded processors commonly found in
modern SOCs, the processing cores in MARC are completely
parameterized with variable bit width, reconfigurable multi-
threading, and even aggregate/fused instructions. Further-
more, A-cores can alternatively be synthesized as fully
customized datapaths. For example, in order to hide global
memory access latency, improve processing node utiliza-
tion, and increase the overall system throughput, a MARC
system can perform fine-grained multithreading through
shift register insertion and automatic retiming. Finally, while
each processing core possesses a dedicated local memory
accessible only to itself, a MARC system has a global memory
space implemented as distributed memories accessible by
all processing cores through the interconnect network.
Communication between a MARC system and its host can
be realized by reading and writing global memory.

5.2.2. Execution Model and Software Infrastructure. Our
MARC system builds upon both LLVM, a production-grade
open-source compiler infrastructure [22] and OpenCL.

Figure 7 presents a high-level schematic of a typical
MARC machine. A user application runs on a host according
to the models native to the host platform—a high-perfor-
mance PC in our study. Execution of a MARC program
occurs in two parts: kernels that run on one or more A-cores
of the MARC devices and a control program that runs on

the C-core. The control program defines the context for the
kernels and manages their execution. During the execution,
the MARC application spawns kernel threads to run on the
A-cores, each of which runs a single stream of instructions
as SPMD units (each processing core maintains its own pro-
gram counter).

5.2.3. Application-Specific Processing Core. One strength of
MARC is its capability to integrate fully customized appli-
cation-specific processing cores/datapaths so that the kernels
in an application can be more efficiently executed. To this
end, a high-level synthesis flow depicted by Figure 8 was
developed to generate customized datapaths for a target ap-
plication.

The original kernel source code in C/C++ is first com-
piled through llvm-gcc to generate the intermediate repre-
sentation (IR) in the form of a single static assignment graph
(SSA), which forms a control flow graph where instructions
are grouped into basic blocks. Within each basic block, the
instruction parallelism can be extracted easily as all false
dependencies have been removed in the SSA representation.
Between basic blocks, the control dependencies can then be
transformed to data dependencies through branch predica-
tion. In our implementation, only memory operations are
predicated since they are the only instructions that can gen-
erate stalls in the pipeline. By converting the control depen-
dencies to data dependencies, the boundaries between basic
blocks can be eliminated. This results in a single data flow
graph with each node corresponding to a single instruction



International Journal of Reconfigurable Computing 9

Scheduler

Scoring unit interface

LFSR (row generation)

LFSR (column generation)

MCMC state
machine

Initialization

Results

+

Partial results buffer

Restart x chain
order array

6 nodes

3
re

st
ar

ts
,2

ch
ai

n
s

=
6

or
de

rs

H
os

t
I/

O
in

te
rf

ac
e

Log (u) table

Figure 5: The hand-optimized control unit.

P/L P/L P/L P/L

Mem Mem Mem Mem Mem Mem Mem Mem Sc
h

ed
u

le
rA-core A-core A-coreC-core

Interconnect network

· · ·

· · ·

Figure 6: Diagram of key components in a MARC machine.

in the IR. Creating hardware from this graph involves a
one-to-one mapping between each instruction and various
predetermined hardware primitives. To utilize loop level
parallelism, our high-level synthesis tool also computes the
minimal interval at which a new iteration of the loop
can be initiated and subsequently generates a controller to
pipeline loop iterations. Finally, the customized cores have
the original function arguments converted into inputs. In
addition, a simple set of control signals is created to initialize
a C-core and to signal the completion of the execution. For
memory accesses within the original code, each nonaliasing
memory pointer used by the C function is mapped to a mem-
ory interface capable of accommodating variable memory
access latency. The integration of the customized cores into
a MARC machine involves mapping the input of the cores to
memory addresses accessible by the control core, as well as
the addition of a memory handshake mechanism allowing
cores to access global and local memories. For the results
reported in this paper, the multithreaded customized cores
are created by manually inserting shift registers into the
single-threaded, automatically generated core.

5.2.4. Host-MARC Interface. Gigabit Ethernet is used to im-
plement the communication link between the host and
the MARC device. We leveraged the GateLib [23] project

from Berkeley to implement the host interface, allowing the
physical transport to be easily replaced by a faster medium in
the future.

5.2.5. Memory Organization. Following OpenCL, A-core
threads have access to three distinct memory regions: private,
local, and global. Global memory permits read and write
access to all threads within any executing kernels on any
processing core (ideally, reads and writes to global memory
may be cached depending on the capabilities of the device,
however in our current MARC machine implementation,
caching is not supported). Local memory is a section of the
address space shared by the threads within a computing core.
This memory region can be used to allocate variables that
are shared by all threads spawned from the same computing
kernel. Finally, private memory is a memory region that is
dedicated to a single thread. Variables defined in one thread’s
private memory are not visible to another thread, even when
they belong to the same executing kernel.

Physically, the private and local memory regions in a
MARC system are implemented using on-chip memories.
Part of the global memory region also resides on-chip, but we
allow external memory (i.e., through the DRAM controller)
to extend the global memory region, resulting in a larger
memory space.

5.2.6. Kernel Scheduler. To achieve high throughput, kernels
must be scheduled to avoid memory access conflicts. The
MARC system allows for a globally aware kernel sched-
uler, which can orchestrate the execution of kernels and
control access to shared resources. The global scheduler is
controlled via a set of memory-mapped registers, which are
implementation specific. This approach allows for a range of



10 International Journal of Reconfigurable Computing

Thread
counter

Local
scheduler

MIPS core

IMEM DMEM

Memory
map

Memory
map

Boot
memory

Private memory

Local memory

Host-MARC interface

Kernel scheduler

Kernel queue

Results queue

Global memory

Figure 7: Schematic of a MARC machine’s implementation.

llvm-gcc

SSA IR

Predication

Data flow graph

Datapath generation

Instruction mapping

Pipelining datapath

Scheduling/ctr gen.

Loop scheduling

Multithreading

HDL code of customized datapath

Kernel written in C

Figure 8: CAD flow of synthesizing application-specific processing cores.

schedulers, from simple round-robin or priority schedules to
complex problem-specific scheduling algorithms.

The MARC machine optimized for Bayesian inference
uses the global scheduler to dispatch threads at a coarse grain
(ganging up thread starts). The use of the global scheduler is
therefore rather limited as the problem does not greatly ben-
efit from a globally aware approach to scheduling.

5.2.7. System Interconnect. One of the key advantages of re-
configurable computing is the ability to exploit application-
specific communication patterns in the hardware system.
MARC allows the network to be selected from a library
of various topologies, such as mesh, H-tree, crossbar, or
torus. Application-specific communication patterns can thus
be exploited by providing low-latency links along common
routes.

The MARC machine explores two topologies: a pipelined
crossbar and a ring, as shown in Figure 9. The pipelined
crossbar contains no assumptions about the communication
pattern of the target application—it is a nonblocking net-
work that provides uniform latency to all locations in the
global memory address space. Due to the large number of
endpoints on the network, the crossbar is limited to 120 MHz
with 8 cycles of latency.

The ring interconnect only implements nearestneighbor
links, thereby providing very low-latency access to some
locations in global memory, while requiring multiple hops
for other accesses. Nearest neighbor communication is im–
portant in the Bayesian inference accumulation phase and
helps reduce overall latency. Moreover, this network topology
is significantly more compact and can be clocked at a much

higher frequency—approaching 300 MHz in our implemen-
tations. The various versions of our MARC machine, there-
fore, made use of the ring network because of the advantages
it has shown for this application.

5.2.8. Mapping Bayesian Inference onto the MARC Machine.
The order-graph sampler comprises a C-core for the serial
control logic and A-cores to implement the score() calls. Per
iteration, the C-core performs the node swap operation,
broadcasts the proposed order, and applies the Metropolis-
Hastings check. These operations consume a negligible
amount of time relative to the scoring process.

Scoring is composed of (1) the parent set compatibility
check and (2) an accumulation across all compatible parent
sets. Step 1 must be made over every parent set; its perfor–
mance is limited by how many parent sets can be simulta-
neously accessed. We store parent sets in on-chip RAMs that
serve as A-core private memory and are therefore limited by
the number of A-cores and attainable A-core throughput.
Step 2 must be first carried out independently by each A-
core thread, then across A-core threads, and finally across
the A-cores themselves. We serialize cross-thread and cross-
core accumulations. Each accumulation is implemented with
a global memory access.

The larger order-graph sampler benchmark we chose (see
Section 7) consists of up to 37 nodes, where each of the nodes
has 66712 parent sets. We divide these 66712 elements into
36 chunks and dedicate 36 A-cores to work on this data set.
After completion of the data processing for one node, data
from the next node is paged in, and we restart the A-cores.



International Journal of Reconfigurable Computing 11

C-core C-core

A-core

A-core

A-core

A-core

A-core

A-core

Memory
block

Memory
block

Memory
block

Memory
mapping
scheduler

Memory
block

Memory
block

Memory
block

Memory
mapping
scheduler

Node

··
·

··
·

··
·

··
·

To host To host

(a) (b)

Figure 9: System diagram of a MARC system. (a) Ring network. (b) Pipelined crossbar.

6. Hardware Prototyping

For this research, both the hand-optimized design and
MARC machines are implemented targeting a Virtex-5
(XCV5LX155T-2) of a BEEcube BEE3 module for FPGA pro-
totyping. We also evaluate how each design performs when
mapped through a standard ASIC design flow targeting a
TSMC 65 ns CMOS process. A design point summary, that
we will develop over the rest of the paper, is given in Table 1.

The local memory or “RAMs”, used in each design point,
were implemented using block RAMs (BRAMs) on an FPGA
and generated as SRAM (using foundry-specific memory
generators) on an ASIC. All of our design points benefit
from as much local memory read bandwidth as possible. We-
increased read bandwidth on the FPGA implementation by
using both ports of each BRAM block and exposing each
BRAM as two smaller single-port memories. For the ASIC
platform, the foundry-specific IP generator gives us the cap-
ability to create small single-ported memories suitable for
our use.

In addition to simple memories, our designs used FIFOs,
arbiters, and similar hardware structures to manage flow
control and control state. On an FPGA, most of these blocks
were available on the Virtex-5 through Xilinx Coregen while
the rest were taken from the GateLib library. On an ASIC, all-
of these blocks were synthesized from GateLib Verilog or gen-
erated using foundry tools.

To obtain all FPGA measurements, we designed in Veri-
log RTL and mapped the resulting system using Synplify Pro
(Synopsys) and the Xilinx ISE flow for placement and routing
(PAR). To obtain ASIC measurements, we used a standard
cell-bawed Synopsis CAD flow including Design Compiler
and IC Compiler.

No manual placement or hierarchical design was used
for our studies. We verified the resulting system post-PAR by
verifying (a) timing closure, and (b) functionality of the flat-
tened netlist. The tools were configured to automatically re-
time the circuit to assist timing closure, at the expense of
hard-ware resources. It is worth noting that the automatic
retiming did not work as well with the MARC multithreaded

cores because of a feedback path in the core datapath. There-
fore, manual retiming was required for performance im-
provement with the MARC multithreaded design points.

6.1. Hand-Optimized Configurations. On the FPGA plat-
form, the best performing configurations were attained when
using 48 cores per FPGA running at a 250 MHz core clock
and 36 cores at 300 MHz (the former outperforming the
latter by a factor of 1.1 on average). Both of these points were
used between 65% and 75% of available device LUTs and
exactly 95% of device BRAMs. We found that implementing
48 cores at 300 MHz was not practical due to routing limi-
tations and use of the 48 core version at 250 MHz for the rest
of the paper.

For the ASIC implementation, because performance is a
strong function of the core clock’s frequency, we optimize the
core clock as much as possible. By supplying the Verilog RTL
tp the Synopsys Design Compiler with no prior optimization,
the cores can be clocked at 500 MHz. Optimizing the core
clock requires shortening the critical path, which is in the
datapath. By increasing the number of threads from 4 to 8
and performing manual retiming for the multithreaded data-
path, the core clock achieves 1 GHz.

6.2. MARC Configurations. The MARC implementation
comprises one C-core and 36 A-cores. While the C-core in all
MARC machines is a fully bypassed 4-stage RISC processor,
MARC implementations differ in their implementation of
the A-cores. For example, fine-grained multithreaded RISC
cores, automatically generated application-specific datap-
aths, and multithreaded versions of the generated cores are
all employed to explore different tradeoffs in design effort
and performance. To maintain high throughput, the better
performing A-cores normally execute multiple concurrent
threads to saturate the long cycles in the application dataflow
graph.

6.2.1. Memory System. As in other computing platforms,
memory accesses significantly impact the overall perfor-
mance of a MARC system. In the current MARC implemen-



12 International Journal of Reconfigurable Computing

Table 1: A-core counts, for all design points, and a naming convention for all MARC configurations used in the study. If only one core count
is listed, it is the same for both 32 and 37 node (32n and 37n) problems (see Section 7). All A-core counts are given for area normalized
designs, as discussed in Section 7.

Alias Description Number of cores (32n, 37n)

Hand design FPGA — 48

Hand design ASIC — 2624, 2923

MARC-Ropt-F RISC A-core with optimized network on FPGA 36

MARC-C1-F Customized A-core on FPGA 36

MARC-C2-F Customized A-core (2-way MT) on FPGA 36

MARC-C4-F Customized A-core (4-way MT) on FPGA 36

MARC-Ropt-A RISC A-core with optimized network on ASIC 1269, 1158

MARC-C1-A Customized A-core on ASIC 1782, 1571

MARC-C2-A Customized A-core (2-way MT) on ASIC 1768, 1561

MARC-C4-A Customized A-core (4-way MT) on ASIC 1715, 1519

GPGPU — 512

tation, private or local memory accesses take exactly one
cycle, while global memory accesses typically involve longer
latencies that are network dependent. We believe that given
different applications, such discrepancies between local and
global memory access latencies provide ample opportunities
for memory optimization and performance improvements.
For example, the MARC machine in this work has been opti-
mized for local memory accesses, reflecting the needs of the
Bayesian inference algorithm.

6.2.2. Clock Speed and Area on FPGA and ASIC. For better
throughput, we have implemented single-threaded, two-
way multithreaded, and four-way multithreaded application-
specific A-cores for MARC devices. When individually
instantiated on the Virtex-5 FPGA, these cores are clocked
at 163 MHz, 234 MHz, and 226 MHz, respectively. There is a
decrease in clock frequency when the number of threads is
changed from two to four. This is due to the increased
routing delay to connect LUT-FF pairs further apart in a
larger physical area. When the completely assembled MARC
machines traverse the hardware generation flow, the cores’
clock frequency decreases further to 144 MHz, 207 MHz,
and 206 MHz, respectively due to added FPGA resource
utilization. The same A-cores are used for the ASIC imple-
mentation, where they operate at 526 MHz, 724 MHz, and
746 MHz, respectively. Due to a higher degree of freedom in
ASIC place and route, we do not see the performance
dip observed when the two-threaded FPGA implementation
is changed to four-threaded. However, it is apparent that
despite the decrease in levels of logic in the critical path, it is
difficult to squeeze out more performance by simple register
insertion and retiming.

With respect to area, the overhead of multithreading is
more pronounced on an FPGA relative to an ASIC. For the
37 node benchmark, the MARC machines with single, two-
way, and four-way multithreaded customized A-cores utilize
47%, 65%, and 80% of the flip-flops on Virtex-5. Since they
operate on the same amount of data, 85% of BRAMs are used
for each of the three design points. Meanwhile, on an ASIC
we only observe an area increase from 6.2 mm2 in the single-
threaded case to 6.4 mm2 for the four-way multithreaded

design. This is because the ASIC implementation exposes the
actual chip area, where the increase in number of registers is
dwarfed by the large SRAM area.

7. Performance and Area Comparisons

We compare the performance of the hand-optimized design
and the MARC machines on FPGA as well as ASIC platforms.
For both the hand-optimized and the MARC implementa-
tions on an ASIC, we normalize our area to the FPGA’s die
area. FPGA die area was obtained by X-ray imaging the pack-
aged dies and estimating the die area from the resulting
photographs. For the remainder of the paper, all devices
whose die areas and process nodes are relevant are given in
Table 2.

For the FPGA designs, we packed the device to its limits
without performance degradation. Effectively, the designs are
consuming the entire area of the FPGA. We then performed
a similar evaluation for the ASIC platform by attempting to
occupy the same area as an FPGA. This is achieved by run-
ning the design for a small number of cores and then scaling
up. This technique is valid as the core clock is not distributed
across the network, and the network clock can be slow (50–
100 MHz) without adversely affecting performance.

The specific Bayesian network instances we chose consist
of 32 and 37 nodes, with dataset of 36457 and 66712
elements, respectively. The run times on each hardware plat-
form are shown in Tables 4 and 5, for the 32 and 37 node-
problem, respectively. The execution time for each platform
is also normalized to the fastest implementation—hand-
optimized design on ASIC—to show the relative perfor-
mance of every design point.

7.1. Benchmark Comparison. The large gap between the
amount of data involved in the two problems gives each
distinct characteristics, especially when mapped to an ASIC
platform. Because data for the 32 node problem can fit on
an ASIC for both MARC and the hand-optimized design,
the problem is purely compute bound. The hand-optimized
solution benefits from the custom pipelined accumulation



International Journal of Reconfigurable Computing 13

Table 2: Device die areas and process nodes.

Device Die area (mm2) Process (nm)

Virtex-5 LX155T FPGA 270 65

Nvidia GeForce GTX 580 520 40

and smaller and faster cores, resulting in its 2.5x performance
advantage over the best MARC implementation. The 37 node
problem, on the other hand, could not afford to have the
entire dataset in the on-chip SRAMs. The required paging
of data into the on-chip RAMs becomes the performance
bottleneck. Having exactly the same DRAM controller as
the MARC machines, the hand-optimized design only shows
a small performance advantage over MARC, which can
be attributed to its clever paging scheme. For the FPGA
platform, both the 32 and 37 node problems involve paging
of data, but as the run time is much longer, data transfer only
accounts for a very small fraction of the execution time (i.e.,
both problems are compute bound).

7.2. MARC versus Hand-Optimized Design. For compute-
bound problems, it is clear that MARC using RISC instruc-
tion processors to implement A-cores achieves less than 2%
of the performance exhibited by the hand-optimized imple-
mentation, even with optimized interconnect topology (a
ring network versus a pipelined crossbar). Customizing the
A-cores, however, yields a significant gain in performance,
moving MARC to within a factor of 4 of the performance
of the hand-optimized implementation. Further optimizing
the A-cores through multithreading pushes the performance
even higher. The best performing MARC implementation
is within a factor of 2.5 of the hand-optimized design and
corresponds to two-way multithreaded A-cores. Like the
FPGA platform, further increase to four threads offers dimi-
nishing returns and is outweighed by the increase in area,
and therefore the area-normalized performance actually
decreases.

7.3. Cross-Analysis against GPGPU. We also benchmark the
various hardware implementations of the order-graph sam-
pler against the GPGPU reference solution, running on
Nvdia’s GeForce GTX 580.

As the GTX 580 chip has a much larger area than Virtex-
5 FPGA and is also on 40 nm process rather than 65 nm, we
scaled its execution time according to the following equa-
tions, following Table 2:

Scaled AreaGPU = AreaGPU ∗ S2 = 520∗
(

65
40

)2

= 1373,

(4)

Tscaled = Scaled AreaGPU

AreaFPGA
∗ S∗ T = 8.264∗ T. (5)

To make sure the comparison is fair, the technology scaling
[24] takes into account the absolute area difference between
the GPU and FPGA, as well as the area and delay scaling (i.e.,
S, the technology scaling factor) due to different processes.
Our first assumption is that the performance scales linearly

Table 3: Scaled GPGPU design for 65 nm process.

Problem Per-iteration time Scaled per-iteration time

40 nm (µs) 65 nm (µs)

32-Node 21.0 174

37-Node 37.8 312

with area, which is a good approximation due to our Bayesian
network problem and device sizes. Second, we assume zero
wire slack across both process generations for all designs. The
original and scaled execution times are displayed in Table 3.

It can be seen from Tables 4 and 5 that MARC on FPGA
can achieve the same performance as the GPGPU when
application-specific A-cores are used. With multithreading,
the best MARC implementation on FPGA can achieve more
than a 40% performance advantage over the GPGPU. Hand-
optimized designs, with more customization at the core and
network level, push this advantage even further to 3.3x. The
reason for this speedup is that each iteration of the inner
loop of the score() function takes 1 cycle for A-cores on
MARC and the hand-optimized design, but 15 to 20 cycles on
GPGPU cores. It is apparent that the benefit from exploiting
loop level parallelism at the A-cores outweighs the clock
frequency advantage that the GPGPU has over the FPGA.

When an ASIC is used as the implementation platform,
the speedup is affected by the paging of data as explained
in Section 7.1. For the 32 node problem where paging of
data is not required, the best MARC implementation and the
hand-optimized design achieve 156x and 412x performance
improvement over the GPGPU, respectively. For the 37 node
problem, which requires paging, we observe a 69x and 84x
performance advantage from the best MARC variant and
hand-optimized implementation, respectively. Using only
a single dual channel DRAM controller, we have about
51.2 Gb/sec of memory bandwidth for paging. However the
GPGPU’s memory bandwidth is 1538.2 Gb/sec—30x that of
our ASIC implementations. As a result, the GPGPU solution
remains compute bound while our ASIC implementations
are getting constrained by the memory bandwidth. Thus,
the performance gap between the 32 and 37 node problems
is because of the memory-bound nature of our ASIC
implementations.

It is also interesting that the MARC implementation with
RISC A-cores on ASIC is about 6 times faster for the 32 node
problem and 8 times faster for 37 node problem, compared
to the GPGPU. With both MARC RISC A-cores and GPGPU
cores, the kernel is executed as sequence of instructions
rather than by a custom datapath. In addition, the clock
frequency gap between MARC on ASIC and the GPGPU
is small. We claim that the performance gap is due to the
application-specific nature of the MARC design—MARC is
able to place more cores per unit area (see Table 1) while
still satisfying the requirements of local caching. In addition,
the network structure in MARC machines is also optimized
to the Bayesian inference accumulation step. The combined
effect results in a significantly better use of chip area for this
application.



14 International Journal of Reconfigurable Computing

Table 4: 32-Node. Performance comparison between MARC,
hand-optimized, and GPGPU.

Configuration Per iteration Relative

Time (µs) Perf.

GPGPU scaled reference 174 0.0024

MARC-Ropt-F 2550 0.0002

MARC-C1-F 172 0.0025

MARC-C2-F 124 0.0034

MARC-C4-F 136 0.0031

Hand design FPGA 51.4 0.0082

MARC-Ropt-A 27.6 0.0152

MARC-C1-A 1.47 0.2863

MARC-C2-A 1.11 0.3808

MARC-C4-A 1.17 0.3608

Hand design ASIC 0.422 1.0000

Table 5: 37-Node. Performance comparison between MARC,
Hand-optimized, and GPGPU.

Configuration Per iteration Relative

Time (µs) Perf.

GPGPU scaled reference 312 0.0119

MARC-Ropt-F 5130 0.0007

MARC-C1-F 310 0.0120

MARC-C2-F 221 0.0169

MARC-C4-F 235 0.0158

Hand design FPGA 110 0.0339

MARC-Ropt-A 38.1 0.0978

MARC-C1-A 5.02 0.7429

MARC-C2-A 4.53 0.8231

MARC-C4-A 4.61 0.8083

Hand design ASIC 3.73 1.0000

8. Conclusion

MARC offers a methodology to design FPGA and ASIC-
based high-performance reconfigurable computing systems.
It does this by combining a many-core architectural template,
high-level imperative programming model [19], and modern
compiler technology [22] to efficiently target both ASICs and
FPGAs for general-purpose, computationally intensive data-
parallel applications.

The primary objective of this paper is to understand
whether a many-core architecture is a suitable abstraction
layer (or execution model) for designing ASIC and FPGA-
based computing machines from an OpenCL specification.
We are motivated by recently reemerging interest and efforts
in parallel programming for newly engineered and upcoming
many-core platforms, and feel that if we can successfully
build an efficient many-core abstraction for ASICs and
FPGAs, we can apply the advances in parallel programming
to high-level automatic synthesis of computing systems. Of-
course, constraining an execution template reduces degrees

of freedom for customizing an implementation using appli-
cation-specific detail. However, we work under the hypothe-
sis that much of the potential loss in efficiency can be recov-
ered through customization of a microarchitectural template
designed for a class of applications using application-specific
information. The study in this paper represents our initial
effort to quantify the loss in efficiency incurred for a signi-
ficant gain in design productivity for one particular applica-
tion.

We have demonstrated via the use of a many-core micro-
architectural template for OpenCL that it is at least some-
times possible to achieve competitive performance relative to
a highly optimized solution and to do so with considerable
reduction in development effort (days versus months). This
approach also achieves significant performance advantage
over a GPGPU approach—a natural platform for mapping
this class of applications. In this study, the most significant
performance benefit came from customization of the proces-
sor cores to better fit the application kernel—an operation
within reach of modern high-level synthesis flows.

Despite these results, the effectiveness of MARC in the
general case remains to be investigated. We are currently
limited by our ability to generate many high-quality hand-
optimized custom solutions in a variety of domains to vali-
date and benchmark template-based implementations. Non-
etheless, we plan to continue this study, exploring more ap-
plication domains, extending the many-core template tailor-
ed for OpenCL and exploring template microarchitectures
for other paradigms. We are optimistic that a MARC-like ap-
proach will open new frontiers for rapid prototyping of high-
performance computing systems.

Acknowledgments

The authors wish to acknowledge the contributions of the
students, faculty, and sponsors of the Berkeley Wireless
Research Center and the TSMC University Shuttle Program.
This work was funded by the NIH, Grant no.
1R01CA130826-01 and the Department of Energy, Award
no. DE-SC0003624.

References

[1] M. Lin, I. Lebedev, and J. Wawrzynek, “Highthroughput
Bayesian computing machine with reconfigurable hardware,”
in Proceedings of the 18th annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA ’10),
pp. 73–82, ACM, Monterey, California, USA, 2010.

[2] M. Lin, I. Lebedev, and J. Wawrzynek, “OpenRCL: from
sea-of-gates to sea-of-cores,” in Proceedings of the 20th IEEE
International Conference on Field Programmable Logic and
Applications, Milano, Italy, 2010.

[3] Wikipedia, “C-to-hdl,” November 2009, http://en.wikipedia.
org/wiki/C to HDL/.

[4] M. Gokhale and J. Stone, “Napa c: compiling for a hybrid risc/
fpga architecture,” in Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM ’98), Napa,
Calif, USA, 1998.



International Journal of Reconfigurable Computing 15

[5] T. J. Callahan, J. R. Hauser, and J. Wawrzynek, “Garp architec-
ture and C compiler,” Computer, vol. 33, no. 4, pp. 62–69,
2000.

[6] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein,
“Spatial computation,” in Proceedings of the 11th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-XI ’04), pp. 14–26,
New York, NY, USA, October 2004.

[7] J. Wawrzynek, D. Patterson, M. Oskin et al., “RAMP: research
accelerator for multiple processors,” IEEE Micro, vol. 27, no. 2,
pp. 46–57, 2007.

[8] A. Papakonstantinou, K. Gururaj, J. A. Stratton, D. Chen, J.
Cong, and M. W. Hwu, “Fcuda: enabling efficient compilation
of cuda kernels onto fpgas,” in Proceedings of the 7th IEEE
Symposium on Application Specific Processors (SASP ’09), San
Francisco, Calif, USA, 2009.

[9] M. Owaida, N. Bellas, K. Daloukas, and C. D. Antonopoulos,
“Synthesis of platform architectures from opencl programs,”
in Proceedings of the 19th IEEE Annual International Sym-
posium on Field-Programmable Custom Computing Machines
(FCCM ’11), Salt Lake City, Utah, USA, 2011.

[10] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse co-
variance estimation with the graphical lasso,” Biostatistics, vol.
9, no. 3, pp. 432–441, 2008.

[11] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning
Bayesian networks: the combination of knowledge and statis-
tical data,” Machine Learning, vol. 20, no. 3, pp. 197–243, 1995.

[12] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, Morgan Kaufmann, San Francisco, Calif,
USA, 1988.

[13] C. Fletcher, I. Lebedev, N. Asadi, D. Burke, and J. Wawrzynek,
“Bridging the GPGPU-FPGA efficiency gap,” in Proceedings of
the 19th ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA ’11), pp. 119–122, New York,
NY, USA, 2011.

[14] N. Bani Asadi, C. W. Fletcher, G. Gibeling et al., “Paralearn: a
massively parallel, scalable system for learning interaction net-
works on fpgas,” in Proceedings of the 24th ACM International
Conference on Supercomputing, pp. 83–94, ACM, Ibaraki,
Japan, 2010.

[15] D. M. Chickering, “Learning Bayesian Networks is NP-
Complete,” in Learning from Data: Artificial Intelligence and
Statistics V, pp. 121–130, Springer, New York, NY, USA, 1996.

[16] B. Ellis and W. H. Wong, “Learning causal Bayesian network
structures from experimental data,” Journal of the American
Statistical Association, vol. 103, no. 482, pp. 778–789, 2008.

[17] M. Teyssier and D. Koller, “Ordering-based search: a simple
and effective algorithm for learning Bayesian networks,” in
Proceedings of the 21st Conference on Uncertainty in AI (UAI
’5), pp. 584–590, Edinburgh, UK, July 2005.

[18] N. Friedman and D. Koller, “Being Bayesian about network
structure,” in Proceedings of the 16th Conference on Uncertainty
in Artificial Intelligence, pp. 201–210, Morgan Kaufmann, San
Francisco, Calif, USA, 2000.

[19] Khronos OpenCL Working Group, The OpenCL Speci-
fication, version 1.0.29, December 2008, http://khronos.org/
registry/cl/specs/opencl-1.0.29.pdf.

[20] M. Lin, I. Lebedev, and J. Wawrzynek, “OpenRCL: low-power
high-performance computing with reconfigurable devices,” in
Proceedings of the 18th International Symposium on Field Pro-
grammable Gate Array, 2010.

[21] NVIDIA OpenCL Best Practices Guide, 2009, http://www.
nvidia.com/content/cudazone/CUDABrowser/downloads/

papers/NVIDIA OpenCL BestPracticesGuide.pdf.
[22] C. Lattner and V. Adve, “LLVM: a compilation framework for

lifelong program analysis & transformation,” in Proceedings
of the International Symposium on Code Generation and Opti-
mization (CGO ’04), pp. 75–86, Palo Alto, Calif, USA, March
2004.

[23] G. Gibeling et al., “Gatelib: a library for hardware and software
research,” Tech. Rep., 2010.

[24] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated
Circuits, chapter 5, Prentice Hall, New York, NY, USA, 2nd
edition, 2003.


