
Ascend: An Architecture for Performing Secure

Computation on Encrypted Data

by

Christopher W. Fletcher

B.S. in Electrical Engineering and Computer Science, University of California,
Berkeley, 2010

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2013

c© Massachusetts Institute of Technology 2013. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 4, 2013

Certified by. .
Srinivas Devadas

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

Ascend: An Architecture for Performing Secure Computation on
Encrypted Data

by
Christopher W. Fletcher

Submitted to the Department of Electrical Engineering and Computer Science
on May 4, 2013, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

This thesis considers encrypted computation where the user specifies encrypted inputs to
an untrusted batch program controlled by an untrusted server. In batch computation, all
data that the program might need is known at program start time. Encrypted computa-
tion on untrusted batch programs can be realized through fully homomorphic encryption
(FHE) techniques, but FHE’s current overheads limit its applicability. Secure processors
(e.g., Aegis), coprocessors (e.g., TPM) or hardware extensions (e.g., TXT) typically require
trust in the entire processor, the host operating system and the program that computes on
the inputs. In this thesis, we design a secure processor architecture, called Ascend, that
guarantees privacy of data given untrusted batch programs.

The key idea in Ascend to guarantee privacy is parameterizable, obfuscated program
execution. From the perspective of the Ascend chip’s input/output and power pins, an
untrusted server cannot learn anything about private user data regardless of the program
run. Ascend uses Oblivious RAM (ORAM) techniques to hide memory access patterns and
differential-power analysis (DPA) resistance techniques to hide data-dependent power draw.
For each of the input/output and power channels, an Ascend chip exposes a set of public
knobs that fully specify the observable behavior of the chip given any batch program and any
input to that batch program. These knobs (e.g., specifying strict intervals for when external
memory should be accessed) are controlled by the server and can be tuned, based on the
server’s apriori knowledge of the program, to trade-off performance and power without
impacting security.

Experimental results when running Ascend on SPEC benchmarks show an average
3.6×/6.6× and 5.2×/4.7× performance/power overhead—when hiding memory access pat-
tern and power draw—using two schemes that capture the server’s apriori knowledge in dif-
ferent ways. Furthermore—when hiding memory access pattern only—performance/power
overheads drop to only 2.6×/2.2×. These surprising results mean that it is viable to only
trust hardware and not software in some security-conscious applications.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

Acknowledgements

For the rest of the thesis, I, Chris Fletcher, will refer to the author as we. This is because
Ascend has been a team effort from start to present, and has only been possible through
my efforts, combined with those of Srini Devadas, Marten van Dijk, Ling Ren and Xiangyao
Yu. I would first like to thank Srini Devadas and Marten van Dijk. Srini, your incredible
drive and boundless support has made this last year the best of my academic life so far.
Both directly and indirectly, the only reason I am here right now is because you put up
with all of those fizzled projects in my first year. For giving me the freedom to try things
that would never work, I thank you. Marten, I feel truly lucky to be working with you.
This project has been an eye opener for me, especially since I came in with no security
background. Thank you for all you have taught me; on the flip side, I hope I have been
able to teach some systems design! To Ling and Xiangyao, you guys have been excellent
this past term. I can tell how hard you have been working, and it showed with the ISCA
submission this last November.

I would also like to thank my peers and members of CSAIL. First, thanks to Rachael
Harding and Omer Khan for many very helpful discussions not only computer systems
design but also security. Coming out of a security meeting to talk systems design, it is
always great to pitch an idea to you and think fantastic, they understand exactly where I
am coming from! Second to other members of CSAIL: Charles O’Donnell, Keun sup Shim,
Ilia Lebedev, Michel Kinsy, Mieszko Lis, Nirav Dave, Raluca Ada Popa, and Alessandro
Chiesa. To the entire Hornet group, for putting up with security talks and offering feedback
from the perspectives of no less than three areas. I would also like to thank Sanjit Seshia,
Omer Khan, and many others for giving me early feedback on the thesis itself.

I feel very privileged to be and have been mentored by some amazing people outside of
CSAIL. In particular, I would like to thank Joe Pasquale, John Wawrzynek, Garry Nolan
and Greg Gibeling. Without any one of you, I don’t know where I would be right now but
it certainly wouldn’t be here.

Finally, I would like to thank my girlfriend Cassie, my brother and my parents. Cassie,
you have been my rock these past two years; I cannot begin to tell you how important your
support has been. Nor could I ask for a better girlfriend. To my brother, Sam: you are
one of my best friends, and probably the person who knows me the best. Once I turn in
this thesis, we’re going to Vegas. To Mom and Dad: simply put, I couldn’t have had better
parents. I consider myself blessed. Without your support and enthusiasm, not only would
I not have gotten this far, it would not have been nearly as meaningful.

i

ii

Contents

1 Introduction 1

1.1 The Problem with Running Untrusted Programs on Secure Hardware . . . 2

1.2 Ascend: Program Obfuscation in Hardware 4

1.3 Big Idea: Public Parameters that Control Observable Behavior 4

1.4 Thesis Contributions . 5

1.5 Organization . 6

1.6 Conventions and Assumed Background Knowledge 6

2 Framework 9

2.1 Modeling the Ascend Chip . 9

2.2 Two-interactive Protocols . 10

2.3 Security Model . 11

2.3.1 Privacy . 11

2.3.2 Integrity . 12

2.4 Implementation Principles . 12

2.4.1 Value Domain . 12

2.4.2 Time Domain . 13

2.4.2.1 Public Intervals . 13

3 Protecting the I/O Channel 15

3.1 Chapter Overview . 16

3.2 Value Obfuscation: Oblivious RAM (ORAM) 16

3.2.1 Path ORAM . 17

3.2.1.1 Strawman Encryption Scheme 19

3.2.1.2 Optimization: Counter-based Encryption Scheme 20

3.2.1.3 Path ORAM Performance and Hardware Assumptions . . . 20

3.2.1.4 Path ORAM Space Requirements 21

3.2.2 Recursive Path ORAM . 21

3.2.3 Optimization: Early Completion . 22

3.3 Path ORAM Failure Probability . 23

3.3.1 Properties of and Attacks Against Background Eviction Schemes . . 24

3.3.1.1 Address Sequence and Local Cache Occupancy 24

3.3.1.2 Chip Architecture and Local Cache Occupancy 25

3.3.2 Probabilistic Background Eviction 26

3.3.3 Security of Probabilistic Background Eviction 27

3.3.4 Insecurity of Block Remapping Eviction Schemes 28

3.4 Time Obfuscation: Public Intervals . 29

iii

4 Protecting the Power Channel 31

4.1 Chapter Overview . 32

4.2 Value Obfuscation: DPA Resistant Circuits 32

4.2.1 Logic Gates and Flip-Flops . 33

4.2.1.1 Optimization: Flip-flop Elimination 35

4.2.1.2 Optimization: Extending Pre-Charge 36

4.2.1.3 Optimization: Additional Flip-flop Elimination 37

4.2.1.4 Creating Dummy Work . 38

4.2.2 SRAM Arrays . 38

4.2.2.1 Secure SRAM Design and Sources of Leakage 38

4.2.2.2 Secure SRAM Overheads 39

4.2.3 Optimization: Controlling Clock Enable 39

4.2.4 Observable Circuit States . 40

4.3 Time Obfuscation: Public Intervals, Interval Policies and Rate Matching . . 40

4.3.1 Public Intervals for Groups of Circuits 41

4.3.2 Producer/Consumer Rate Matching 42

4.3.3 Producer/Consumer Data Dependancies 42

5 Ascend Microarchitecture 45

5.1 Chip Organization . 45

5.1.1 Request and Eviction Buffers . 45

5.1.2 Flow of Requests, Data and Evictions 45

5.1.3 Public Intervals . 46

5.2 Instruction Pipeline . 46

5.3 Choosing an ISA . 48

5.4 Cache Hierarchy . 49

5.4.1 Energy Efficiency via Intervals+Extended Pre-Charge 49

5.4.2 Hiding Cache Inputs/Outcomes . 49

5.4.3 Power Obfuscation and Cache Organization 52

5.4.4 Where DPA Resistance is Not Needed 53

5.4.5 Hiding Cache Coherence Behavior 53

5.4.6 Hiding Cache Outcome for the L2 Cache 54

5.4.6.1 Exclusive L2 Caches . 55

5.4.6.2 Inclusive L2 Caches . 56

5.5 ORAM Interface . 56

5.5.1 Security-Related Issues . 56

5.5.2 Systems Integration-Related Issues 57

5.5.3 Performance-Related Issues . 58

5.6 Interval Policies: Dynamically Trading Off Power & Performance 59

5.6.1 Interval Policy Gate-level Signal Behavior 59

5.6.2 Example: Fully Speculative Policies 61

5.6.3 Example: Fully Conservative Policies 61

5.6.4 Example: Hybrid Policies . 63

6 Certified Execution 65

6.1 Motivation . 65

6.2 Integrity Verification . 66

iv

7 Evaluation 69
7.1 Security . 69

7.1.1 Circuit Requirements for PA Resistance 70
7.1.2 Relation to Circuit Primitives . 70

7.2 Performance and Power . 71
7.2.1 Methodology . 71

7.2.1.1 Benchmarks . 71
7.2.1.2 Comparison Points . 71
7.2.1.3 Simulator and Metrics . 72
7.2.1.4 Cache Energies . 73
7.2.1.5 Additional DPA Resistant Logic Overheads 73

7.2.2 Path ORAM in Secure Processors 75
7.2.2.1 Choosing ORAM Block Size 75
7.2.2.2 Choosing Z, the Number of Blocks Per Bucket 76

7.2.3 Public Parameter Design Space Exploration 77
7.2.3.1 Performance/Power for ascend io 78
7.2.3.2 The Impact of Intervals and a Fully Speculative Policy . . 78
7.2.3.3 Performance/Power for ascend (Speculative Policy) 81
7.2.3.4 Case Study: Memory Bound libquantum 81

7.2.4 Heuristics For Setting Public Parameters 83
7.2.4.1 Interval Policy Recommendations 85

8 Related and Future Work 87
8.1 Related Work . 87

8.1.1 Fully Homomorphic Encryption (FHE) Techniques 87
8.1.2 Secure Hardware and TCB Minimization 88

8.1.2.1 TPM-Related . 88
8.1.2.2 Tamper-Resistant (Single-Chip) Processors 88
8.1.2.3 Untrusted Programs . 88
8.1.2.4 Differences to Ascend . 89

8.1.3 Obfuscating the I/O Channel . 89
8.1.4 Obfuscating the Power Channel . 90

8.2 Future Work . 90
8.2.1 Program Model . 90
8.2.2 Operating Systems, Multiple Threads and Multi-Programming . . . 91
8.2.3 Additional Side Channels . 91
8.2.4 More Advanced Microarchitecture 92
8.2.5 Additional Public Parameters . 93

9 Conclusion 95

v

vi

List of Figures

1-1 Ascend conceptual diagram . 3

2-1 The two-interactive protocol . 10

3-1 ORAM organization in Ascend . 16
3-2 Path ORAM structure and invariant . 17
3-3 Path ORAM access example . 18
3-4 Local cache occupancy as a function of Z 23
3-5 Background eviction and cache coherence policy 25
3-6 Common path length between two ORAM background eviction schemes . . 28

4-1 DPA and SPA resistance. 33
4-2 A sequential WDDL parity checker and WDDL optimization principles . . . 34

5-1 A power-analysis resistant instruction pipeline 47
5-2 A power-analysis resistant level 1 data cache 50
5-3 Power obfuscation’s impact on single-core cache coherence 54
5-4 Out-of-order L2 buffer scheme with lazy L1 evictions 55
5-5 Interval policy gate-level implementation 60
5-6 Timing diagram comparison for different interval policies 62

6-1 Integrity verification on top of Path ORAM 66

7-1 Latency breakdown in cycles in the Recursive Path ORAM construction . 76
7-2 Performance impact, varying Z and Path ORAM optimizations 76
7-3 Power/performance overhead for ascend io 79
7-4 Performance/power sensitivity with a fully speculative policy 79
7-5 The percentage of long real L1 DCache requests 80
7-6 The percentage of dummy requests made to the ORAM 80
7-7 Power/performance overhead for ascend (fully speculative policy) 82
7-8 libquantum case study: Pareto curves for different interval policies 83
7-9 Power-performance product using interval selection heuristics 84
7-10 Power-performance breakdown using interval selection heuristics 85

vii

viii

List of Tables

1.1 Variable/symbol guide . 7

3.1 The ratio between dummy accesses to real accesses, varying Z 27

7.1 Benchmark categories . 71
7.2 Processor timing model . 73
7.3 Processor power model . 74
7.4 baseline IPC/power over SPEC reference inputs 74
7.5 ORAM configurations used for performance comparison 77
7.6 Benchmark statistics for libquantum . 82
7.7 Recommended interval and interval policy settings for heuristic study . . . 86

ix

x

Chapter 1

Introduction

Privacy of data is a huge problem in cloud computing, and more generally in outsourcing
computation. From financial information to medical records, sensitive user data is being
sent to and computed upon by the cloud. Computation on sensitive data requires that
the data be exposed to cloud servers, which may be attacked by malicious applications,
hypervisors, operating systems, or by insiders.

This thesis addresses how a computationally-limited user can outsource batch computa-
tions on private data to an untrusted (cloud) server without revealing that private data to
the server. (For the rest of the thesis, we will use “server” and “adversary” interchangeably).
The user is motivated to outsource computation because that user is using an embedded or
mobile device—the cost of spending energy or memory on computation is disproportionally
higher than the cost of transporting that data to a more powerful server that may itself
contain data that the program needs. In a batch computation, all data that the program
will need must be present in program memory at program initialization time.1 When out-
sourcing a batch computation, the user sends the server an encryption of its private data
that will be the input to a batch program. The server then runs the batch program on the
user’s data, along with any public data that the server thinks the program will need, to
produce an encrypted result. This encrypted result is sent back to the user who decrypts
it to get the actual result.

One example of such a batch computation determines health diagnoses given a user’s
private medical records [45]. In this case, a mobile device is constantly monitoring its
user’s symptoms, and wants to know the likelihood that the user has some condition given
these symptoms. To outsource computation, the device sends a cloud server an encryption
of {symptoms, condition of interest}, which will be inputs to a program that calculates
likelihood of the condition (call this MedComp()). MedComp() may be proprietary and contain
expert knowledge, learned models or access elements from a database of known size. After
running MedComp() on the user’s private data, the server sends an encryption of the result
(e.g., “there is a 55% likelihood that you have the condition”) back to the user. To maintain
privacy, the server must never learn anything about the user’s private inputs—the symptoms
or diseases of interest—at any time before, during or after the computation completes. More
examples are given in [45].

One way to completely protect private data when outsourcing is for the user to encrypt
his/her data and trust that no server entity will see the data in its plaintext form. This ideal

1That is, if the program requires access to a file, that file must be loaded into memory at program start
time.

1

can be achieved with Fully Homomorphic Encryption (FHE) techniques [3, 39], which allow
an untrusted server to perform computation directly on an encrypted ciphertext without
having access to the decryption key. FHE follows the batch computation model because it
evaluates programs as circuits: all input data that the program needs must be present at
the start. Data is never decrypted by the server under FHE, and privacy is independent
of the program running on the data. Unfortunately, FHE currently incurs huge overheads,
about a billion times slowdown for straight-line code, and this overhead increases with
general-purpose batch programs. Further, FHE approaches by themselves cannot guarantee
integrity.

Another candidate solution for achieving data privacy when outsourcing is for the server
to use tamper-resistant hardware [60, 12, 20]. Here, the user’s computation takes place inside
a secure hardware compartment on the server side that protects the user’s private data while
it is being computed upon. The smaller the trusted computing base (TCB) the better from
a security perspective: if a trusted component is compromised, the security of the entire
system fails.2 At the same time, removing components from the TCB typically impacts
performance and/or energy efficiency because untrusted components in the system need to
be retrofitted to prevent information leakage, or the interface to these components has to
change. Despite the hit in efficiency, the computationally-limited user is still motivated
to outsource computation since compute, energy and memory resources are significantly
cheaper for the server than the user.

A serious limitation with current secure hardware solutions is that they (unlike FHE)
assume that the program running on the secure hardware is trusted. Batch applications
like MedComp() are seldom trustworthy. To trust the program, the user has to “sign-off” on
that program, saying that it is free of malicious code and bugs that may leak sensitive data.
Verifying bug-free and malicious behavior is a hard problem—intractable for sufficiently
complex programs—and involves more work for the user in any case. Frequent software
patches, which are typical in modern software development, only confound the issue. Fur-
thermore, the user may not have access to the program in the first place as the program’s
algorithms may be proprietary. How can a user trust a secure processor system when the
program running on the secure processor cannot be trusted?

In this thesis, we take a step towards solving the problem of placing trust in programs
by designing a secure processor, called Ascend3, that can run untrusted programs. This
approach is directly applicable to batch programs like MedComp(). Here, the user would
send the server an encryption of its medical information, along with a request to use a
program that calculates the likelihood of a certain condition, and would expect the server
to send back a meaningful result. The server would then run the user’s private data on an
Ascend processor with a MedComp() implementation based on the user’s request. As with
FHE, privacy leakage is independent of whether the MedComp() program is buggy, malicious
or being patched on a regular basis.

1.1 The Problem with Running Untrusted Programs on Se-
cure Hardware

Today’s secure processors (e.g., Intel+TXT, XOM or Aegis) leak private information when
untrusted, badly written, or malicious programs are run. Consider the following scenario.

2In this sense, FHE has no TCB.
3Architecture for Secure Computation on ENcrypted Data.

2

Tamper-resistant
processor

Outside world time

Off-chip
request

rate
0

Processor pins

Ascend

Outside world time

Off-chip
request

rate
0

time

Off-chip
request
address

0

time

Off-chip
request
address

0

time

Power
draw

0

time

Power
draw

0

time = T

curious(M)
terminates

curious(M)
terminates

time = T time = T

(a)

(b)

curious(M’), traditional secure processor
curious(M), traditional secure processor curious(M) and

curious(M’) on Ascend

Processor pins

curious(M)
terminates

Figure 1-1: Signals from the perspective of (a) a tamper-resistant processor’s pins and (b)
an Ascend processor’s pins when the server runs the curious() program (Section 1.1) on
two user inputs M and M’. M satisfies the condition M[I] & 0x1 == 0 and M’ satisfies the
condition M’[I] & 0x1 == 1.

A user wants to use the MedComp() program (described above), and sends the server an
encryption of its symptoms and condition of interest (ciphertext M) plus a request to use
MedComp(). The user expects the server to run the MedComp() program. If the server is
curious and wants to learn about the user’s data, however, it may decide to run the program
curious() instead, shown in Program 1.

Program 1 The curious() program. M is the private user memory.

int I = 0; // chosen by the server

void curious(M) {

if (M[I] & 0x1) {

for (int j = 0;;j++) M[j]++;

} else { return; }

}

As shown in Figure 1-1(a), curious() forces a tamper-resistant processor to interact
differently with the outside world (which is visible to the server) depending on which branch
of the if statement is taken. Specifically, a tamper-resistant processor will either appear to
run forever and send requests to memory repeatedly or terminate almost instantly. Which
event happens depends on a private bit in the user’s data, which can be selected by the
server by changing I and the bitmask 0x1. Through this attack, the server can learn the
value of the bit of interest.

This attack is difficult to prevent. Encrypting data that leaves the secure processor
or obfuscating the memory access pattern won’t help because the attack succeeds if the
server sees either (a) that some external request is made or (b) that curious() is running
forever.4 Furthermore, adding on-chip cache to the secure processor (to add noise to the
memory access pattern as mentioned in [24]) and/or growing the TCB to include (say) the
main memory will not help because the server can just rewrite the curious() program to
ensure that visible resources (e.g., disk) will be accessed.

4Both of these signs indicate that the processor entered the for loop.

3

The server can repeat this experiment by running curious() multiple times, with differ-
ent bit masks and values for I, in order to leak multiple bits in the user’s data. curious()
may be a standalone program, or embedded in MedComp() by an inside party. Of course,
even if the server does run a non-malicious program, program characteristics or bugs can
leak private information in the same way as curious().

1.2 Ascend: Program Obfuscation in Hardware

Ascend defeats attacks like those posed by the curious() program by performing pro-
gram obfuscation in hardware. Formally, Ascend guarantees that: given an untrusted
batch program P , a public length of time T and two arbitrary inputs to P namely M
and M ′: running P (M) for T time is indistinguishable from running P (M ′) for T time
from the perspective of Ascend’s external pins. Ascend has both input/output (I/O) and
power pins like a normal processor. We assume that the server can watch these pins, and
we will discuss techniques to obfuscate both I/O requests on the I/O pins and the power
signature on the power pins. This thesis will not cover invasive attacks on Ascend, nor
electromagnetic/radio-frequency-based side-channels (discussed further in Section 2.3).

Unlike a normal processor, Ascend runs for a parameterizable amount of time T that is
chosen by the user before the program runs, and is public to the server. (In some settings,
the server may also choose T). Since T is set a priori, it may or may not be sufficient to
complete the program given the user’s inputs. In either case, Ascend’s pins must carry
signals that leak no information about private user data for the entire T time, regardless
of the program run within Ascend. If the program terminates before T time has elapsed,
Ascend will perform indistinguishable dummy work so that the server doesn’t learn that
the program terminated.5 After T time is complete, Ascend will output either the final
program state or intermediate program state, encrypted with the user’s key. The server
therefore cannot determine whether the program completes or how much forward progress
was made, provided program completion time depended on private user data.6

Putting these ideas together, Figure 1-1(b) shows how the server cannot learn about
the user’s input through the curious() program from Section 1.1. Regardless of whether
curious() enters the for loop or not, Ascend runs for T time and behaves in an indistin-
guishable way from the perspective of the chip pins.

1.3 Big Idea: Public Parameters that Control Observable
Behavior

A central idea that we will weave throughout the rest of the thesis is that since the pro-
gram P is public, the server can collect knowledge about the program (offline). We will add
mechanisms to Ascend so the server can use this knowledge to improve Ascend’s perfor-
mance/energy efficiency when running P on private (hidden) inputs. This idea plays a role
during three stages:

5Making dummy work indistinguishable from real work is important and will be discussed throughout
the rest of the thesis.

6Note that in the case of a public program an external observer may be able to tell what instruction is
being executed some or all of the time, e.g., at certain points in the program such as the start of the program
or if the entire program is made up of straight-line code. Since this is the same for any input M or M ′,
however, it leaks no private information.

4

At processor manufacturing time, Ascend is architected with a set of public knobs/-
parameters that, when specified, fully characterize Ascend’s observable behavior7 given any
program P and input M . (Given any Ascend implementation, we will refer to that Ascend
chip’s public parameters as the set P). For example, one such parameter might specify the
interval at which Ascend’s instruction pipeline should access its on-chip memory. (Assume
that accessing the on-chip memory causes an observable power signature). Once the cor-
responding parameter is specified, Ascend will access the memory at strictly the specified
rate, regardless of what is actually needed by the running program. If the memory is not
needed when it is accessed, an indistinguishable dummy access will be performed instead
(as introduced in the previous section).

Offline, for each program P , the server is allowed to extract information about P—
e.g., data-independent control flow, coarse-grain program phase behavior, etc—through
static analysis, profiling on its (the server’s) own inputs or other means. We make no
assumptions about the level of analysis, or amount of analysis that the server performs.
The server may even skip this step and perform no analysis for some programs.

Online, the server will initialize Ascend with the program P , the user’s private inputs
(call this M as before), and specific values for each public parameter in P that governs
Ascend’s observable behavior. Crucially, the server may set each public parameter based on
its offline analysis of program P . Returning to the on-chip memory example, suppose that
by profiling program P offline, the server determines that on most inputs to P , the memory
will be accessed once every 100 clock cycles. If the server’s profiling is representative of the
real behavior for P (M), Ascend becomes more efficient while running P (M): memory is
accessed less often than a näıve scheme (which might be to make an access as frequently as
possible) and always performs useful work. If the server’s profiling is incorrect, Ascend will
still access the cache at the same rate, to hide the true behavior of P (M).

The public parameter governing the on-chip memory was just an example—Ascend may
support any number of any type of public parameters at any granularity in principle to get
more efficiency in different parts of the chip. Furthermore, the server may decide to set these
parameters once (at program start time), or dynamically (e.g., if through offline profiling the
server sees that program P has temporal phase behavior and can estimate when each phase
occurs). The key point is that the public parameter system allows the server to optimize for
common case program behavior.

1.4 Thesis Contributions

This thesis has three primary contributions:

1. First, we introduce and apply the general principle of a processor chip’s observable
behavior being fully specified by a set of public knobs, each of which are exposed to
and controllable by adversaries.

2. We then introduce principles for designing a general-purpose power and I/O-
obfuscated hardware architecture, given untrusted programs, and detail a complete
design as an example. The idea of public knobs is applied throughout.

3. Finally, we optimize the primitives (Oblivious RAM for the I/O channel and Wave
Dynamic Differential Logic), that provide the foundation for protecting each channel,

7For example, when/where/how external memory is accessed, when on-chip memories are accessed, etc.

5

for our setting.

As noted in the Acknowledgements section, Ascend has been a collaborative effort and
the authors have already published pieces of the work. [51] presents techniques to perform
encrypted computation (using FHE as a primitive) while exploiting apriori knowledge of
public/untrusted programs. An initial publication on Ascend was published in [50]. Lastly,
material in Chapters 3 and 6 appears in [59].

1.5 Organization

The rest of the thesis is organized as follows. We describe our implementation philosophy,
security model and a user-server interaction protocol in Chapter 2. Chapter 3 describes
optimized primitives to obfuscate signals on Ascend’s I/O pins. Chapter 4 discusses op-
timized primitives to obfuscate signals on Ascend’s power pins. Chapter 5 puts the ideas
from Chapters 3 and 4 together and presents a complete microarchitecture for a particular
implementation of the Ascend processor. Chapter 6 describes a scheme for guaranteeing
integrity of execution. Chapter 7 gives an argument for security and then evaluates perfor-
mance and power overheads. In Chapter 8 we discuss related/future work and we conclude
with Chapter 9.

1.6 Conventions and Assumed Background Knowledge

We will use capital letters to define variables that have meaning throughout the entire thesis.
For example, T will always refer to Ascend’s public time threshold, P will always refer to
the public/server-specified program, etc. For reader convenience, we have consolidated all
capital symbols in Table 1.1, along with where they are defined in the writing. Lower-
case italicized symbols are treated as “temporary variables,” which will be defined, used
for a short period of time, and re-defined as needed in later sections. A function called
func is referred to as func(); we refer to the probability that a random variable R = x as
Prob(R = x) and the expected value for R as Expected(R).

The thesis assumes basic knowledge in security and computer architecture. That is,
the reader is expected to be familiar with symmetric encryption, key sharing, and hashing.
Readers aren’t expected to be familiar with side-channel countermeasures: e.g., ORAM and
power analysis-resistant logic. Readers are expected to be familiar with basic computer ar-
chitecture and digital design: namely that processors contain instruction pipelines, on-chip
caching (and that caches are organized in terms of sets, each of which may have multi-
ple ways), possibly networks and memory controllers. On the other hand, readers aren’t
required to know the difference between inclusive and exclusive caches, or the power/per-
formance trade-offs in instruction pipeline design (for example). Basic clock terminology
(edge behavior, clock gating), flip-flop, logic gate and SRAM memory behavior are also
assumed.

6

Table 1.1: Variables with consistent meaning that are used throughout the thesis.

Symbol name Description Defined in Section. . .

P The set of public parameters that control Ascend’s
observable behavior

1.3

P Public/server-specified program running on Ascend 1.2
M Program memory 1.2
T Public time threshold 1.2

K Secret (symmetric) key, shared with the user 2
R Number of bytes returned by two-interactive protocol 2.2
I Public interval (I ∈ P) 2.4.2.1

Q ORAM transcript (sequence of addresses) 3.2
L Bits per Path ORAM leaf index 3.2.1
N Number of buckets in a Path ORAM tree 3.2.1
Z Blocks per Path ORAM bucket 3.2.1
B Bits per cache line/ORAM block 3.2.1
U Bits per program memory address 3.2.1
C Path ORAM local cache capacity 3.2.1.4

F Cache data bus width 5.4.2
S Public circuit policy (S ∈ P) 5.6

E Energy consumption per processor operation 7.2.1.3

8

Chapter 2

Framework

To start, we present a general framework for performing computation under encryption
for batch programs (Sections 2.1-2.2). Section 2.3 then discusses our attacker model and
security assumptions. Finally, Section 2.4 gives an implementation philosophy which we
will use throughout the next two chapters.

We assume black-box symmetric-key encryptK(. . .) and decryptK(. . .) functions, which
take a plaintext/ciphertext and key K (where K has been shared with the user) as inputs
and return the corresponding ciphertext/plaintext using probabilistic/randomized1 encryp-
tion or decryption under K. We will refer to this as randomized encryption/decryption for
the rest of the thesis. Time is measured in processor clock cycles.

2.1 Modeling the Ascend Chip

Ascend is a single-chip coprocessor running on the server. While running any program,
Ascend stores a symmetric (secret) session key K in an on-chip register. Aside from this
register, Ascend chip is composed of symmetric encrypt/decrypt circuits (which use K to
perform randomized encryption/decryption), an interface to external memory, and a means
to run programs (i.e., an instruction pipeline and on-chip cache memory). The key K is
accessible only to the encrypt/decrypt units—not to the program running on Ascend.

Ascend interacts with the server to initialize, terminate and run a program. While
Ascend is running, it may communicate over its I/O pins to a fixed-size external memory
that is controlled by and visible to the server. All data sent to external memory from Ascend
is encrypted under K; further, Ascend decrypts any encrypted data it receives under K.
Addresses sent to external memory, and whether a given operation is a read or a write (the
opcode), are always plaintext. That is, off-chip accesses are to public memory locations
whose contents are encrypted. Schemes must be in place to prevent the plaintext address
and opcode from leaking private user data—a problem we address in Chapter 3. Ascend
has power pins that draw current based on what circuits within the chip are currently being
used and what data values are being sent to/from those circuits (like a normal processor).

1E.g., AES in CTR mode.

9

Untrusted
Server

UserAscend

2 encrypt(x), T, request(P) (1 interaction)

1
Key sharing

(several interactions)

Allocate external
memory & initialization

3

O(|M0|) interactions

Trusted Computing Base

Perform computation
5 O(|T|) interactions

Program P,
Public inputs y,
external RAM

6 MT’ (1 interaction)

4

Figure 2-1: The two-interactive protocol between a user, server and Ascend. Numbers
follow Section 2.2.

2.2 Two-interactive Protocols

We use a two-interactive protocol to initiate and terminate sessions between a user, an
untrusted server and Ascend. The user wants to perform computation on private inputs
x using a batch program P . P is stored on the server-side and may have a large amount
of public data y associated with it (e.g., the contents of a database). The result of the
user’s computation is denoted P (x, y), meaning that program P needs only the inputs x
and y to run which matches our definition of batch computation from Chapter 1. Formally,
a two-interactive protocol for computing P (x, y) works as follows (shown graphically in
Figure 2-1):

1. The user shares a secret (symmetric) key K securely with Ascend. We assume that
Ascend is equipped with a private key and a certified public key. As described in
Section 2.1, K is used by Ascend’s encrypt/decrypt units.

2. The user encrypts its inputs x using K to form ciphertext encryptK(x) and then
chooses a number of cycles T , which is the public time budget that the user is willing
to pay the server to compute on P . In certain circumstances, the server may choose T .
The user then transmits (encryptK(x), T, request(P)) to the server, where request(P)
is a request to use the program P .

3. After receiving the pair (encryptK(x), T, request(P)), the server sends encryptK(x), P ,
y and P2 to Ascend’s I/O pins as a stream of data. As Ascend receives each block of
data, it decrypts the block (if the data is part of encryptK(x)), (re-)encrypts the block
(unless that block contains all or part of P) with a different random pad and writes it
to external memory. Each parameter in P is stored in on-chip registers where it will
be read by Ascend to create a variety of observable behaviors. At the end of this step:
all of x, P and y will be stored in Ascend’s external memory and encrypted under K
(we refer to this as M0, the program state after 0 time).

4. The server chooses a public size R, which is the number of bytes reserved for the final
result/output of P ’s computation on x and y (R can also be supplied in Step 2 by the
user). The server sends T and R to Ascend in the clear.

5. Ascend spends a number of clock cycles, corresponding to T , making forward progress

2Specific values for each of this Ascend chip’s public parameters (see Section 1.3).

10

in P after which Ascend extracts exactly R bytes as indicated3 by P . While running,
Ascend may make requests to its external memory to fetch more instructions or data.
During this time the server may also decide to load new values for any parameter in
P at any time. Schemes must be in place to prevent leakage of private user data from
I/O requests or chip power consumption regardless of the program run or when that
program terminates (Chapters 3 and 4).

6. After Ascend runs for T time, the external memory contains MT . The ciphertext
M ′T = encryptK(r) (r are the R bytes extracted from MT in the previous step) is sent
back to the user.

7. The user decrypts M ′T and checks whether T was sufficient to complete P (x, y). With-
out loss of generality, we assume that the algorithm outputs an “I am done” message
as part of its final encrypted result.

A correct execution of the two-interactive protocol outputs to the user the evaluation P (x, y)
(if T was sufficient) or some intermediate result.

2.3 Security Model

The server in the two-interactive protocol is malicious in that it (a) wants to learn about
the user’s private data and (b) wants to cheat the user out of its computation.

2.3.1 Privacy

We assume the server can monitor the Ascend chip’s I/O and power pins. We make no
assumptions as to how the server monitors the pins. That is, an insider might attach an
oscilloscope to the pins directly, or create a sniffer program running on another server chip
which monitors what bits change in Ascend’s external memory. The Ascend chip itself is
assumed to be tamper-resistant: the server cannot remove packaging/metal layers and watch
bits once they have been decrypted. The server is assumed to know Ascend’s architecture
and microarchitecture, e.g., its cache block size, cache capacity, the cycle latency for each
instruction, etc.

In this thesis, we assume the server cannot learn from side-channels other than the pins
(e.g., EM or RF-based channels). These additional leakage channels separate our work from
FHE—since FHE has no TCB, it is impervious to all physical side-channels. We consider
these additional attack surfaces to be a part of our future work.

To learn about the user’s private inputs, the server can perform experiments with Ascend
and encryptK(x), and watch Ascend’s pins for data-dependent behavior. To perform an
experiment, the server initializes Ascend with arbitrary encryptK(x),4 P , y, T , R and P
(i.e., any of the parameters from Section 2.2) and monitors how Ascend interacts with the
outside world through the chip pins.5 While Ascend is running, the server can modify the

3This can be coded in a separate subroutine in P or can be supplied as a separate extraction algorithm
in conjunction with P .

4Since P is untrusted, the server can force Ascend to produce ciphertexts of x, y, or arbitrary transfor-
mations on these quantities. Since encrypt() is probabilistic, however, any ciphertexts manipulated directly
by the server (i.e., flipping arbitrary bits) will cause the underlying plaintext to be decrypted to garbage
with overwhelming probability.

5Running the curious() program from Section 1.1 is an experiment where the server ran a malicious
program.

11

contents of Ascend’s external memory at any time, perform a denial-of-service attack by
not returning requested data, send any data back to Ascend at arbitrary times, or modify
any value in P. The server does not need to return the results of its experiments back to
the user. These experiments can be run offline, e.g., after the computation requested by
the user takes place. Chapters 3-5 will show how the server learns negligible amounts of
information about encryptK(x) by monitoring Ascend’s pins, even if the server performs
arbitrary experiments of this kind.

2.3.2 Integrity

To cheat the user, the server can send the user the result of running a different program
(a program P ′ different from that corresponding to request(P)), run P or P ′ for some
time threshold not equal to T , or tamper with external memory by changing bits—all of
which cause the user to get back some incorrect result. The server is motivated to do the
minimal amount of work needed to satisfy the user, or to trick the user into interacting
with the server more times in the future. Chapter 6 will show an efficient implementation
for certified execution, which allows the user to detect this cheating. Given that the user
can detect cheating, the server’s motivation changes: it wants as much business from the
user as possible and therefore wants to return as complete and correct a result as possible.

2.4 Implementation Principles

There are different implementation strategies that can attain the security level described in
Section 2.3. Furthermore, the schemes used to secure the I/O channel may be different than
the schemes used to secure the power channel. In general, for either channel to be completely
obfuscated for T time, it must be obfuscated in two domains: value and time. That is, when
and how signals on that channel change must not give away any private information to the
untrusted server for T time.6 We will now explain the ideas for obfuscating value and time
for each channel. Chapters 3-5 will detail how these ideas are implemented for each of the
I/O and power channels.

2.4.1 Value Domain

To obfuscate a channel in the value domain, any particular operation on that channel
must look like a random (data-independent) operation. To accomplish this for the I/O
channel, Ascend manages its external memory as an Oblivious-RAM (ORAM) (Section 3.2).
At a high-level, ORAM is an encrypted and shuffled memory that has the property that
any particular off-chip memory access looks like a random access. To protect the power
channel, we build Ascend out of differential power analysis resistant (DPA resistant) circuits
(Section 4.2). Each circuit in Ascend, whose behavior can be influenced by user data, must
have the following property: when that circuit is accessed with some set of inputs, the
power signature emitted from the circuit must be indistinguishable from when that circuit
is activated with a random set of inputs. Preventing leakage over the I/O is orthogonal
to preventing leakage over the power channel. That is, ORAM does not help secure the
power channel and DPA resistant circuits do not help the I/O channel. We note that both
ORAM and DPA resistant circuits have computational security assumptions (i.e., based on

6Recall that after T time, Ascend stops running and therefore will not leak any information after this
point.

12

encryption/PRNG/circuit routing primitives/etc). We discuss these assumptions further in
Chapters 3-4.

2.4.2 Time Domain

To obfuscate signals in the time domain, both the I/O and power channels apply the
following key idea: that security is independent of the rates at which Ascend accesses internal
circuits (e.g., caches, register files, etc) or off-chip memory as long as these rates are data-
independent (e.g., specified by the untrusted server). We architect the Ascend chip such
that the rate at which each circuit is activated is controlled by some public parameter in P
(Section 1.3).

Despite the server knowing what program is running inside Ascend, programs in general
may have data-dependent behavior that depend on (private) program input. Thus, a data-
independent rate scheme may cause circuits to be accessed when they are not needed by
the program. In this case, the circuit performs dummy work which does not help to make
forward progress in the program. We call non-dummy work real work for the rest of the
thesis. Dummy work must be indistinguishable from real work, which is true if and only
if the value domain is obfuscated (see previous section). On the other hand, the program
may also need to access a particular circuit before the data-independent rate allows for that
circuit to be accessed. In this case, the program will stop making forward progress until the
circuit is accessed. Schemes must be in place to prevent the server from determining when
or if this ever happens.

2.4.2.1 Public Intervals

One type of public parameter that we will use throughout the thesis is the public (server-
specified) interval. For each circuit x (or group of circuits), we add a public parameter
Ix ∈ P which indicates the number of Ascend clock cycles between when the circuit named
x completes its last access and starts its next access.7 As introduced in Section 1.3, the
server may decide on a good value for each public interval based on apriori information at
the server’s disposal: namely P , y, T , etc.

We now give a simple performance model for public intervals to help intuition. Suppose
(a) that the server sets the off-chip memory interval to be Imem processor clock cycles,
(b) that each memory access takes taccess cycles to complete and (c) that Ascend runs for
T total cycles. T is now broken into epochs, where the nth epoch begins on clock cycle
Tepoch,n = n · (Imem + taccess) for n ≥ 0. Then a new real or dummy memory access is made
on clock cycle Tepoch,n + Imem for n ≥ 0.

Suppose the program needs to make a memory access at some clock cycle t where t < T
and tepoch = Imem + taccess for short. If i = (t mod tepoch), we have the following cases:

1. If i < Imem: the memory access in this epoch will do real work and the program will
get a response back in tepoch − i cycles.

2. If i ≥ Imem: the memory access in this epoch will do dummy work and the program
will get a response back in 2 · tepoch − i cycles.

To meet the security requirements from the previous section, the server must never deter-
mine t if t depends on the user’s private data.

7Note that this definition does not forbid concurrency, but implies that any circuit that supports concur-
rent operations must have indistinguishable behavior regardless of the interleaving of its operations.

13

The public interval scheme guarantees that the server learns nothing based on when
each circuit is accessed, in an unconditional sense. That is, an interval is a flat rate: when
each circuit is accessed does not depend on the security of some primitive (e.g., a PRNG)
or any computational assumption.

Implementation note. A simple hardware-based way to implement intervals is with
dedicated hardware finite state machines (referred to as interval FSMs) that behave like
counters. The interval FSM increments an internal counter each processor cycle and triggers
either a real or dummy request when it reaches the threshold set by the server. Once the
behavior set to the interval completes, the FSM resets and the process repeats. In principle,
the server may set/change the interval before or during the computation; for the rest of
this thesis, we assume that the interval is specified before the computation starts and is not
changed.

14

Chapter 3

Protecting the I/O Channel

Our goal in this chapter is to develop and optimize primitives that make the digital signals
on Ascend’s I/O pins not leak any information that depends on the user’s private data.

Program 2 Curious programs that leak through the I/O channel. M is the private user
memory.

int I = 0; int J = 1; int K = 2; int I = 0; int J = 1;

void curious_addr(M) { void curious_rate(M) {

if (M[I] & 0x1) int a = M[J]; if (M[I] & 0x1) int a = 0;

else int a = M[K]; else int a = M[J];

} }

Ascend makes I/O requests to external memory when it needs more data/instructions
and the server may learn about private user data by monitoring the requests themselves
(value domain) and/or when requests are made (time domain). Each request is composed
of a plaintext address, opcode (read or write) and data block (if the operation is a write).
Mitigating leakage over the opcode and data blocks is straightforward: the data block
values can be hidden using randomized encryption (Section 2.1) and the opcode can be
hidden by forcing each I/O request to perform both a read and a write. Preventing leakage
through the plaintext address is a difficult problem. For example, the server can engineer
the curious addr() program shown in Program 2 (left). Here, the server learns whether
the branch is taken by watching for address J or K on the pins.1

Of course, even if the server can learn nothing by monitoring the specific logic values
on the I/O pins, it can still learn by watching when the I/O channel is used. For example,
the curious rate() program (Program 2 (right)) either accesses memory once (branch
taken) or twice (branch not taken). This example leaks the same amount of information as
curious addr().

1Most processors group consecutive data words into blocks, which could make J and K map to the same
cache block and prevent the second request from being made over the pins. The server can always get around
this issue by choosing J and K to correspond to different cache blocks. Recall that the server knows Ascend’s
architecture (Section 2.3).

15

3.1 Chapter Overview

The first part of this chapter, Section 3.2, introduces Oblivious-RAM (ORAM): a primitive
from the literature that we use to make any I/O request look like a random request, thereby
obfuscating particular logic values on the I/O pins (e.g., address, opcode and data). For
readers already familiar with ORAM and Path ORAM (a particular ORAM scheme that
we use in constructing Ascend), Sections 3.2.1.2 through 3.2.2 discuss optimizations to
Path ORAM to make it implementable in an Ascend setting. Next, Section 3.3, improves
the ORAM primitive by creating a zero-failure ORAM based on background eviction and
discusses attacks against background eviction schemes. Lastly, Section 3.4 discusses how
the public interval introduced in Section 2.4.2.1 is applied to the improved ORAM primitive
to prevent leakage over the time domain.

3.2 Value Obfuscation: Oblivious RAM (ORAM)

Oblivious RAM (ORAM), first described in [4, 5, 7], makes any sequence of memory requests
look like data-independent requests. Formally: suppose we are given batch program P
with input M and any other batch program P ′ with input M ′ and compare the first z
memory requests made by each. We denote the sequence of requests as Qz(P (M)) and
Qz(P

′(M ′)).2 Each request is composed of an address, operation (read or write) and data
(if the operation is a write). Oblivious RAM (ORAM) guarantees that Qz(P (M)) and
Qz(P

′(M ′)) are computationally indistinguishable. Crucially, this is saying that the access
pattern is independent of the program and data being run, which defeats the attack posed
by curious addr() from the beginning of the chapter.

ORAM Interface

On-chip caches

Instruction pipeline

External memory (ORAM)

Ascend chip

I/O pins

Figure 3-1: ORAM organization in
Ascend.

Notice that a simple ORAM scheme that satis-
fies the above property is to read/write the entire
contents of the program memory to perform every
load/store. To hide whether a particular block was
needed in the memory scan (and if it was, whether
the operation was a read or a write), every block
must be encrypted using randomized encryption.
With this scheme, the access pattern is independent
of the program or its data but clearly will have un-
acceptable overheads (on order the size of the mem-
ory). Modern ORAM schemes use pseudo-random
number generation to achieve polylogarithmic over-
heads: any address sequence of a fixed length must
be computationally indistinguishable from a ran-
dom address sequence.

Any ORAM scheme is made up the ORAM it-
self (implemented on top of some untrusted memory) and trusted ORAM client logic. In
our setting, the ORAM is implemented over the external memory from Section 2.1, whose
input/output bus and contents are visible to the server at all times. The ORAM client
logic (which we refer to as the ORAM interface) is built inside Ascend and is responsible
for translating program memory requests into random-looking requests that will be sent
to the untrusted memory/ORAM itself. The ORAM interface is analogous to a mem-

2If zP and zP ′ are the total number of requests made by P and P ′ respectively, then min(zP , zP ′) ≥ z ≥ 0.

16

ory controller—i.e., all digital communication by Ascend’s instruction pipeline and on-chip
caches (if any) go through the ORAM interface (Figure 3-1). Thus, I/O channel security in
the value domain reduces to the security of the ORAM. We note that the ORAM interface’s
internal state is trusted and must be hidden from the server.

ORAM was first introduced to maintain software confidentiality. Recently, two new
proposals were published in [46, 57]. Stefanov and Shi also constructed a much more simple
and practical ORAM construction called Path-ORAM [56] which we use and improve here.

3.2.1 Path ORAM

Level L = 3

Level 2

Level 1

Level 0

Leaf 1 Leaf 2 = 8Leaf l = 6
L

Local cache

External memory

ORAM interface

Path to leaf l

C = 100 + Z(L+1)

Z = 4 blocks

Position
map

Figure 3-2: A Path ORAM for L = 3 levels.
At any time, a block mapped to leaf l = 6 can
be located in any of the shaded structures.
The local cache capacity (C) is discussed in
Section 3.2.1.4.

In Path ORAM, the external memory is
structured as a balanced binary tree, where
each node is a bucket that can hold up to
Z blocks. The root is referred to as level
0, and the leaves as level L. This gives
a tree with L + 1 levels, holding up to
Z(2L+1 − 1) data blocks (each of which is
analogous to a processor cache block in our
setting). The remaining space is filled with
dummy blocks that can be replaced with real
blocks as needed. As with data blocks in
a näıve memory scan scheme (Section 3.2),
each block in the ORAM tree is encrypted
with randomized encryption.

The ORAM interface for Path ORAM is
composed of three parts: a local cache3, a
position map, and associated control logic.
The position map is a lookup table that as-
sociates the program address of each data

block with a leaf in the ORAM tree. The local cache is a memory that stores up to a
small number of data blocks from the ORAM tree at a time. Since both structures store
secret information that the server must never learn (Section 3.2), a strawman approach may
implement both in SRAM memory within Ascend.

Now we describe how Path ORAM works. Readers can refer to [56] for a more detailed
description. At any time, each data block stored in the ORAM is mapped (at random) to
one of the 2L leaves in the ORAM tree via the position map (i.e., ∀ leaves l and blocks b,
Prob(b is mapped to l) = 1/2L). Path ORAM’s invariant (Figure 3-2) is: If l is the leaf
currently assigned to some block b in the ORAM, then b is stored (a) on the path from the
root of the ORAM tree to leaf l (i.e., in one of a sequence of buckets in external memory),
or (b) in the local cache within the ORAM interface.

Initially the ORAM is empty and the position map associates each possible program
address with a random leaf. Suppose a program wants to access some block b with program
address u and that this block is currently mapped to leaf l. The program using the ORAM
makes requests through the ORAM interface via accessORAM(u, op = read/write, b′):

1. Look up the position map with u, yielding the leaf label l.

3This is ORAM terminology, not to be confused with on-chip processor caches.

17

1

a, 3

Leaf 1 Leaf 2 Leaf 3 Leaf 4

b, 3

c, 2

f, 1

d, 4Local cache 2

Leaf 1 Leaf 2 Leaf 3 Leaf 4

f, 1

a, 3b, 1c, 2d, 4 3

a, 3

Leaf 1 Leaf 2 Leaf 3 Leaf 4

d, 4

b, 1

f, 1

c, 2

e, 1 e, 1 e, 1

Read path to leaf 3
into local cache

Remap block b to
 a new random leaf

Write back path
 to leaf 3

4

a, 3

Leaf 1 Leaf 2 Leaf 3 Leaf 4

d, 4

b, 1

f, 1

c, 2

e, 1

5

a, 3

Leaf 1 Leaf 2 Leaf 3 Leaf 4

d, 4

f, 1e, 1c, 2b’, 4

Read path to leaf 1
into local cache

6

a, 3

Leaf 1 Leaf 2 Leaf 3 Leaf 4

d, 4

c, 2

f, 1

b’, 4

e, 1

Remap block b and
replace data with b’

Write back path
 to leaf 1

Figure 3-3: An example Path ORAM operation (where Z = 1 and the local cache has
a 4 block capacity) for reading some block b and then (in a second access) replacing the
value of that block with a new value b′. Each block has the format: ‘block identifier’,‘leaf
label’ (e.g., b, 3). If the program address for b is u, the top three boxes (from left to right)
correspond to accessORAM(u, read,−) and the bottom boxes are accessORAM(u,write, b′)
from Section 3.2.1. The server sees the ORAM interface read/write the path to leaf 3 and
then read/write the path to leaf 1, and therefore cannot figure out what operations really
occurred.

2. Read the buckets along the path from the root of the ORAM tree to leaf label l (in
that order). Decrypt all real blocks on the path and add those blocks to the local
cache. Path ORAM’s invariant guarantees that if block b exists, it must be in the
local cache at this point.

3. If op = read, return b if it exists; otherwise return nil. If op = write, replace b with
b′ if it exists; otherwise add a new block b′ to the local cache.

4. Replace the label l associated with b with a new randomly-selected l′.

5. Evict and encrypt as many blocks, from the updated local cache, into the path to
leaf l in the ORAM tree. If there is space in any of the buckets along the path that
cannot be filled with data blocks, fill that space with encryptions of dummy blocks.
As with reading the path, blocks must be written back in a data-independent order
(e.g., starting with the root and ending with the leaf).

Later in the thesis, we will refer to steps 2-5 as accessPath(u, l, l′, op, b′).
Step 4 is the key to Path ORAM’s security: whenever a block is accessed, that block

is randomly remapped to a new leaf in the ORAM tree (see Figure 3-3 for an example).
accessORAM() leaks no information on the address accessed, because a randomly selected
path is read and written on every access regardless of the program memory address sequence.
Furthermore, since data/dummy blocks are put through randomized encryption, the server
will not be able to tell which block (if any) along the path is actually needed.

Step 5 is similar to the ORAM ‘shuffle’ operation from the literature [7]. As paths are
read into the local cache, the local cache will begin to fill. In order to keep the necessary
local cache capacity as small as possible (which reduces on-chip storage requirements), step 5
tries to writeback as many blocks to the tree as possible. To perform writeback, we scan
the local cache (from right to left in Figure 3-3); for each scanned block in the local cache,
we write that block as close to the leaf bucket in the path as possible. In the top right box

18

(# 3) in Figure 3-3: a, 3 is scanned first and mapped back to leaf 3; b, 1 only shares the
root bucket in common with the path to leaf 3 so it is written to the root; c, 2 can no longer
be written back to the tree at all (since it only shared the root bucket in common with the
path to leaf 3, and the root bucket is now full); finally, d, 4 is mapped back to the open
bucket between the leaf and the root.

Despite the writeback operation, the local cache still has a chance to overflow, causing
the ORAM to fail. If the ORAM fails, it may return functionally incorrect results at any
point in the future, or be forced to recover somehow (which may leak privacy). Failure can
occur due to the block remapping process. Suppose that on some access to block b, b is
remapped from path p to path p′. Let CP(p, p′) (for common path) yield the set of buckets
that are shared between paths p and p′. Then, if there is no space for block b in any bucket
in CP(p, p′), the local cache occupancy will increase by one. We notice that if p and p′ are
chosen at random, Expected(|CP(p, p′)|) = 2− 1

2L
. Thus, the likelihood of b getting stuck in

the local cache is not negligible: on average p and p′ share less than two buckets.4 Note that
if p = p′ (which happens with negligible probability, Prob(p = p′) = 1

2L
), the local cache

is guaranteed not to grow in occupancy during the access to block b. We will introduce
schemes to eliminate failure probability and simultaneously get performance in Section 3.3.

The ORAM tree and local cache stores (leaf, program address, data) 3-tuples for each
data block. Suppose the ORAM capacity in data blocks is given by N = Z(2L+1 − 1).
Then each leaf is labeled by L bits and each block’s associated program address is stored in
U = dlog2Ne bits. If B is the data block size in bits, each bucket contains Z(L+U+B) bits
of plaintext. As mentioned, the protocol requires randomized encryption over each block
(including dummy blocks) stored in external memory, which imposes additional overheads.
We now discuss two schemes for performing randomized encryption:

3.2.1.1 Strawman Encryption Scheme

A strawman scheme to fully encrypt a bucket (used in a preliminary version of Ascend [50])
is based on AES-128: On a per-bucket basis, apply the following operation to each block in
the bucket:

1. Generate a random 128-bit key K ′ and encrypt K ′ using the processor’s secret key K
(i.e., AESK(K ′)).

2. Break up the B plaintext bits into 128-bit chunks (for AES) and apply a one-time-pad
(OTP) to each chunk that is generated through K ′ (i.e., to encrypt chunki, we form
the ciphertext AESK′(i)⊕ chunki).

The encrypted block is the concatenation of AESK(K ′) and the OTP chunks, and the
encrypted bucket is the concatenation of all of the Z encrypted blocks. Thus, this scheme
gives a bucket size of BucketSize = Z(128 + L + U + B) bits where Z(L + U + B) is the
number of plaintext bits per bucket from the previous section. Note that since we are using
OTPs, each 3-tuple of (L+U+B) bits does not have to be padded to a multiple of 128 bits.

4Note that it is not straightforward to bound the probability on block b getting stuck in the local cache—
and furthermore the percent chance that the ORAM will fail for a given local cache size—since Step 5 in
accessORAM() can move blocks from buckets in CP(p, p′) to locations higher in the ORAM tree before block
b is considered for writeback.

19

3.2.1.2 Optimization: Counter-based Encryption Scheme

The downside to the strawman scheme is the extra 128 bits of overhead per block that is
used to store AESK(K ′). We can reduce this overhead by a factor of 2 ·Z by introducing a
64-bit counter per bucket (referred to as BucketCounter). To encrypt a bucket:

1. BucketCounter ← BucketCounter + 1.5

2. Break up the plaintext bits that make up the bucket into 128-bit chunks. To encrypt
chunki, apply the following OTP: AESK(BucketID||BucketCounter||i) ⊕ chunki,
where BucketID is a unique identifier for each bucket in the ORAM tree.

The encrypted bucket is the concatenation of each chunk along with the BucketCounter
value in the clear.

This scheme works due to the insight that buckets are always read/written atomically.
BucketCounter is set to 64 bits so that the counter value will not roll over (as in AES-
CTR). Note that BucketCounter does not need to be initialized; it can start with any
value. Also note that seeding the OTP with BucketID is important: it ensures that
two distinct buckets in the ORAM tree will not have the same OTP. With this scheme,
BucketSize = Z(L+ U +B) + 64 bits which we assume for the rest of the paper.

3.2.1.3 Path ORAM Performance and Hardware Assumptions

In this thesis, we assume that the ORAM tree is stored in some commodity external mem-
ory (e.g., DRAM) that lives next to the Ascend processor on a shared board. The processor
receives/sends data over P 1-bit data pins (our evaluation assumes P = 128 to be compet-
itive with modern processors). The ORAM tree itself is laid out flat in memory, level by
level.6 That is, the root bucket is laid out contiguously at the low-order external memory
address. The two buckets in level 1 of the ORAM tree are stored immediately after the
root bucket, etc. Depending on memory technology, buckets may be padded for addressing
reasons which we will discuss below.

ORAM access latency correlates to (a) the number of buckets read per access (= 2 ·
(L + 1)) and (b) the number of bits in each bucket, as given in Section 3.2.1.2. The Path
ORAM reads buckets along a path: while each bucket is stored contiguously in external
memory, two buckets in adjacent levels are generally not adjacent. In fact, between levels l
and l+ 1 for large l, the two buckets on a path are likely stored in different memory banks
or different memories altogether (since the number of buckets per level grows exponentially
with the depth of the tree). In our performance evaluation, we assume that:

1. An entire bucket can be read through a burst/fast page command to the DRAM such
that P -bits of the bucket arrive each cycle until the bucket is fully sent/received.

2. If bucketi is currently being sent/received and bucketi+1 is the next bucket, the first
P bits for bucketi+1 arrive the cycle after the last P bits in bucketi.

5Note that since the counter always increments by one, it is important for Ascend to use a different user
session key K during each run of each program, to avoid a replay attack. Alternatively, the counter could
be changed to a random number, re-generated when each bucket is re-encrypted. In that scheme, however,
there is a small probability that the same random number is generated twice, which means the same OTP
will be used twice.

6We note that for some ORAMs it is not possible to completely fill the last ORAM tree level with buckets
to get the desired ORAM capacity. In that case, some branches may be 1 level longer than other branches.
This doesn’t impact the flat layout because the change only impacts the leaves.

20

3. Each bucket is aligned to the nearest P in DRAM. That is, each bucket takes up P ·
dBucketSize

P e bits, stored contiguously. This is done to avoid needing alignment/shifting
hardware in the ORAM interface.

Based on these requirements, an implicit assumption is that Ascend’s ORAM interface
is fully pipelined and able to process (i.e., decrypt, store, re-encrypt) P -bits per cycle. With
these assumptions, Path ORAM access latency is given by

CyclesPerAccess = LatAES + LatDRAM + 2 · (L+ 1) ·
⌈
BucketSize

P

⌉
= LatAES + LatDRAM + 2 · (L+ 1) ·

⌈
Z(L+ U +B) + 64

P

⌉
(3.1)

where LatAES = 100 is the latency to decrypt and encrypt a single bucket and LatDRAM =
100 is the number of cycles needed to perform a single DRAM read plus single DRAM
write. Note that AES and DRAM costs are only incurred once due to pipelining.

The most important assumption for our performance evaluation is #2 above: that the
first P -bit chunk for bucketi+1 arrives the cycle after the last chunk in bucketi. We argue
that this is reasonable because the sequence of buckets needed for a particular ORAM access
is known as soon as the position map lookup is complete. That is, the ORAM interface
can prefetch each bucket after the position map read occurs, or send the leaf to an external
(insecure) controller local to the DRAM chips that generates a series of bucket address
requests at a rate which matches the Ascend chip’s pin throughput.

3.2.1.4 Path ORAM Space Requirements

The ORAM tree (external memory) can store up toN ·B = Z(2L+1−1)·B data bits while the
ORAM tree data structure uses (2L+1−1)·BucketSize = (2L+1−1)·(Z(L+U+B)+64) bits.
Suppose the block capacity in the local cache is given by C. Then the local cache uses
C · (L+U +B) bits and the position map requires N ·L bits—both of which must be built
out of dedicated on-chip memory. We will restrict C to be a small constant number (e.g.,
100) plus the length of one path—giving us C = 100 + Z(L + 1) blocks which amounts to
tens to hundreds of Kilobytes in systems we evaluate. The position map, on the other hand,
is very large because N grows linearly with the capacity of the ORAM. Thus, we must use
a Recursive ORAM construction as described below.

3.2.2 Recursive Path ORAM

The N ·L-bit position map (Section 3.2.1.4) is usually too large to fit in a secure processor’s
on-chip storage. For example, a 4 GB Path ORAM with a block size of 128 bytes and Z = 4
has a position map of 93 MB. The Recursive Path ORAM addresses this problem by storing
the large position map in an additional ORAM (this idea was first mentioned in [57]).

We will refer to the first ORAM in the recursive construction as the data ORAM or
ORam1. ORam1’s position map will now be stored in a second ORAM: ORam2 (which
we will refer to as a position map ORAM). The secure processor’s new on-chip storage
requirement is the local cache for each ORAM and the position map for ORam2. If ORam2’s
position map is still too large for on-chip storage, we can repeat the process with an ORam3

or with however many ORAMs are needed. To perform an access to the data ORAM in a

21

recursive construction of X ORAMs labeled ORam1, . . . , ORamX , we first look up the on-
chip position map for ORamX , then perform an access to ORamX , ORamX−1, . . . , ORam1.
That is, each ORAM lookup yields the leaf index for the next ORAM lookup.

To be concrete, we give an example with a 2-level Recursive Path ORAM. Let N2,
L2, B2, C2, and Z2 be the parameters for ORam2 (variable names are analogous to those
defined up to this point). Since the position map of ORam1 has size N · L and each block
in ORam2 is able to store k2 = bB2/Lc labels, ORam2’s capacity in data blocks must be
at least N2 = dN/k2e + 1 ≈ N · L/B2 (where the +1 represents the extra dummy all-zero
address). The number of levels in ORam2 is equal to L2 = dlog2N2e − 1.

Initially both ORAMs are empty and ORam2’s position map is full of random leaf labels
(as in Section 3.2.1). The Recursive Path ORAM maintains that, when some program
address u has an associated data block b written in ORam1:

1. ∀ leaves l in ORam1, Prob(b is mapped to l) = 1/2L.

2. b is either in some bucket along the path to leaf l in ORam1’s tree, or in ORam1’s
local cache (the Path ORAM invariant).

Furthermore, if the above holds for u, then there exists a block in ORam2 (call it b2) such
that the block’s address is u2 = bu/k2c and the value at leaf offset i = u − u2k2 in b2 is l.
The invariant for ORam2 is that:

1. ∀ leaves l2 in ORam2, Prob(b2 is mapped to l2) = 1/2L2 .

2. b2 is either in some bucket along the path to leaf l2 in the ORam2 tree, or is in
ORam2’s local cache (the Path ORAM invariant).

Given the above invariants, the following algorithm describes a complete 2-level Recur-
sive ORAM access accessRORAM(u, op, b′):

1. Generate random leaf labels l′ and l′2. Determine i and u2 as described above.

2. Lookup ORam2’s position map with u2, yielding l2.

3. Perform accessPath(u2, l2, l
′
2, write, b

′
2) on ORam2, yielding a block b2 (as described in

the invariant). Record l, the leaf at offset i in b2, then replace l in b2 with l′, yielding
b′2.

4. Perform accessPath(u, l, l′, op, b′) on ORam1. This will complete the operation.

We define accessPath() in Section 3.2.1.
To give the reader an idea, a preliminary paper on Ascend [50] reports 5880 clock cycles

per accessRORAM() operation (using hardware assumptions from Section 3.2.1.3). In our
evaluation, we assume (using optimizations from throughout this chapter) a 3090 cycle
access latency (Section 7.2.2).

3.2.3 Optimization: Early Completion

Although the Path ORAM accessORAM() operation requires a path to be read then written,
the program running within Ascend can start making forward progress as soon as the block
of interest is read into the local cache (i.e., during Step 3 in accessORAM()). In this case, the
path writeback operation happens “in the background.” In fact, since the block requested

22

by the program may be in the local cache when the ORAM access begins, or may be read
into the local cache before the last bucket is read, the program may be able to continue
even sooner.

We refer to these optimizations as “early completion.” Early completion does not impact
security over the I/O channel because from the server’s perspective, accessORAM() has not
changed: forwarding data to Ascend’s instruction pipeline happens internally. For the
same reason, early completion techniques only improve Path ORAM access latency, not
throughput. For example, suppose two ORAM accesses are needed for two blocks b1 and b2
and that both blocks reside in the ORAM local cache when the first access is made. Through
early completion, the first access will finish almost instantly. Yet to make Ascend’s behavior
independent of this outcome, the access to b2 can only start after all steps for accessORAM()
complete for b1.

7

Early completion can also be applied to the Recursive ORAM construction (Sec-
tion 3.2.2). In accessRORAM(), the block of interest is somewhere on the path in the data
ORAM. Recall that each position map ORAM must be accessed before the data ORAM
can be accessed. To get a benefit from early completion, the read path operation for each
ORAM is performed (Step 3 in accessORAM()) before a single writeback operation (Step 5),
for any ORAM, is performed. Once the data ORAM’s path is read, each ORAM performs
its writeback operation. Thus, early completion can reduce the Recursive ORAM’s access
latency by half.

3.3 Path ORAM Failure Probability

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1 10 100 1000

P
(e

n
tr

ie
s

in
 lo

ca
l c

ac
h

e
>=

 m
)

m

Z=1 Z=2

Z=3 Z=4

Figure 3-4: The probability that the number
of entries in the local cache exceeds a certain
number (m), for different Z.

In this section, we will develop background
eviction schemes that eliminate the Path
ORAM’s chance to fail and discuss differ-
ent attacks that can be made on background
eviction schemes in general.

ORAM schemes in general and Path
ORAM in particular have the problem that
they fail with a non-zero probability. Path
ORAM has a chance to fail because the
ORAM interface’s local cache has finite ca-
pacity and each access remaps the block of
interest to a new path (Section 3.2.1). Fig-
ure 3-4 shows the local cache occupancy of
different Z values for a 4 GB Path ORAM
with a 2 GB working set, assuming an in-
finitely large local cache. To plot each

curve, we modeled a Path ORAM making accesses to random program addresses and
recorded the number of blocks in the local cache after each access. For Z ≤ 2, the lo-
cal cache always has more than 1000 entries. For Z = 3 the probability that local cache
has more than 1000 entries is ∼ 10−4. These results indicate that to support Z ≤ 3, the

7The astute reader may ask whether performing accessORAM() is necessary in the case when b1 is in the
local cache. That is, the local cache can be scanned prior to any buckets being requested which will prevent
the server from finding out that an access was to be made in the first place. When considering the entire
Ascend system, this trick can only be used if ORAM is nevertheless accessed at data-independent times
(Section 3.4).

23

ORAM interface needs a very large local cache. This problem can be alleviated by making
Z ≥ 4, in which case failure is possible but extremely unlikely. The trade-off for larger
Z is performance: as seen in Equation 3.1, the number of bits moved per access increases
(almost) linearly with Z.

Since smaller values of Z lead to performance improvements but increase the chance
of local cache overflow, a natural question is whether one can keep a small Z and have
the ORAM interface perform a local cache eviction to clear out blocks when a local cache
overflow is in danger of occurring. Referred to as background eviction, such schemes reduce
the probability of Path ORAM failure to 0% and simultaneously allow for Z ≤ 3 ORAMs
with a small local cache.

3.3.1 Properties of and Attacks Against Background Eviction Schemes

We will now discuss background eviction schemes in general and how a näıvely constructed
scheme can cause security problems. Suppose that for any batch program P given any
given input M , the program address request sequence for P (M) is Q(P (M)), and the
corresponding sequence of external memory requests8 for P (M) is PORAM(Q(P (M))). A
background eviction scheme is a scheduler S, that uses some scheduling algorithm—but
only has access to the number of blocks in the local cache at any given time—to create a
new sequence of external memory requests EVICT(Q(P (M))), which are interleaved with
PORAM(Q(P (M))) on the I/O channel to avoid local cache overflows (call this combined
sequence BEPORAM(Q(P (M)))).

By extending the ORAM security definition, security breaks if ∃P ′,M ′, z such that
BEPORAMz(Q(P (M))) and BEPORAMz(Q(P ′(M ′)))—i.e., the first z elements of each
sequence—are computationally distinguishable. A key insight with Ascend and Path ORAM
is that local cache occupancy (and by extension, the behavior of S) depends on P , M and the
Ascend hardware architecture given P andM . Thus—even if ∀P ′,M ′, z: EVICTz(Q(P (M)))
is computationally indistinguishable from EVICTz(Q(P ′(M ′))) and PORAMz(Q(P (M))) is
computationally indistinguishable from PORAMz(Q(P ′(M ′)))—the server can write a curi-
ous program that tries to influence the local cache occupancy if certain private conditions in
the user’s data are met, and then watch for how background eviction operations are inter-
leaved with normal ORAM operations. Notice that we can avoid this attack by constructing
S to not have access to local cache occupancy. For the same reason that security breaks,
however, this change will prevent S from eliminating failure probability completely (unless
S performs a näıve strategy such as scanning the entire ORAM). We will now discuss some
examples of how local cache occupancy depends on program, data and chip design.

3.3.1.1 Address Sequence and Local Cache Occupancy

The program virtual address sequence issued to the ORAM interface impacts local cache
occupancy due to the Path ORAM block remapping process. For example, consider that
at ORAM access t, the local cache contains c blocks, where c can now be arbitrary. If,
from that point on, the ORAM interface continually accesses the same block b repeatedly,
the local cache occupancy after any number of accesses is guaranteed to be ≤ c + 1. This
is because the only block in the path that can get stuck in the local cache is b. On the
other hand, if m distinct blocks b1, b2, . . . , bm are accessed, the local cache may contain as

8Each external memory request is a read/write to a single location in external memory that is fully visible
to the server on the I/O pins.

24

f

_
_

_

Exclusive caches

g

_
_

_

e

_
_

_

ORAM
Interface

2
f

_
_

_

f’

_
_

_

e

_
_

_

Inclusive caches

m setsn sets

1

Level 1
 Cache

Level 1
 Cache

Level 2
 Cache

Level 2
 Cache

3

ORAM
Interface

m setsn sets

Figure 3-5: Inclusive vs. exclusive behavior for a 4-way L1/L2 cache hierarchy (typically
n � m). ‘−’ indicates a valid data block in the cache. The exclusive hierarchy can hit in
the L2 cache yet still evict a block g to the local cache.

many as c+m blocks. Thus, the server can create a curious program that will increase the
likelihood of a background eviction by conditionally performing a scan through memory.

3.3.1.2 Chip Architecture and Local Cache Occupancy

Ascend’s hardware architecture can impact local cache occupancy because of last-level cache
eviction behavior. Suppose that Ascend is made up of an instruction pipeline, on-chip
cache hierarchy and the ORAM interface as shown in Figure 3-1, and that the instruction
pipeline/cache hierarchy behave as they would in a normal processor. When a data block is
evicted from on-chip cache, the evicted block is moved to the ORAM interface’s local cache
where it will later be pushed to the ORAM tree. Hence, on-chip cache eviction causes a
security problem: if the program causes an on-chip cache eviction, a block is added to the
ORAM interface local cache asynchronously.

How many blocks can be evicted to the local cache per unit time differs depending
on the on-chip caches’ coherence policy. Traditional cache hierarchies can be inclusive,
exclusive or non-inclusive (we discuss inclusive and exclusive hierarchies here). Inclusive
caches maintain the inclusivity property : if some cache block b is present in some level (e.g.,
the level 1 cache, or L1), a (possibly stale) copy of b must be present in all the lower levels
(e.g., the L2). In an exclusive hierarchy, it is guaranteed that b will not be present in the
lower levels. In terms of background eviction security, inclusive vs. exclusive differs in the
following way:

Inclusive caches only evict blocks to main memory (the ORAM interface) in the case of
a last-level on-chip cache miss.

Exclusive caches may evict blocks to main memory due to a miss at any level of the on-
chip cache hierarchy. Note that if the miss is not at the last-level cache, some lower
cache level may still hit.

The difference security-wise between these cases is that an exclusive cache enables a curious
program to add a block to the ORAM local cache once per on-chip cache access, whereas the
inclusive hierarchy limits this eviction rate to one eviction per ORAM access. Since ORAM
latency is orders of magnitude higher than on-chip cache access latency, the exclusive cache
design allows a curious program to trigger background evictions with very high certainty at
precise moments in time.

25

The attack on the exclusive design (illustrated on a 2-level cache hierarchy, see Figure 3-
5) is performed in two phases: First, the curious program fills the L1 and L2 caches with
blocks (which it can do because the server knows Ascend’s cache organization). Suppose,
at this point, that some block e is present in the (exclusive) L2 cache (Figure 3-5 (left)).
The curious program will now make an L1 request for e (1). Since the L1 set where e
is to be mapped is currently full, another block (call this f) will be evicted from the L1
cache to make room for e (2). Even though f and e map to the same cache set in the
L1, they generally will not map to the same set in the L2.9 Furthermore, since the L2 set
that f is mapped to is full of blocks, f will evict another block (call this g) from the L2
to the ORAM interface (3). Despite this, the exclusive hierarchy still hits in the L2 and
the curious program will be able to make forward progress soon after (at which point it can
repeat the process to force-evict another block).

On the other hand, if block f is evicted from the L1 in an inclusive hierarchy, there
must be a (possibly stale) copy of f (call this f ′) in the L2 cache to satisfy the inclusivity
property. When f is evicted, it will replace f ′ and this action will not add a block to the
ORAM interface local cache. In fact, the only way that an inclusive hierarchy can add
an evicted block to the local cache is if block e (the requested block) was in ORAM and
could not be found in the on-chip cache hierarchy. In that case, the curious program must
wait until e is fetched from the ORAM which prevents it from repeating its attack until
the ORAM access completes. With the inclusive design, the on-chip cache to local cache
pressure is limited which makes such attacks more difficult to mount.

3.3.2 Probabilistic Background Eviction

To prevent the attacks from the previous section, we propose a background eviction scheme
where background eviction operations are indistinguishable from regular ORAM accesses.
Conceptually, a background eviction performs a dummy ORAM access. Suppose the Path
ORAM local cache can hold at most C blocks. To prevent local cache overflow, we stop
serving real memory requests and instead issue dummy requests whenever the number of
blocks in the local cache exceeds C − Z(L + 1).10 A dummy access reads and decrypts a
random path and writes back (after re-encryption) as many blocks from the local cache to
the path as possible. No block is remapped on a dummy access, meaning (a) all the real
blocks on that path can at least be written back to their original places and (b) the dummy
access will at least not add elements to the local cache after the writeback. If the read path
was not full of real blocks, there is a possibility that some blocks in the local cache will
find places on this path. We keep issuing dummy accesses until the number of blocks in the
local cache drops below the C − Z(L+ 1) threshold.

Probabilistic background eviction can be easily extended to a Recursive Path ORAM.
If the local cache of any of the ORAMs in the hierarchy exceeds the threshold, we issue a
dummy request to each of the Path ORAMs in the same order as a normal access, i.e., the
smallest Path ORAM first and the data ORAM last.

Table 3.1 shows the ratio of dummy to real accesses for the Z settings in Figure 3-4 with
background eviciton, assuming C−Z(L+1) = 100. Background eviction effectively reduces
the local cache size and prevents the overflow problem for Z = 1, 2 and 3 by introducing
7.81×, 0.69× and 0.015× dummy accesses per real access, respectively. The downside of
background eviction is that dummy accesses may hurt performance. The upside is that

9This is due to the L2 typically being larger and/or having a different associativity than the L1 cache.
10Recall: this leaves just enough space for a new path.

26

Table 3.1: The ratio between dummy accesses to real accesses for a 4 GB Path ORAM with
2 GB working set, varying Z.

Z=1 Z=2 Z=3 Z=4
7.81 0.69 0.015 0.0

small Z settings, which yield very good throughput but were previously prohibited due to
high failure probability, are now possible. For instance, Z = 3 reduces the number of bits
that are moved per ORAM access by ∼ 25%, relative to Z = 4 (Equation 3.1), and requires
less than one dummy access per 50 real accesses.

3.3.3 Security of Probabilistic Background Eviction

Recall that the original Path ORAM scheme (with an infinite local cache and no background
eviction) is secure because, independent of the memory requests, the server will observe
a sequence of random paths being accessed (for each Path ORAM in a Recursive Path
ORAM). Denote the sequence as

PORAM(Q(P (M))) = {p1, p2, . . . , pk, . . . } ,

for any program P and input M , where pk is the path that is accessed on the kth memory
access. Each pk for k > 0 follows a uniformly random distribution and is independent of pj
∀j > 0 s.t. (k 6= j), also in the sequence. Background eviction interleaves, in an arbitrary
manner, another sequence of random paths qm for m > 0, producing a new sequence

BEPORAM(Q(P (M))) = {p1, p2, . . . , pk1 , q1, . . . , pk2 , q2, . . . } .

where qm ∀m > 0 is chosen from a uniformly random distribution. In particular, qm is inde-
pendent of pk ∀k > 0 and qn ∀n > 0 s.t. (n 6= m). Thus, ∀P,M, z: BEPORAMz(Q(P (M)))
follows the same uniformly random distribution as PORAMz(Q(P (M))), and thus is in-
distinguishable from PORAMz(Q(P (M))). Subscript z means the first z elements in the
sequence as before. Crucially, how background evictions are interleaved with normal ORAM
accesses does not impact security.

Livelock. Our background eviction scheme has a very low probability of livelock. Live-
lock is a pathological situation and different than ORAM failure: Suppose that the ORAM
tree is in an arbitrary state and that the local cache contains c = C −Z(L+ 1) blocks (i.e.,
just enough space to fit a new path from the ORAM tree). In this case, the ORAM interface
must perform background evictions until the local cache contains < c blocks. We say that
the background eviction scheme has livelocked if no number of background evictions can
decrease the local cache occupancy to < c blocks. If this happens, the ORAM will effec-
tively perform background evictions forever and no longer be able to do useful work. We
note that this doesn’t impact security because background evictions are indistinguishable
from real ORAM accesses.

Clearly, the probabilistic background eviction scheme can livelock if every block in the
local cache is mapped to leaf l, and the path to leaf l is already full of blocks that also
map to leaf l (recall that this was beginning to happen to leaf 1 in Figure 3-3). Since this
livelock is extremely unlikely, however, our background eviction scheme works well in most

27

1.6

1.7

1.8

1.9

2

2.1

2.2

0 20 40 60 80 100

A
vg

 C
o

m
m

o
n

 P
at

h
 L

en
gt

h

B
e

tw
e

en
 C

o
n

se
cu

ti
ve

 A
cc

e
ss

e
s

Experiment #

Insecure Background Eviction

Secure Background Eviction

Figure 3-6: Average Common Path Length (CPL) between consecutively-accessed paths
with the insecure eviction scheme and our secure background eviction scheme. This attack
compromises the insecure eviction scheme.

cases.

3.3.4 Insecurity of Block Remapping Eviction Schemes

We point out that attempts to eliminate livelock are very dangerous security-wise. Consider
the following scheme (called the block remapping scheme): when the number of blocks in
the local cache reaches a threshold, we choose a block already present in the local cache at
random and perform a normal ORAM access for that block. This scheme will not livelock
because the block in question will get remapped on each access and eventually ‘escape’
congested paths. In fact, this scheme is more efficient (issues less dummy accesses) than
our proposed background eviction. The reason may be that the blocks that remain in the
local cache are more likely to have been mapped to some congested paths, and this scheme
helps these blocks escape the congested paths. Unfortunately, this is also the reason why
security breaks, as we show below.

We first define CPL(p, p′) as the Common Path Length of path p and p′, which is the
number of buckets shared by the two paths.11 Using Figure 3-2 as an example, CPL(1, 2) = 3
and CPL(3, 8) = 1. Given a ORAM tree of L+1 levels, if p and p′ are drawn from a uniform
distribution, we have

Prob
(
CPL(p, p′) = l

)
=

1

2l
, 1 ≤ l ≤ L, (3.2)

Prob
(
CPL(p, p′) = L+ 1

)
=

1

2L
, (3.3)

Expected
(
CPL(p, p′)

)
= 2− 1

2L
. (3.4)

For the sequence PORAM(Q(P (M))) of paths accessed without eviction, if we average
CPL(pk, pk+1) for k = 1, 2, 3, . . . , we will get a value very close to 2 − 1

2L
, since each pk

follows an independently uniform random distribution.

For the sequence BEPORAM(Q(P (M))) derived from the block remapping eviction
scheme, each qm (an access for eviction) is the leaf label of a block um that is in the local
cache at that point. Note that a block mapped to path qm is less likely to be evicted to the
ORAM tree if the paths accessed before it share a shorter common path with qm. So if this
eviction scheme is used, averaging the common path length of consecutive paths accessed

11That is, CPL(p, p′) = |CP(p, p′)| as defined in Section 3.2.1.

28

in PORAM(Q(P (M))) will yield a result that is significantly smaller than the expected
value 2 − 1

2L
. We mount this attack 100 times on a Path ORAM with L = 5, Z = 1 and

C−Z(L+ 1) = 2. Figure 3-6 shows that the two schemes produce different path sequences.
For our probabilistic background eviction scheme, the average CPL value is 1.979, which is
very close to the expected value 2− 1

2L
≈ 1.969. For the insecure scheme, the average CPL

value is centered around 1.79. So our attack is able to detect evictions when using the block
remapping scheme.

There are other block remapping eviction schemes that are less easy to break. For
example, an eviction scheme can randomly remap one of the blocks in the local cache
and then access a (different) random path. Then there would be no dependency between
consecutive accesses and the above attack is defeated. However, such a scheme still tends
to remap blocks from congested paths to less congested paths, and can be broken by more
sophisticated attacks.

3.4 Time Obfuscation: Public Intervals

Obfuscating the I/O channel in the time domain is straightforward with public intervals
because the I/O channel’s behavior is fully determined by the ORAM interface’s behavior.
The simplest secure scheme is for the ORAM interface to be set to a single interval—referred
to henceforth as IORAM , where IORAM ∈ P—as described in Section 2.4.2.1. In this case,
the ORAM interface will make exactly one real/dummy ORAM access per interval.12 When
an ORAM access completes, the ORAM interface drives the I/O pins to a fixed logic value
and does not respond to additional requests made by Ascend’s on-chip caches until the next
ORAM access. The server may set IORAM by estimating the number of cycles that the
given program will need between two accesses to external memory, given Ascend’s on-chip
resources and apriori knowledge of that program.

Note that background eviction operations in our secure scheme (Section 3.3.3) are indis-
tinguishable from dummy accesses. This property makes our background eviction scheme
especially well suited for Ascend. If Ascend makes a dummy access because the program
does not need ORAM at that time, that dummy access also performs the job of background
eviction. This decreases the overhead of background eviction for programs that are not
memory bound. Note that if a background eviction is needed, it must wait for the next
interval like any other access.

Denial of service. Since making ORAM requests entails sending/receiving data
to/from the outside world (i.e., no longer under Ascend’s control), the I/O channel must
also protect against denial of service attacks. That is, Ascend behavior should be inde-
pendent of the amount of time it takes the external memory to return data (on a read)
or complete a write. Of course, variable latency to main memory may also be the result
of benign congestion on a network. We point out that our definition of public intervals—
specifically that the next ORAM access is made IORAM cycles after the previous ORAM
access completes—protects against privacy leakage through denial of service attacks with-

12If Recursive ORAM (Section 3.2.2) is being used, each ORAM access will be broken up into multiple
ORAM accesses. This does not change the security of the single-interval scheme: when the ORAM interface
triggers an ORAM access, it will always trigger a fixed sequence of ORAM accesses until the Data ORAM
is accessed. A more sophisticated interval scheme can create a separate interval for each ORAM in the
recursive construction, and keep a small table (similar to a page table) available for accessing recently used
blocks in the position map ORAMs. The insight is that each block in the position map is used to lookup a
range of program addresses and that such blocks can have page-level locality.

29

out change. Suppose that at time t Ascend begins a new ORAM access. If ORAM has an
access latency of taccess cycles and the server forces the request to take d more/less cycles,
Ascend will always perform the next ORAM access at cycle t+ taccess + d+ Ioram. Since all
of these quantities are public to the server, the server learns nothing that it wouldn’t have
been able to determine apriori.

30

Chapter 4

Protecting the Power Channel

Our goal in this chapter is to develop and optimize primitives that make the analog signals
on Ascend’s power pins not leak any information that depends on the user’s private data,
thereby making Ascend resistant to power analysis-based attacks. Using power analysis
to break secure cryptographic implementations gained notice in the late 1990s when DES
implementations were shown to leak secret keys through their power traces [11]. Since then,
there have been numerous successful attacks based on power analysis and proposed counter
measures [15, 22, 21, 25, 29, 36].

Program 3 Curious programs that leak through the power channel. M is the private user
memory.

int J = 1; int K = 2; int I = 0; // chosen by the server

void curious_dpa(M) { void curious_spa(M) {

int ci = 1 + M[J]; int ai = M[0]; float af = (float) ai;

int di = 1 + M[K]; if (M[I] & 0x1) float cf = 1.0f + af;

} else int ci = 1 + ai;

}

When monitoring the power pins, the server sees an aggregate signal that represents
the instantaneous power consumption of all the circuits in the chip.1 As with the I/O
channel, how each circuit is activated (i.e., the bit values of its inputs, its internal state,
etc) and when it is activated (i.e., when the clock that drives the circuit is running) both
influence pin behavior. We distinguish between a circuit’s inputs and the clock signal for
technological reasons (Section 4.2).

In the literature, detecting how a circuit is activated is done through differential power
analysis (DPA) and detecting when that circuit is activated is done through simple power
analysis (SPA) [11]. To perform DPA, the server collects many power traces2 and tries to

1In actuality, modern processors expose many power pins. Typically, each pin connects to an array of
wires that span the chip and supply Vdd to every circuit. Each power pin may carry a different signal based
on the where each circuit is located relative to the pin. We will not make assumptions about which pins the
server is monitoring.

2For example, the server may apply different public inputs to an encryption circuit to try and deduce
some hidden state (the key). The server can construct a curious program to do exactly this in an Ascend
setting.

31

detect correlation using statistical techniques. For example, the curious dpa() program
(Program 3 (left)) has the same control flow regardless of M. Even so, the server can learn
whether M[J] and M[K] are different by observing small variations in the power draw from
the adder circuit over different executions. This type of leakage happens because a CMOS
circuit’s input values and transition behavior both impact power consumption.3 With SPA,
the server examines a power trace to determine which circuits are activated to perform a
computation and when those circuits are activated. For example, the server can create the
curious spa() program (Program 3 (right)), which conditionally activates either the float-
ing point unit or a fixed point arithmetic unit based on user inputs. Unlike curious dpa(),
the SPA-based attack requires very few samples (perhaps a single sample) because the dif-
ference in power consumption between the floating point and fixed point units can be large.
Many variations of the attack are possible; the server just has to activate different circuits
with distinct power profiles.

We note that most symmetric-key cryptographic circuits like DES or AES are usually
attacked through DPA as opposed to SPA. This is not because SPA is ineffective in general,
but rather because these circuits are relatively hardwired and perform a similar set of
operations regardless of the key (e.g., AES performs a public number of rounds, and the
same mixing operations per round), making SPA less effective [11]. Both SPA and DPA are
effective in our context of untrusted programs, which may activate different circuits based
on private user inputs (e.g., curious spa()).

4.1 Chapter Overview

This chapter is structured in a similar way as Chapter 3. To begin, Section 4.2 introduces
DPA resistant circuits: a set of primitives that make a circuit give off a data-independent
power draw when that circuit is activated, thereby obfuscating the power channel in the
value domain. This section is analogous to ORAM for the I/O channel. Our goal will be
to create a complete cell library which can be used to build the rest of the Ascend chip.
Throughout the discussion, we will make optimizations to the DPA resistant logics that are
suited for general-purpose processors. Section 4.3 discusses obfuscation in the time domain.
Since the power channel is impacted by many circuits simultaneously—as opposed to the
I/O channel which is fully specified by the ORAM—obfuscating the time domain for the
power channel is significantly more involved. In addition to public intervals we introduce a
new type of public parameter, that is specific to the power channel, called the public circuit
policy.

4.2 Value Obfuscation: DPA Resistant Circuits

To prevent DPA, we will build Ascend entirely out of DPA resistant circuits, preventing
attacks posed by programs like curious dpa(), as shown in Figure 4-1a. At a high level, if a
particular circuit is built out of DPA resistant logic, the server will not be able to determine
the internal state of that circuit if that state could not have been determined apriori.

DPA resistant logics are typically based on dual-rail (differential) logic [15, 22] or bit
masking techniques [21]. More recent proposals have combined the two [25, 29]. The big

3For example, circuit glitches can cause fewer or more circuit transitions based on circuit inputs. In the
case of curious dpa(), 1 + M[J] will provoke additional transitions if the low bit in M[J] is equal to 1, due
to adder carry logic.

32

time

Power
draw

0
time

Power
draw

0

M[K] = 0
M[K] = 1

(a) (Left) A power trace from running
curious dpa() (Section 4). The server can
determine the value of M[K] by watching the
power consumption of the adder. (Right)
The same program when Ascend is built out
of DPA resistant logic.

time

Power
draw

0
time

Power
draw

0
ALU
FPU

ALU

FPU

(b) (Left) A power trace from running
curious spa() (Section 4). The server can
see if the floating point unit (FPU) or arith-
metic unit (ALU) was activated. (Right) The
same program, where ALU/FPU accesses are
made in a strict data-independent interleav-
ing.

Figure 4-1: DPA and SPA resistance.

idea with dual-rail logic is to make circuit elements have data-independent power draws.
Regardless of whether a circuit transitions or has different inputs/output values, the same
amount of power should be dissipated. Bit masking techniques instead apply a random
mask bit that changes randomly each cycle to decorrelate the input signal with the output
signal. For both techniques, the server learns that a particular circuit was activated but
not what inputs/outputs were sent to/from that circuit or whether the circuit underwent
a logic transition. Both techniques are at the digital logic level and do not necessitate
program-level transformations.

Ascend can be built with any DPA resistant logic, in principle. To get a circuit library
that is sufficient to build the entire chip, we first need DPA resistant logic gates and flip-
flops. Gates and flip-flops are used to build processor pipelines, control logic and small
memories throughout the chip. Second, we need DPA resistant SRAM cells, which will be
used to implement on-chip cache and register files.

4.2.1 Logic Gates and Flip-Flops

We will use a dual-rail technique—wave dynamic differential logic (WDDL) [22]—to de-
scribe Ascend’s logic gates and flip-flops because WDDL can be built on top of normal
ASIC standard cells and even be implemented on an FPGA. WDDL specifies how to build
DPA resistant logic gates and flip-flops: Each insecure logic gate can be replaced with a
functionally equivelent secure version that has a data-independent power draw. WDDL flip-
flops, on the other hand, hide the value they are currently storing and when that value
changes.

Figure 4-2a depicts a sequential parity calculator that takes a stream of bits as input
and calculates the running parity. Unshaded gates/flip-flops represent the insecure parity
checker; shaded circuits represent additional circuits added to support WDDL. Both shaded
and unshaded circuits are ordinary CMOS circuits. In this example, the circuit surrounded
with a red dashed box is considered the secure circuit; everything outside may be insecure
(i.e., not built using WDDL). Suppose the server/adversary controls the in signal. The
adversary’s goal is to deduce the initial value on wire p2, with probability better than
guessing, by monitoring the secure circuit’s power pins. We now explain the salient design
principles in WDDL and how WDDL prevents the server from learning p2:

1 (see Figure 4-2a) Compound gates. Each insecure logic gate is paired with
its complement as given by De Morgan’s law, forming compound gates. For example, an

33

in

pch

AND

AND

OR

M-S FF1

M-S FF2

r

r

p2

p2

p1

p1

1

2

34 5

f, f

pch

g, g

h, h

Secure parity checker

f, f

pch

P

E

E

P

E

P

E

P

E

P

E

P

E

P

P

master

slave

slave

slave

Extended
Pre-charge

ini

ri-1, ri-1 ini

(a) (b) MS Flip-flop
elimination

g, g

h, h

master

slave

ri-1, ri-1

FF1

FF2

FF3

FF4

Figure 4-2: (a) A sequential parity checker built using WDDL techniques. Grey shaded
circuits are added to implement WDDL: an insecure version requires only the unshaded
circuits; further the insecure XOR can be implemented directly as an XOR gate. Each
individual circuit is an ordinary/insecure CMOS circuit; all flip-flops are assumed to be
positive edge-triggered. (b) A 3-stage reduction operation in WDDL optimized for perfor-
mance/area/power using the techniques in Sections 4.2.1.1-4.2.1.3.

insecure AND gate becomes an AND gate and an OR gate, where the OR gate’s inputs
are inverted. This is done to hide whether the output of each insecure gate is logic 0 or 1:
each compound gate will always output the pair 1,0 or 0,1. We refer to compound gates as
having real,complement outputs and the notation 1,0 means the real output = 1. Because
power signals are aggregated, WDDL assumes that the server will not be able to tell which
outcome happens (i.e., 1 + 0 = 0 + 1 = 1 in both cases). This assumption holds when the
power consumption of interconnect wires dominates, which as [22] points out becomes more
true as the silicon process shrinks.

2 Positive gates. Boolean networks must be made up of positive compound gates
only—that is AND gates and OR gates. For example, in the figure we have replaced the
XOR gate with the functionally equivalent two AND gates and an OR gate. This is done to
avoid glitches, which reveal circuit inputs: WDDL maintains the invariant that each gate
transitions at most one time in a given clock cycle.4

3 Implementing inverters. To implement inverters (NOT gates), WDDL crosses
inverted inputs (which are always available through compound gates). Inverter gates need
not be implemented directly.

4 Circuit Pre-charge. WDDL circuits switch between a pre-charge phase and eval-
uation phase every other cycle. During the pre-charge phase, all outputs to all flip-flops
are pulled to 0, which in turn causes all compound logic gates to output 0,0. During the
evaluation phase, each pair of flip-flops outputs either 1,0 (logic 1) or 0,1 (logic 0) which the
compound gates evaluate to produce the next state. Adding a pre-charge phase is necessary
to hide whether the logic value output by each compound gate changes between two con-
secutive cycles. That is, the aggregated signal in each evaluation phase is 1 + 0 = 0 + 1 = 1
and 0 + 0 = 0 in each pre-charge phase, regardless of the input bit stream. Thus, from the
server’s perspective, each compound gate transitions every cycle regardless of the input bit
stream sent to the secure circuit ([22] refers to this as every compound logic gate having

4XOR does not satisfy this property. Suppose that the inputs to an XOR gate toggle one time each per
cycle, but that the toggles happen at different moments in the cycle; e.g., 0,0 → 0,1 → 1,1. In this example,
the XOR’s output transitions from 0 → 1 → 0. This is a glitch that can reveal the XOR’s inputs to the
server.

34

100% switching factor). Pre-charge requires that the server send new inputs to the secure
circuit at half the original rate (pre-charge does not do useful work).

5 “Master-slave” flip-flops. Each flip-flop in WDDL is converted into a compound
“WDDL master-slave5 flip-flop” that can be built using four insecure CMOS flip-flops. The
construction works as follows: First, each insecure flip-flop must be copied (vertically in
the figure) to store the De Morgan’s complement value. Second, each flip-flop pair must
be copied (horizontally: forming a master and slave). WDDL does this to maintain the
following invariant: during each cycle, each logic stage (separated by flip-flops) must have
all of its inputs in the pre-charge phase or all of its inputs in the evaluation phase. In our
example, if p1, p1 is in the pre-charge phase: p2,p2 is in the pre-charge phase and r,r is in
the evaluation phase (and vice versa). On the other hand, if either the master or slave flip-
flops are removed from M-S FF2, p2 = r,p2 = r. In that case, it is impossible to interleave
pre-charge and evaluation.

We now discuss the overheads in complementary pre-charge logics like WDDL:

Area and power. Since each WDDL gate requires the original gate as well as a comple-
mentary gate, WDDL incurs at least 2× area overhead. Furthermore, each flip-flop is
replaced by four flip-flops to implement the master-slave design. [22] estimates that
the power overhead correlates to the area overhead: in evaluating AES and DES test
circuits, [22] reports a 3−4× area/power overhead for an ASIC and 6× for an FPGA.
Note that generating the pre-charge signal incurs negligible overhead and is similar to
generating a no-op to the secure circuit every other cycle.

Performance. Combinational delay for a logic network in WDDL increases when non-
positive gates such as XOR are needed (i.e., WDDL implements XOR using AND
and OR as shown in Figure 4-2a). Pairing each gate with its complement may also
complicate routing which will lengthen the critical path wire delay. Furthermore,
throughput decreases by half and cycle latency doubles, because of circuit pre-charge
and the master-slave flip-flop design. The decrease in throughput is fundamental
to pre-charge logics for security reasons: a WDDL circuit may never perform two
evaluation operations in two consecutive cycles to hide real logic transitions. We will
use an optimization to reduce the latency penalty in Section 4.2.1.1.

Security-wise, DPA resistant logics are evaluated using normalized energy/standard de-
viation (NED/NSD) metrics, which indicate how power consumption varies over the set of
possible inputs to the circuit. [22] reports that WDDL decreases NED/NSD by 50×, which
is roughly 2× less effective than a similar technique that requires full custom cells [15].

WDDL has several possible vulnerabilities. [28] reports that place and route tools can
cause leakage because of uneven differential wire lengths. That is, if the real and complement
outputs for a given WDDL compound gate are routed differently, the capacitive load for
the gate’s 1,0 and 0,1 states will not be the same. [32] reports that WDDL may also be
able to leak through the so-called early propagation effect.

4.2.1.1 Optimization: Flip-flop Elimination

To reduce the cycle latency and area overhead in WDDL constructions, we point out that
the master-slave flip-flop construction is unnecessary in cases where by removing the slave
flip-flops the invariant stated in 5 , above, is not violated. Stated again: it must be the

5“Master-slave” is WDDL terminology: the same (not inverted) clock signal is sent to each flip-flop.

35

case that for every logic stage in every clock cycle, all inputs to that stage must be in either
pre-charge or evaluation mode.

Consider a circuit that computes the logic function ri = h(g(f(ri−1, ini)))—a reduction
over an input stream for i = 0, . . . , where f, g, h are arbitrary combinational functions.
We will focus on optimizing this form of reduction circuit over the next several sections
because many general-purpose processor components (e.g., pipelines and on-chip caches)
share its structure. We show the corresponding WDDL circuit construction in Figure 4-2b
(left). Pipeline stages in pre-charge are marked P and evaluation stages are marked E.
Stages change phase every cycle. To make the example compelling, we say that f , g and h
have substantial combinational delay—one would like to pipeline these circuits to achieve a
better design clock frequency.

Pipelining has limitations with WDDL, however, because an additional pipeline stage
introduces two cycles of latency due to the master-slave flip-flop design. Furthermore, only
one of the two cycles can perform useful work. On the one hand, we cannot eliminate each
slave flip-flop in Figure 4-2b (left) because this causes the r, r input to f to be in pre-charge
when the ini input is in evaluation (and vice versa). An insight is that we can eliminate
most of the slave flip-flops, by padding the circuit such that its feedback path is an even
number of pipeline stages in length.6 We point out that baseline WDDL accomplishes this
trivially: since each master-slave flip-flop is two flip-flops in series, every path has an even
length in all cases. After eliminating slave flip-flops as shown in Figure 4-2b (right), our
circuit has a 4 cycle latency instead of 6 and requires 10 flip-flops instead of 16.7

We note that eliminating flip-flops in this way complicates an automatic tool’s job when
transforming an insecure circuit into its WDDL equivalent. Indeed, the master-slave design
implies that the circuit designer need not change RTL (register-transfer level) design before
converting that RTL into WDDL.

4.2.1.2 Optimization: Extending Pre-Charge

To reduce the power consumption for the baseline WDDL construction we point out that
interleaving evaluation with pre-charge, every other clock cycle, is an overly strong condi-
tion to maintain security. For a circuit to be secure, it is sufficient to meet the following
conditions:

1. The invariant from 5 (see previous section) must be maintained.

2. No pipeline stage can be in the evaluation (E phase) for two consecutive cycles. If
this condition is violated, the server can learn whether (secret) logic values changed
between the two cycles.

3. Each pipeline stage must be in the evaluation and pre-charge phase at data-
independent times. This is because the server can measure whether a stage is in
E or P at a given time.

Note that properties 2 and 3 are trivially guaranteed by baseline WDDL: pre-charge and
evaluation toggle every other cycle and this toggle depends only on the clock signal.

6This is similar to saying “the pipeline stages that make up the sequential circuit must be two-colorable.”
We will show how WDDL differs from this definition in Section 4.2.1.2.

7Note that applying this optimization to the parity checker (Figure 4-2a) does not improve that design’s
cycle latency, since it has a feedback path length of 2.

36

We can reduce the dynamic power consumption for WDDL circuits by extending pre-
charge until the circuit is able to accept a new input, if these times are data-independent.
The idea is shown in Figure 4-2b (right): it is publicly known that after a valid input ini is
presented to f (i.e., f is in the E phase), h(g(f(ri−1, ini))) will be computed exactly four
cycles later. Thus, the pre-charge circuit at the input (labeled pch) can hold the input in
pre-charge for the intermediate three cycles and create a new E bubble every fourth cycle.
Extending pre-charge is built on the insight that dynamic power consumption in CMOS
logic correlates to the number of times a wire or logic gate toggles. If a given pipeline
stage is in P for two consecutive cycles, it will not consume dynamic power during the
second cycle. For the example in Figure 4-2b (right), only two stages transition between
pre-charge and evaluation per cycle, regardless of the circuit’s pipeline depth. In baseline
WDDL, every pipeline stage transitions every cycle.

Security-wise, the extended pre-charge scheme still has data-independent switching fac-
tor. If between two consecutive clock cycles, any pipeline stage transitions between E→P or
P→E, each compound gate has 100% switching factor and is equivalent to baseline WDDL
(Section 4.2.1). If a stage transitions between P→P, we have 0% switching factor but we
have restricted this to happen at data-independent times. Lastly, we design the circuit such
that no stage will ever have a E→E transition—completing the case analysis.

Performing an extended pre-charge trades off throughput for energy. By definition, the
more cycles the secure circuit is in pre-charge, the less attainable throughput the circuit
has. The h(g(f(ri−1, ini))) circuit is a good candidate for our optimization when one input
stream is being applied to the circuit at a given time. In this case, throughput does not
matter. On the other hand, if multiple input streams were interleaved, we would want to
revert back to baseline WDDL for throughput reasons. We will use extended pre-charge in
later sections for making processor on-chip cache accesses more efficient—a design decision
based on two insights: First, latency (not throughput) is the primary design criterion for
single-core caches (due to pipelines tolerating a small number of outstanding loads at a
time). Second, caches (and the wires that make up the inter-cache bus) are a large source of
energy expenditure in modern processors. As with baseline WDDL, extended pre-charging
cannot make a WDDL circuit’s throughput better than 50%: pre-charge is required after
every evaluation phase for security reasons.

4.2.1.3 Optimization: Additional Flip-flop Elimination

If both optimizations from Sections 4.2.1.1-4.2.1.2 are applied simultaneously, we can remove
additional flip-flops in the WDDL construction. Consider the optimized WDDL circuit in
Figure 4-2b (right). Without the extended pre-charge optimization, we must add the pair of
flip-flops labeled FF4 as a pad to ensure that each pipeline stage is completely in pre-charge
or evaluation at a given time (see invariant from 5 in Section 4.2.1). When the extended
pre-charge scheme is applied, however, FF4 can be removed. This is because creating fewer
evaluation stages per unit time makes it easier to satisfy invariant 5 : for instance, if the
circuit were in pre-charge 100% of the time, the invariant from 5 would trivially hold for
all circuits without padding paths or master-slave flip-flops, etc. The resulting circuit has
a cycle latency of 3 instead of 4 (which was the result from Section 4.2.1.1) and is made up
of 8 flip-flops instead of 10.

37

4.2.1.4 Creating Dummy Work

By definition, WDDL creates a near-constant power draw regardless of the real logic values
present in evaluation mode. Thus, a dummy signal applied during evaluation mode will be
indistinguishable from a real signal. Traditional enable logic, passed down alongside each
multi-bit signal, determines whether that signal is real or dummy, and prevents dummy
state from erasing real state (e.g., by adding a WDDL multiplexer (mux) circuit at the
input of flip-flops that need to conditionally update their state).

4.2.2 SRAM Arrays

WDDL and other similar logics only provide secure logic gates and flip-flops; we must
assume different techniques to implement SRAM cells. Recent work has developed a DPA
resistant SRAM cell using differential logic and pre-charge ideas [31, 36]. For our evaluation
and for the rest of the Chapter, we assume the design from [31] and refer to this design as
cell-1.

4.2.2.1 Secure SRAM Design and Sources of Leakage

[31] points out that SRAM read operations and address decoders do not contribute large
data-dependent variations in power, even for insecure SRAM designs, when considering a
single SRAM access in isolation. During a read operation, complementary column bitlines
are pre-charged to the same logic value and, regardless of the logic value stored in each
column of the open row, exactly one bitline per column discharges. Furthermore, regardless
of which row is opened, the row address decoder takes log n bits (for an n row SRAM) as
input and asserts exactly 1 out of n word lines (the column decoder behaves the same way).
Putting these together, total charge transfer per access is independent of read address and
the data read out. The observation in [31] is that which word line (is activated) and which
bitline (is discharged per column) is very difficult to detect, as SRAM arrays have regular
structure (e.g., all word lines have equal length).

We now summarize sources of leakage in an insecure SRAM array (taken from [31]).
First, data-dependent leakage occurs during SRAM write operations because the logic value
written to each SRAM cell may be the same or different than the old value stored in the cell.
Which case occurs is data-dependent and creates a variation in power consumption. Second,
accross multiple SRAM operations, charge gets trapped in the row/column address decoders,
causing power consumption in the decoders to vary across accesses in data-dependent ways.
The server may exploit these weaknesses by creating a curious program that repeatedly
writes the same word to the same address in memory (for example).

It is possible to mitigate the above leakages using WDDL pre-charge-like ideas. First,
before new data is written to each SRAM cell, the cross-coupled inverters that store the bit
are brought to a public logic level (making charge transfer independent of write data, as was
done for read operations). Second, the internal logic in the address decoder is brought to a
public logic value before the next operation starts. Additional details can be found in [31].
The proposed design adds two PMOS transistors per SRAM cell and routes an additional
wire down each SRAM column, which controls one of the PMOS transistors.

38

4.2.2.2 Secure SRAM Overheads

A 256 Byte (32 × 64) cell-1-based SRAM array8) was reported to decrease NED (nor-
malized energy deviation) by 10× in terms of what address and data is being accessed,
but does not hide whether a request is a read or a write [31] or that some request is being
made. Ascend needs to hide whether an access is a read/write. As with the I/O chan-
nel, the server can engineer a curious program that conditionally performs a read or write
based on private user data. At a high level, one solution to this problem is to perform
a read plus write operation for every access to the SRAM. A dummy read can be a read
to any address; a dummy write can be a write with arbitrary data to a reserved (unused)
location. An important detail implied by this setup is that dummy data takes up a fixed
amount of space in the SRAM, no matter how many SRAM accesses do dummy work. We
will describe SRAM-related management schemes in more detail when we discuss Ascend’s
microarchitecture (Sections 5.4.2 and 5.4.6).

Follow-up work to the cell-1 design was performed in [54]. That work focuses on pro-
tecting data values on SRAM write operations (and not address/operation). Since Ascend
needs to hide the address9 as well, we will assume the original cell-1 design for the rest of
the thesis. We point out, however, that the work in [54] uses similar ideas as [31] and reports
that the standard deviation in power consumption drops by four orders of magnitude using
their techniques—a promising potential improvement over the cell-1 design.

[36] reports that accessing a cell-1 cell dissapates 2× the energy of a conventional
SRAM cell, per access, and that the 256-Byte SRAM array takes 70% more area than a
conventional SRAM of the same dimensions. The authors do not say how much their design
increases combinational delay. On the one hand, the cell-1 design maintains the structure
of a conventional SRAM, suggesting that insecure SRAM timing models will provide a
good approximation for access latency. On the other hand, the cell-1 design will add
some amount of combinational delay because the SRAM cells activated along a row will
have to be pre-charged to a known value before the write operation can complete. We will
assume that throughput further drops by a factor of two, because SRAM arrays in Ascend
will be controlled by WDDL logic. Following [31], all SRAM operations are synchronous
to the clock: i.e., read data will come out a cycle after addresses are presented and a write
will complete on the rising edge after address and data is presented.

To our knowledge, the literature has not addressed how cell-1-like SRAM cells can be
connected with WDDL (or any other DPA resistant logic), which is what Ascend requires.
We will assume that mechanisms for this task exist.10 We point out that control logic within
the cell-1 SRAM array is not WDDL.

4.2.3 Optimization: Controlling Clock Enable

Not previously discussed, another control input to both DPA resistant gates/flip-flops and
SRAM cells is clock enable. We will manipulate each circuit’s clock enable signal to further

8The authors do not discuss whether arrays with different dimensions/aspect-ratios impact security. We
point out that the 2 Kb array they present is similar in size to conventional 4 Kb SRAM arrays used in
insecure designs.

9Since a curious program can leak through the address, a strawman solution that uses [54] may have to
scan all possible addresses to hide the addresss of interest.

10Using the WDDL assumption that most leakage comes through wire interconnects, one solution may
be to route complementary WDDL signals (corresponding to SRAM inputs) up to but not into the SRAM
array. Those signals can then be terminated in a flip-flop that has a feedback loop to its input.

39

decrease the energy consumption for our circuit constructions. When clock enable is set,
we say the corresponding circuit is on; otherwise the circuit is off.

For gates and flip-flops, clock enable determines whether pre-charge/evaluation tran-
sitions occur. When a WDDL11 flip-flop is on (clock enable high), it transitions between
phases in the usual fashion and all associated logic networks can accept new inputs at each
evaluation step. When a WDDL flip-flop is off, it and downstream logic stalls and ceases
to consume dynamic power.

Switching circuits to the off state and extending pre-charge are both done to save energy
(Section 4.2.1.2), but differ in fundamental respects. First, extending pre-charge has an
impact on RTL design. For instance, FF4 (Figure 4-2b (right)) can only be removed if
pre-charge is extended (Section 4.2.1.3). Second, extending pre-charge causes a circuit to
lose its internal state if the pre-charge occurs for more cycles than the length of the circuit’s
feedback path. In Figure 4-2b (right), if 4 pre-charge phases happen in 4 consecutive cycles,
the reduction circuit loses its internal state. A circuit may be toggled to the off state for
an arbitrarily long period of time without losing state (i.e., the state is stationary in each
flip-flop).

For SRAM cells, clock enable controls whether the cell-1 primitive is currently being
accessed. When clock enable is high, the SRAM performs either a read or write during that
clock cycle and is said to be in the on state. Otherwise, no access is made and the SRAM
is off.

4.2.4 Observable Circuit States

Summarizing the chapter so far, the server has the following view of each type of circuit in
Ascend:

Logic gates, flip-flops (WDDL). The server can tell when each flip-flop/logic network
is in the on/off state. Furthermore, when a circuit is in the on state, the server can
tell whether it is in the pre-charge or evaluation phase.

SRAM cells (cell-1). The server can tell if an SRAM cell is being activated in the
current cycle (the on) state or not (the off state). If the SRAM cell is in the on state,
the server can tell if the access is a read or write.

We refer to these as the observable states for each circuit. For the rest of the thesis, we will
assume the server can only determine which observable state each circuit is in at any given
time, for purposes of abstraction. In practice, the server can see small, additional power
fluctuations if complementary wire routing is uneven (Section 4.2.1), etc. As is the case
with the I/O channel, Ascend’s power resistance is no greater than that of its underlying
primitives.

4.3 Time Obfuscation: Public Intervals, Interval Policies and
Rate Matching

We now describe techniques to prevent leakage through the power channel in the time
domain, given the circuit primitives from the previous sections. The goal is to prevent

11Following Section 4.2.1, we assume WDDL for concreteness. Manipulating clock enable, however, also
works for other DPA resistant logics.

40

leakage through any program that uses similar principles as curious spa(). Concretely,
schemes must be in place that force each circuit to transition between observable states at
times that are strictly independent of the user’s data (see previous section). Using ideas
developed so far, a strawman design can keep all circuits in the on state always, interleave
SRAM reads/writes in a 1-1 fashion and interleave pre-charge and evaluation every other
cycle for all circuits (as shown in Figure 4-1b).

4.3.1 Public Intervals for Groups of Circuits

To improve upon the strawman scheme, we will add additional public parameters (i.e.,
elements to P) that control when different circuits toggle to the on state. For instance,
the server may run the honest program power honest(), as shown in Program 4. Despite
this program being honest, it can still leak privacy if eavesdroppers are present (e.g., since
a multiplication operation requires more time/energy than the adder). To minimize the
energy cost to complete power honest(), the server can analyze power honest() offline
and set public parameters that instruct Ascend to perform three on-chip memory loads
(the first of which should also be an ORAM request, in anticipation of a cold miss), a
bitwise AND, an addition, multiplication and on-chip memory store—in that order.

Program 4 An honest program that can leak through the power channel. M is the private
user memory.

void honest_power(M) {

int a = M[0]; int b = M[1];

if (M[2] & 0x1) a = a + b;

else a = a * b;

M[0] = a;

}

In the above example, the server could control each circuit precisely (i.e., by streaming
a static schedule into Ascend that specifies when each circuit should be activated next). In
this thesis, we will implement mechanisms that give the server some of this control by re-
using (and augmenting) the public interval idea from Section 2.4.2.1. The primary difference
between the I/O and power channels in terms of intervals is that while the I/O channel’s
behavior is completely determined by the behavior of the ORAM interface (Section 3.4),
the power channel’s signal is determined by the instantaneous behavior of every circuit.

A first step is therefore to partition the circuits within Ascend into groups, where each
circuit in the group shares an interval. Circuits within a group toggle to the on state in a
manner that is synchronous with the interval (and are otherwise in the off state).12 Thus,
as the interval increases each circuit assigned to that interval is in the off state for a higher
percentage of time and dynamic power decreases.

At two extremes, every circuit might be assigned to a single interval or every circuit to
a different interval. As the number of intervals increases, the server gets finer-grain control
over when circuits are activated, which can lead to efficiency improvements. At the same
time, if too many intervals are set based on apriori knowledge of program P on public input

12For example, if an on-chip cache is set to an interval, the SRAM arrays are toggled to the on state first,
and the logic that checks whether the access was a hit or a miss toggles to the on state, second (as every
cache access will require operations to happen in that order).

41

M , those intervals may “overfit” program P applied to hidden input M ′. We will apply the
following design principle when deciding how to assign intervals: if two circuits c1 and c2
are always accessed together, those circuits can be assigned to the same interval.

A second step is to decide how a particular circuit group’s interval be restricted relative
to other circuit groups’ intervals. The next two sections illustrate why this is important.
Suppose Ascend contains an instruction pipeline (pipeline for short) and two levels of on-
chip cache (connected as shown in Figure 3-1). Further suppose that the pipeline, level
1 (L1) and level 2 (L2) caches are set to distinct intervals. Like a normal processor, (a)
if the L1 cache is accessed and has a real miss, a real request is sent to the L2 and (b)
that the pipeline accommodates only one outstanding memory request. There are now two
phenomena to consider (as described in Sections 4.3.2 and 4.3.3):

4.3.2 Producer/Consumer Rate Matching

The L2 is rate limited by the L1 and the L1 is rate limited by the pipeline. For example,
if x distinct L2 accesses are made for each L1 access (due to how the server set each
interval), the L2 is guaranteed to do dummy work for at least x− 1 of those accesses. More
generally, suppose that n producer circuits c1,...,n (each of which are controlled by a distinct
interval Ic1,...,n) connect to a consumer circuit c (with interval Ic). Then one solution to
the rate matching problem is to restrict the value for Ic to values suggested by a function
ratec1,...,n(Ic1,...,n), which calculates the maximum rate at which the producer circuits can
produce complete sets of inputs to c. For simplicity, we say that a complete set of inputs
to c are available after each of c1,...,n are switched on for one cycle. The rate() function
depends on each circuit’s interval (dynamic) and access time (static), is derived by the chip
manufacturer and can be computed offline (given concrete values for Ic1,...,n) by the server.

Another solution that we will use in future sections is to make c’s interval synchronous to
Ic1,...,n. That is, instead of c being switched on after some number of cycles (Section 2.4.2.1),
c will be switched on after c1,...,n have been switched on Ic times. That is, we will change the
semantic meaning of a consumer circuit’s interval to obey producer/consumer relationships
for all possible values of the interval (e.g., only access the L2 cache after the L1 cache has
been accessed IL2 times). Note that for this scheme to work, there must be a “base case”
circuit—that is, if each circuit c1,...,n receives input from no other circuit, then Ic1,...,n must
be synchronous to the clock (or some other circuit that behaves independently of any other
circuit). If this is violated (e.g., if c is also a producer for circuits c1,...,n, and Ic1,...,n are
synchronous to Ic), the system can deadlock.

4.3.3 Producer/Consumer Data Dependancies

If the level i cache is performing a real access, the pipeline and level 1, . . . , i− 1 caches will
necessarily be doing dummy work if those circuits are in the on state. With our example
architecture, this phenonema is an artifact of the pipeline having one outstanding memory
request at a time, but is more generally caused by data dependencies: if circuit c has
producer circuits c1,...,n, c can only perform real work when all of its producers create real
work. To take advantage of this behavior and increase chip efficiency, we introduce a new
type of public parameter (i.e., add more elements to P) called the public interval policy. An
interval policy allows the server to specify whether circuit c should always be kept in the on
or off state while its producers c1,...,n are in the on state. As discussed before (Section 4.2.3),
we care about this distinction because a circuit’s off state consumes less energy than its on

42

state.
Interval policies should be set based on the server’s confidence in its ability to predict

the program’s behavior given an arbitrary input. For example, if the program running in
Ascend is straight line code, the server will be able to predict exactly when the L1 caches
need to be accessed. In this case, the server will be able to determine exactly when the
L1 cache is doing real or dummy work, for a given interval setting. If the interval is set
such that the cache performs real work most (or all) of the time, the correct policy is for
the pipeline to be in the off state when the cache is being accessed, to save energy. If the
program’s behavior depends heavily on its input, however, the right policy is less clear and
the server will have to rely on guesswork. On the one hand, if the server sets a policy that
forces the pipeline to the on state while the L1 cache is being accessed, either the cache or
pipeline will be performing dummy work at all times, which wastes energy. On the other
hand, if the pipeline is switched to the off state when the L1 cache is performing dummy
work, the system will incur a performance penalty whereas an insecure processor would
have been able to make forward progress.

43

44

Chapter 5

Ascend Microarchitecture

Our goal in this chapter is to combine the primitives from Chapters 3-4 together and produce
a complete, optimized Ascend microarchitecture. The design goal is to explore ways to
trade-off performance and energy efficiency while preserving the same level of security. We
first describe how the main structures (the instruction pipeline, memory hierarchy and
ORAM interface) interact, and then describe each in detail.

5.1 Chip Organization

The design is composed mainly of an instruction pipeline, a two-level cache hierarchy and
the ORAM interface. The cache hierarchy is made up of separate level 1 (L1) (I)nstruction
and (D)ata caches that both connect to a unified L2 cache. We will use the terms “L2 cache”
and “last-level cache” interchangeably. Ascend isn’t constrained to this organization, but
we will focus on it for exposition purposes and for its similarity to modern processors.

5.1.1 Request and Eviction Buffers

The instruction pipeline interfaces with the L1 caches through request buffers. The L1
caches interface with the L2 and the L2 interfaces with the ORAM interface through separate
buffers. When we say “L2 buffer” we are referring to the buffer between the L1 and L2
caches. Note that the L2/ORAM buffers are used to store requests as well as blocks evicted
from higher memory levels.

5.1.2 Flow of Requests, Data and Evictions

The pipeline evaluates instructions; some of which may make an (address, opera-
tion=read/write, data) request to the L1 DCache request buffer and all of which will make
an (address, operation=read) request to the L1 ICache request buffer. The corresponding
cache will service the request (read from its request buffer) and return a response at some
later time. Like a normal processor: Each request may hit (the data was present) or miss
(otherwise); some misses will cause blocks to be evicted from the L1 cache to make space.
When a miss or miss and/or eviction occurs, the L2 is accessed as in a normal processor,
and if a miss and/or eviction occurs in the L2, the ORAM interface is accessed. Write
requests are never made from the pipeline to the L2/ORAM interface directly—data is first
read from those sources into the L1 and L2/ORAM writes happen only as a result of block
eviction.

45

5.1.3 Public Intervals

Conceptually, we will assign each cache and the ORAM interface to separate intervals. This
is to minimize the number of intervals (which reduces the “search space” for finding good
interval values), while setting the most performance-sensitive circuits to distinct intervals.
For example, caches and ORAM heavily impact performance/energy consumption and there
are only several caches and one ORAM interface per chip. Breaking the instruction pipeline
itself into multiple intervals is left to future work.

Following Section 4.3.2, we set each memory’s interval to be synchronous to when an-
other memory or the instruction pipeline is accessed. The insight for this design choice
is that caches have a very clear producer/consumer relationship: if the level i cache is
accessed more frequently than the level i − 1 cache, the level i cache is guaranteed to be
doing dummy work some of the time. We will use the following notation for the intervals:
IL1D, ID→L2, II→L2, and IORAM . IL1D is in terms of clock cycles and means “perform
an access to the L1 DCache IL1D cycles after the last L1 DCache access completes.” We
will assume for the rest of the thesis that the L1 ICache is accessed constantly. This is a
design decision that will be addressed again in Section 5.2, but the intuition is that every
instruction needs an instruction fetch.1 ID→L2/II→L2 mean “perform an access to the L2
cache every ID→L2/II→L2 times the L1 DCache/ICache is accessed, respectively. We create
two intervals because instruction caches typically have very small miss rates compared to
data caches. Finally, IORAM means “perform an access to ORAM (through the ORAM
interface) every IORAM times the L2 cache is accessed.”

We can show that this setup makes each cache get accessed at times that only depend
on public intervals through induction: the L1 cache is accessed at data-independent times
(i.e., based on the clock) and the L2 is accessed solely based on when the L1 is accessed,
etc. The scheme cannot deadlock (see Section 4.3.2) because IL1D is synchronous to the
instruction pipeline’s clock and the L1 ICache is accessed as frequently as possible.

5.2 Instruction Pipeline

Instructions are executed via a pipeline composed of traditional stages (i.e., fetch/de-
code/execute/memory/retire) where each stage is separated by a bank of flip-flops. We
now describe the pipeline’s salient features (see Figure 5-1 (left)):

1. Instructions are executed in-order and the pipeline will only fetch the next real in-
struction after the previous instruction retires.

2. Each family of instructions is executed via feed-forward logic and is pipelined as
needed to decouple the clock frequency from the logic complexity of each instruction.
Since the next instruction is not fetched until the previous retires, we don’t implement
traditional operand bypass logic for simplicity.

3. Instruction/data memory requests are sent to a pair of buffers that decouple the
pipeline from the L1 caches. The caches signal to the pipeline when the request is
complete.

1An optimization to this scheme is to access a single-cache block buffer every cycle and have the L1
ICache refill this buffer at a separate interval. We will not perform this optimization, for Ascend or an
insecure processor, in our evaluation for simplicity.

46

Stage 6

Stage 5

Stage 3, 7

Stage 2

Add Branch Mult1 Mem1

Retire mux

PC_m

Mult2 Mem2

Mult3

L1ICBuf

To L1
DCache

L1 Cache request buffers

PC_s

Decode

mux

Stage 4

Stage 7

P

E

E

E

P

E

P

Response

Response

Stage 1, 7

Register file

Stage 1

Stage 2

ICache,
Stage 3

IC(add)

add

Stage 6

Stage 7

Stage 4

DCache,
Stage 5

add

add

WB
(add)

PC++

IC(ld)

ld

DC(ld)

ld

ld

ld

PC++

WB
(ld)

Flip-flop penalty

Cycle 1 2 3 4 5 6 7 8 9 10

Figure 5-1: (Left) A power-analysis resistant instruction pipeline (only some execution
units are shown for simplicity). P/E indicate which stages are in pre-charge/evaluation
(Section 4.2.1.1). Each stage is divided by flip-flops; pipeline latency added as a result of
WDDL is shaded grey. (Right) Timing diagram for the instruction pipeline when add and
ld (load from memory) instructions are evaluated, in that order. Black squares indicate
when a stage is in pre-charge; white squares mean the stage is in the evaluation phase but
is doing dummy work; blue/labeled squares mean the stage is in the evaluation phase and
is doing real work. For simplicity, the L1 I and DCaches are treated as combinational logic.
IC(inst) and DC(inst) mean that instruction inst is writing to the L1 I/DCache buffer in
that cycle; WB means register file writeback.

4. Results are merged after the execute stages by multiplexer (mux) circuits, which
coordinate writebacks to the register file and PC register.

This design was chosen for its simplicity, its high clock frequency potential and its ability
to be transformed into efficient DPA resistant circuits, discussed next. Creating more
aggressive pipelines (out-of-order, multiple issue, etc) is left to future work.

To be secure, the pipeline must give off a data independent power draw regardless of
what instructions are actually executing. In this discussion we will assume the DPA resistant
primitives from previous sections for concreteness. The dashed lines in Figure 5-1 show the
set of “paths” taken through the pipeline in each cycle and illustrate the high-level strategy
for any DPA resistant logic family: during any cycle when the pipeline is in the on state, it
must give off the impression of executing any possible instruction.2

If we use WDDL and cell-1 SRAM specifically, the design changes in the following
ways: First, all pipeline flip-flops are implemented as WDDL flip-flop pairs; gates as WDDL
compound gates; and the register file/L1 request buffers as cell-1 SRAM arrays. Second,
pipeline bubbles must be added (shown as grey boxes in Figure 5-1 (left)) to feedback paths
with odd length, following our optimization from Section 4.2.1.1. Note that WDDL master-
slave flip-flops are still needed if their corresponding insecure flip-flop needs to maintain the
same state across cycles (such as the PC register—labeled PC m and PC s). Such registers
conceptually have feedback paths of length 1. Other flip-flops, that only serve to separate
pipeline stages and do not require back-pressure, are only implemented using two flip-flops
(to store the real and complement logic values) to reduce instruction cycle latency and area.

We interleave pre-charge and evaluation phases in a 1-1 fashion like baseline WDDL
(i.e., do not apply the extended pre-charge optimization from Section 4.2.1.2) for perfor-

2Note that real processors exhibit the same behavior to some degree. For example, a processor ALU is
typically a large combinational circuit whose output goes through a mux.

47

mance reasons. In modern processors, some execution units (e.g., multipliers) incur larger
combinational delays than others (e.g., adders)—as shown in Figure 5-1 (left). Further-
more, some instructions can take a data-dependent amount of time to complete [37] (e.g.,
division with early exit on the x86 or floating point division/square root). Ascend can apply
these optimizations better as the percentage of evaluation phases per unit time increases.
Figure 5-1 (right) shows an example where an (add) instruction is followed by a load from
a data memory (ld) instruction. Because every pipeline stage is in the E phase (defined in
Section 4.2.1.1) every other cycle, the add can complete in less cycles than the ld and perfor-
mance improves. Optimizations like “data-dependent early exit” can also be implemented
as long as data is forwarded an odd number of stages down the pipeline, which prevents a
stage from being in pre-charge and evaluation simultaneously.

Alternatively, we could apply the extended pre-charge trick to reduce power consump-
tion. Since (a) this scheme still requires that the E phase happen at data-independent
times and (b) when the next instruction needs to be fetched is generally data-dependent,
this scheme just equalizes instruction cycle latencies and decreases performance for “fast”
instructions. One insight when sacrificing energy for performance is that (in practice) for
our simple pipeline, energy consumption is very small (relative to ORAM and the cache
memories) regardless of the frequency at which evaluations occur.

5.3 Choosing an ISA

Ascend is not bound to a specific instruction set architecture (ISA) but does benefit from
simpler (i.e., RISC) ISAs. Since the simple pipeline design (see previous section) activates
every circuit path on every cycle, simpler ISAs will have smaller implementation overheads.
On the other hand, a CISC ISA that requires a unique/complex execution unit would incur
greater overhead if implemented directly (i.e., no microcode). We will assume a MIPS-like
ISA for the rest of the thesis, whose relevant features are:

1. Each instruction may read the instruction pipeline register file two times, and write
one time. Thus, these three actions occur every cycle to hide real behavior.

2. Each instruction may make one request for one address in memory, using one of several
addressing modes.3 Depending on the instruction, a different number of bytes may
be returned to the pipeline. To hide which case occurs, each request performs the
work of returning the maximum number of bytes (8 for double words in MIPS). We
point out that an ISA whose instructions each access disjoint regions of memory in a
data-dependent fashion complicate the power obfuscation process significantly, as will
be made apparent in the following sections.

3. Floating point is implemented in hardware. We will assume that the floating point
unit (FPU) is activated along with the integer units. Note that Ascend can emulate
floating point in software like a normal processor as an alternative.

Exploring alternative ISAs or designing ISAs that map particularly well to an Ascend
(power-obfuscated) architecture is left to future work.

3MIPS has four addressing modes.

48

5.4 Cache Hierarchy

In principle, an Ascend chip can support any number of large or small on-chip caches. In this
thesis, we assume that Ascend has the two-level cache hierarchy as described throughout
Section 5.1. Caches have complex behavior and interact with one another in data-dependent
ways. After we have set each cache buffer to an interval, we must additionally hide the
following:

1. Cache inputs per access: the data, address and operation (read/write for the L1
DCache) signals must be hidden for all accesses to all caches.

2. Cache outcome per access: whether a cache access results in a hit, miss, or
miss+eviction (determined by the cache inputs and cache state).

3. Cache coherence behavior: whether a miss or eviction causes other blocks in other
caches to be invalidated for data coherence reasons, written to lower cache levels, etc.

This section will detail each of these and apply the following key idea throughout.
Suppose a particular cache operation (e.g., accessing the L1 or L2 cache) has multiple
possible outcomes (e.g., hit, miss, evict, etc). Then to obfuscate power draw, that operation
must perform the union of the work needed to complete all outcomes, to hide the real
outcome. To improve performance and power efficiency despite this overhead, we will make
microarchitecture and protocol-level design changes that, for each cache operation, minimizes
this worst-case amount of work.

5.4.1 Energy Efficiency via Intervals+Extended Pre-Charge

For concreteness, we will assume the DPA resistant primitives introduced in Section 4.2.
Cache accesses are multi-stage operations whose major data flows are sequential (e.g., we
send an L2 request through the network, then access the L2 data array, then return data to
the processor). Thus, we can apply the extended pre-charge optimization (Section 4.2.1.2)
as follows: we will only insert WDDL evaluation phases (E bubbles) into the cache logic
when either real or dummy work could possibly be performed in that stage, at that time.
Conceptually, we generate one evaluation phase when the cache access starts and this evalu-
ation phase “bubbles” through the otherwise pre-charged stages. The scheme is still secure
because when and how the evaluation bubble propagates depends strictly on intervals and
hardware design. As noted, we won’t apply this trick to the instruction pipeline (Section 5.2)
because when one instruction retires and another is fetched is data-dependent and, for most
programs, not predictable.

5.4.2 Hiding Cache Inputs/Outcomes

Firstly, each cache is built out of DPA resistant primitives. Cache tag and data arrays are
implemented using cell-1 SRAM arrays. Comparator logic to implement associativity,
eviction logic and replacement policy logic are built using WDDL. We assume the least
recently used (LRU) cache block replacement policy for the rest of the thesis.4 With these
primitives in place, the wires that carry the (address, operation, data) cache inputs are
hidden because each wire is DPA resistant as described in Section 4.2.1.

4Note that LRU has data-dependent behavior but can be designed not to leak privacy; i.e., if implemented
as DPA resistant combinational logic.

49

Way select

L1 Cache Request Buffer

Tag comparison

set(u)

Write data = w’

L2 Victim (written on
L2/ORAM refills only)

L2 Cache Request/Eviction Buffers

set(u)

Return to
pipeline

Clock

Data arrays, input

Read hit

Read out words wa,w,wc,wd,
Tags/LRU state for

 blocks a, b, c, d

Update LRU state

u, op, w’

Tag arrays, input

Write data = updated state

Controller

Start access!
(controlled by interval FSM)

Wr Enable, Mask

tag(u)
tag(u)

L2 Request
1 WDDL evaluation phase “bubble” per access

Write miss+evict

Block b was not present!
Send request to L2 for b.

Update LRU/cache
valid state

1 2 3

Data, addr Rd(set(u)) Wr(-)Block b Rd(-) Wr(-)Block b

Block stateTag, bus Block b Block stateBlock b

Rd(set(u))Tag, addr Wr(set(u))Block b Rd(set(u)) Wr(set(u))Block b

Data, bus Block b Block bWord w

L2 Request Wr(-)Block b Block b Wr(tag(u))Block b Block b

Block b was present!
Send w in b back to pipeline.

Figure 5-2: Example architecture (left) and timing information (right) for a 4-way set as-
sociative L1 DCache. SRAM arrays have bold borders. Note that logically, the cache
has inputs and outputs but physically there is a single input/output bus (as indicated
in the timing diagram). Timing diagram colors (blue, black, white) match the conven-
tions in Figure 5-1; i.e., solid black means pre-charge. Rd(x)/Wr(x) indicate read/write
commands to address x. The timing diagram shows two extreme outcomes for the secure
design: regardless of the cache access outcome, the sequence of SRAM read/write and logic
evaluation/pre-charge transitions is data-independent. Read data is returned to the pipeline
at the rising edge between cycle 2 and 3.

We will now discuss how to hide the outcome of a particular cache access, using a 4-way
set associative L1 DCache (whose architecture is shown in Figure 5-2) as an example. Sup-
pose the instruction pipeline makes a data memory request for program address u which
corresponds to data word w, which is contained in cache block b. For the rest of the the-
sis, cache block size is the same as the size of a data block in ORAM (i.e., |b| = B from
Section 3.2.1). tag(u)/set(u)/offset(u) correspond to the tag/set/offset bits in address u.
Generally, |w| < B. Furthermore, the cache data bus width F is typically < B; we will as-
sume F divides B. An insecure L1 DCache access is now given by accessL1DCache(u, op, w′):

1. Read each tag array at address set(u) and compare each output tag with tag(u) to
determine which cache way block b is mapped to.

2. If op = read:

(a) If tag(u) was found in the tag arrays (read hit): perform an data array read at
address {set(u), offset(u)} to fetch F bits from the corresponding cache way. w, a
subset of the retrieved bits, will be returned to the pipeline. This read operation
may happen in parallel to the tag array read (Step 1, above).

(b) Otherwise (read miss):

i. Add an L2 request for tag(u) to the L2 buffer.

ii. If set(u) does not have empty space: choose a block a, that maps to set(u),
to evict through tag LRU logic and perform B

F reads to the cache data arrays
to evict a. Add (tag(a), a) to the L2 eviction buffer (read miss+evict).

3. If op = write:

(a) If tag(u) was found in the tag arrays (write hit): perform a data array write at
address {set(u), offset(u)} and replace w in b with w′. This write operation must

50

happen after the tag array read (Step 1) completes because the tag array read
determines which cache way is given write enable.

(b) Otherwise (write miss): perform Steps 2(b)i-2(b)ii above as if a read miss oc-
curred.

4. Perform a tag table write at address set(u) to update tag state based on the final
cache state (reflecting block evictions, new LRU state, etc).

A näıve/secure implementation can perform the work to complete each cache outcome (of
which there are six, corresponding to {read hit, write hit}∪{read miss, write miss}×{evict,
no evict}) in sequence. That is, perform the operations for a read hit, then a read miss, then
a read miss+evict, etc. This strategy is highly inefficient and performs on order six times
the work per access relative to an insecure system. We will use two ideas to get efficiency,
without changing any security assumptions:

1. We will “cover” the common cache outcomes (cache hits) with a static/minimal num-
ber of SRAM operations, that are performed in a fixed order. Note that SRAM reads
are distinct from SRAM writes (Section 4.2.2).

2. We will only perform uncommon outcomes (cache evictions) when the L2 cache or
ORAM completes a request. This will be referred to as lazy cache eviction.

We now illustrate idea 1 (above), also shown in Figure 5-2. Each time the L1 DCache
is accessed, according to IL1D, accessL1DCacheOpt(u, op, w′) is performed:

1. First cycle: Read the cache data arrays and tag arrays, at address {set(u), offset(u)}
and set(u) respectively. If the eventual outcome is a read hit, some way at address
{set(u), offset(u)} will contain w, which will be returned to the pipeline. Otherwise,
the data array read will be a dummy operation to some (arbitrary) address. In all
cases, the tag array read will be used to determine hit/miss/evict information for
tag(u).

2. Second cycle: Send word w or dummy data back to the pipeline. If the cache access
was a real access, the pipeline may always continue making forward progress at the
end of this cycle. If a miss occurred (as determined by the tag array read), write
tag(u) to the L2 buffer.

3. Third cycle (“in the background”): Update (write) the tag arrays at address
set(u) with the final state of the cache, invalidating evicted lines and updating LRU
information. If the cache access was a real write hit: write the data array, correspond-
ing to the cache way selected by the tag comparison, at address {set(u), offset(u)}
with data w. Write back, to all other ways, the same data that was read during the
first cycle of the operation.5 Note that an insecure processor would only need to write
back to the way that contained the data block of interest. We will discuss why Ascend
may have to write back to all ways in Section 5.4.3.

Thus, an arbitrary L1 DCache access is made up of one read+write to the tag array and
one read+write to the data array. The read occurs first to minimize the time it takes for
the pipeline to resume its operation.

5Alternatively, write arbitrary data back to a reserved address in the cache that will always be used to
implement dummy writes.

51

Waiting until cycle 3 to perform the write is an artifact of WDDL: each set of input/out-
put wires to the SRAM must be in pre-charge every other cycle. To decrease read latency
to 2 cycles, we set the address/operation inputs to the SRAM to evaluate on odd cycles,
while the data bus is set to evaluate on even cycles (which implies that pre-charge does
not impact cache read hit latency). This may complicate SRAM write timing—i.e., on an
SRAM write the address and data for the write are typically asserted in the same cycle. A
possible design solution is to (in cycle 3) hold the cache data bus in pre-charge while the
clock is high6 (see Figure 5-2), and switch to the evaluation phase while the clock is low,
which places write data at the SRAM input port by the rising edge of cycle 4.

Cache evictions. Cache evictions are only serviced lazily when a lower-level memory
(the L2 cache or ORAM) performs a refill to the L1 cache. The motivation to postpone this
operation is that a cache eviction will require B

F distinct reads (where B
F varies between 1

and 16 in modern processors)—we would like to minimize the number of times that we have
to perform this expensive operation. Lazy evictions are based on two insights. First, even
if a particular L1 access needs to evict a block, we do not have to “make space” in the L1
cache until the replacement block arrives at the cache. Second, the L2 cache and ORAM
are accessed much less frequently than the L1, which means that the lazy scheme will do the
work of real/dummy L1 cache evictions less frequently. Putting these ideas together, each
L1 DCache refill (which occurs at the end of every L2 or ORAM access) requires B

F cache
read operations (which move a real/dummy evicted block into the L2 buffer), followed by
B
F cache write operations (to load the replacement block into the L1 cache).

Additional optimizations. Details in the above design are not meant to be limiting;
we will now summarize some other possible optimizations. First, the read+write operation
may be split into two public intervals if the percentage of dynamic instructions in a given
program has a different number of loads vs. stores, on average. Second, the B

F cache read
operations that occur per eviction may be set to yet another interval, if inclusive caching is
assumed. The insight here is that while almost every real L2 access will cause an eviction
in the L1 cache (as most programs exceed the L1 cache capacity), many of these evictions
may be to clean (unmodified/read-only) data blocks which can just be overwritten in the L1
with the new data block. We point out that the L1 ICache contains only read-only blocks,
and can therefore always apply this trick when inclusive caching is used. Third, the entire
cache evict+refill operation (BF reads followed by B

F writes) can be interleaved (i.e., perform
a write after each read). The insight is that if the evict+refill operation is doing dummy
work, yet looks the same as a series of accessL1DCacheOpt() operations, then the pipeline
can perform normal cache accesses as part of the evict+refill operation. Fourth, during an
L1 Cache refill, the “critical word” in the incoming data block can be forwarded to the
pipeline early like in a normal processor. To obfuscate power draw, however, the system
must send real/dummy “critical words” to the pipeline each cycle—regardless of where the
critical word is located within the block.

5.4.3 Power Obfuscation and Cache Organization

Due to their size, caches are partitioned into smaller SRAM arrays (called subarrays), where
each subarray typically stores a subset of bits for a subset (or all) cache sets in a single
cache way. For example, the 256 Byte cell-1 SRAM array (Section 4.2.2.2) can be thought
of as a single subarray. There are different methods to organize subarrays into the complete

6This idea is similar in concept to wave-pipelining and was proposed by [22] as an alternative way to
launch the pre-charge wave.

52

cache (e.g., Cacti uses an H-tree structure [13]). A simple organization arranges subarrays
in columns and rows where all subarrays for a given row are activated in a given cache
access to deliver a complete output. This type of scheme saves power by using pre-decoders
to select only the correct row. An important point for power obfuscation is that the number
of subarrays per row is the same for all rows.

We discuss two higher-level cache organizations that impact which subarrays are acti-
vated per access. First, the tag and data arrays can be accessed in parallel (as done in
Figure 5-2). A row of subarrays for each cache way are activated per cache access and the
data from the correct way is chosen through a large mux whose select bits are generated
through tag comparator logic. We assumed this design for the L1 caches as they are per-
formance sensitive and therefore are usually implemented using such a parallel design. A
serial design, however, is widely used in L2 caches (or L3 caches in larger processors) be-
cause L2 caches are large, highly associative and more decoupled (performance-wise) from
the pipeline because of the L1. In the serial design, the tag arrays are accessed first and
used to determine which cache way contains the block/data of interest, allowing for only the
subarrays in that way to be activated. This design saves energy (less subarrays are activated
per access) but has higher access latency (the tag and data are looked up serially).

It is unclear the extent to which power-obfuscated caches can take advantage of opti-
mizations like the serial cache design, as the power consumption variation when activating
a data-dependent subset (but fixed number) of subarrays has not been studied in the liter-
ature to our knowledge. On the one hand, each cache way contains a topology of ‘identical’
SRAM subarrays, which suggests that the total energy dissipated per way, when considering
each way in isolation, is very similar across ways. On the other hand, SRAM subarrays are
large structures and the physical distance between subarrays may cause time-varying fluc-
tuations in power consumption, depending on which subarrays are activated. For example,
in large caches (e.g., the L2/last-level caches), the subarrays span the chip. One solution
to this problem might be to balance the input/output wires and the power network (as
in an H-tree) such that activating each “row” of subarrays causes variations in the power
signature at a time independent of which row of subarrays is activated.

5.4.4 Where DPA Resistance is Not Needed

The astute reader will have noticed that in Section 5.4.2, not all wires carry data-dependent
information. For instance, in accessL1DCacheOpt() the tag array is always read and then
written when the interval initiates a cache access. When the cache is accessed and how the
cache read/write signal changes is therefore data-independent, the read/write signal itself
and its control logic need not be built out of a DPA resistant logic like WDDL. The same is
true for the logic that controls interval FSMs and for the logic that controls interval policy
stall signals (which will be discussed in Section 5.6.1). In practice, however, we believe that
these types of circuits will be a minority in (at least) our current Ascend design and will
not mention where they occur from now on.

5.4.5 Hiding Cache Coherence Behavior

In addition to hiding the outcome of a given cache access, certain cache accesses may
trigger other cache accesses to maintain coherence of data throughout the chip. Recall the
distinction between inclusive and exclusive caches from Section 3.3.1. Architecturally, an
argument for an exclusive hierarchy is its increased aggregate capacity, as cache lines are

53

Victim bReq a

Victim cReq a

Req a

Req a

Back invalidates
 for c

Refill a

Resp a

Refill aRefill a

Clock edge (Pipeline activated)
L1 accessed

L2 accessed
ORAM accessed

L1 DCache

L2 Cache

L1 ICache

ORAM Buffer

ORAM Interface

L2 Buffer

L1D Buffer

L2 Buffer

L1I Buffer

Instruction Pipeline

= access only has to be made if the L2 cache is inclusive

Figure 5-3: For each cache: the set of cache accesses that must be made when a particular
cache is accessed. (The L1 ICache-related work is not shown for simplicity). Req is request
and Resp is response; a, b, c are three distinct cache blocks. “Victim” means evicted block.
Black arrows need to be taken by a normal processor; Ascend must take black and red
arrows to obfuscate cache evictions and back-invalidations.

not duplicated to preserve the inclusivity property. An argument for inclusive hierarchies
is simplified eviction logic: if a clean block is evicted from some level, it does not have to
be written back to a lower level because of the inclusivity property.

Ofbuscating power draw disproportionately increases the number of coherency opera-
tions that must be performed for inclusive cache designs. Figure 5-3 illustrates the problem:
when block c is evicted from the L2 in an inclusive hierarchy, eviction requests are sent to
any L1 cache that also holds a copy of c (to maintain inclusivity). Back invalidations cause
data-dependent behavior that can be detected through power analysis, so each L2 access
must perform all possible back invalidations (some will be dummy work) or schedule those
operations to intervals. Also, as mentioned above one of the benefits to inclusive designs is
that clean blocks evicted from the L1 do not have to be written back to the L2. To hide
whether an evicted block is clean or dirty, however, Ascend must conservatively perform a
real or dummy write back always, or at a public interval—nullifying a traditional benefit in
inclusive hierarchies [55].

5.4.6 Hiding Cache Outcome for the L2 Cache

Despite the attractive features of power-obfuscated exclusive L2 caches in terms of main-
taining coherency (see previous section), it seems significantly more difficult to obfuscate
cache outcome for the exclusive L2 cache. The fundamental issue is that when an L1 cache
evicts a block to the L2, that eviction may cause another eviction from the L2 to the ORAM
interface (this was also a source of problems in Section 3.3.1). Such chain-evictions will not
occur with an inclusive L2 cache.

We now discuss some possible designs to hide L2 cache access outcome, for both inclusive
and exclusive caches. When the L2 cache interval IL2 signals that an L2 access should be
made, there may be both an L2 request (Req a) and an evicted block (Victim b) in the L2
buffer.

54

Not possible

Not possible

L1 DCache L1 DCache

write: Victim b

read: Victim c

read: Req a

o

u
ts

ta
n

d
in

g
re

q
s

P
re

se
n

t?

Service Req or Victim

Refill a

Req a, Victim b Req a Victim b

Req a Vict b Vict c

read(-), write(-)

real

real real

real

real

real

real real

real

real

read(a), write(-)

read(a), write(b)

read(c), write(b)

real

real

read(a), write(-)

read(c), write(b)

Outcomes

1

2

3

L2 Cache

L2
Cache read

Victim c - or -
1

write

2

Refill a

d
es

ig
n

 p
ar

am
et

er

read(-), write(b)

Figure 5-4: Comparison between a strawman L2 buffer implementation (left) and an out-
of-order implementation (right). Each dashed/numbered arrow represents an L2 cache read
or write operation. Shaded grey area covers circuits that are activated on each L2 access.
The table on the right illustrates cases for an implementation that uses the out-of-order
and lazy L1 optimizations from Section 5.4.6. read(a) means “read L2 data array for Req a;
read(−)/write(−) are dummy L2 data array operations. Putting this together: the second
row of the table means “when there is a real request and no outstanding eviction, perform
a read to the set containing Req a and then perform a dummy write.”

5.4.6.1 Exclusive L2 Caches

An exclusive L2 cache must perform the following operations to handle both request and
eviction:

1. (requests) L2 data array read, to return the block associated with Req a to the L1.

2. (evictions) L2 data array read, to move/evict a Victim block c to the ORAM buffer
if writing the block evicted from the L1 (Victim b) itself causes an eviction in the L2.

3. (evictions) L2 data array write, to move Victim b into the L2.

Thus, a strawman L2 access strategy will perform two data array reads and a write per L2
access (Figure 5-4 (left)). Concretely: when the L2 cache’s interval indicates that it is time
to make an access, the L2 reads from both its request and eviction buffer and makes the
above accesses in the order listed. This scheme has a low complexity implementation: First,
the L2 buffer only has to be as deep as the number of outstanding memory requests in the
system (we assume 1 in this thesis). Second, the buffer will never overflow and therefore
does not need back-pressure logic to logically stall the L1 caches or pipeline. (By logically
stall, we mean that the pipeline/higher level caches will do dummy work until the stall ends,
but that those circuits’ observable states will be the same as if the stall did not occur).

To reduce the number of L2 SRAM operations per access, we can architect the L2
buffer to service requests and evictions out-of-order (Figure 5-4 (right)).7 We can’t “cover”
the two L2 SRAM read operations in a single read (as was done for the L1 DCache, see
Section 5.4.2) because both read operations may be real reads. Instead, we allow the L2 to
dynamically choose which buffer (request or eviction) it will read on a given access. Once

7Note that “out-of-order” does not mean that our memory consistency model has changed: from the
program’s perspective, memory read/writes occur in order.

55

chosen, the L2 will first perform a data array read (to either read Req a or Victim c) and
then a data array write (to writeback Victim b). The new scheme therefore performs an L2
read+write instead of a read+read+write (strawman).

Reading the L2 buffer out-of-order increases design complexity. First, Req a may corre-
spond to a recently evicted block which is still in the L2 eviction buffer. Thus, the eviction
buffer must be scanned prior to every L2 access (in practice, the eviction buffer will only
contain several entries). Second, the L2 buffer may fill and need to logically stall the L1
caches and pipeline. For example, suppose each L1 access adds a real request and real
evicted block to the L2 buffer, and the L2 cache always services the request (i.e., not the
evicted block) if there is a real request present. In this case, the pipeline will eventually be
able to fill the L2 eviction buffer regardless of the buffer’s depth. Two observations indicate
that in practice, this happens only rarely: First, as we will show in Chapter 7, a large
percentage of L2 accesses are dummy accesses.8 We define a dummy L2 access as an L2
access were Req a is dummy. If there is an evicted block in the L2 buffer when a dummy
access occurs, the dummy access can service that evicted block and make space in the evic-
tion buffer. The idea is similar to ORAM background evictions that occur when Ascend
makes dummy ORAM accesses (Section 3.4). Second, the case when all three operations—
read+read+write—are needed after a single L1 access seems to be rare in our benchmarks.
This case seems to happen more in memory bound benchmarks that make ORAM requests
continuously, rather than to benchmarks that rely on the L2 capacity.

5.4.6.2 Inclusive L2 Caches

For inclusive L2 caches, we can achieve the read+write design trivially. To service Req a,
an L2 read is performed as was done in the exclusive L2 case. To service Victim b, the
(possibly stale) copy of block b already in the L2 cache can be overwritten with Victim
b. As discussed in Section 5.4.5, this write must still occur to hide whether Victim b was
dirty. As with the strawman exclusive design, this design is simple to implement (i.e., the
L2 buffer may have a depth of 1, yet guarantee that the pipeline will never have to logically
stall). Furthermore, this design allows the server to optimize for the case when most lines
evicted from the L1 are clean (i.e., by splitting L2 reads and writes into two intervals as
mentioned in Section 5.4.2).

As will be quantified in Chapter 7, performing an L2 data array access (read or write)
consumes a significantly larger amount of energy than L1 cache back invalidations. Thus,
it seems the exclusive design must apply out-of-order buffer processing to be competitive,
in terms of energy efficiency, with the inclusive design.

5.5 ORAM Interface

We leave the bulk of the ORAM interface discussion to Chapter 3, and will only discuss
system integration and power obfuscation-related information here.

5.5.1 Security-Related Issues

We note the following security-related points: First, each component in the ORAM in-
terface must be built using DPA resistant logic. At a high level, the ORAM interface is

8This seems to be due to noise in the L1 cache miss rate that cannot be captured in fixed intervals.

56

composed of a position map, the local cache, symmetric encrypt/decrypt units and control
logic. To a curious program, learning which element in the position map or local cache is
accessed is equivalent to having no ORAM at all. Of course, learning the outcome of an
encryption/decryption is also a critical security hole. Second, the accessORAM() algorithm
itself (Section 3.2.1) must perform a data-independent amount of work per access. On this
topic we point out the following:

1. Reading and writing an ORAM path performs a data-independent amount of work
per access (i.e., the number of ciphertext bits in each path is constant).

2. Choosing which blocks should be written back to the Path ORAM tree (Step 5 in
accessORAM()) must perform a data-independent amount of work. [56] implicitly
assumes a data-dependent sort to decide which blocks to write back—in an Ascend
context, this may leak information through the power channel because the number
of blocks in the local cache is access-pattern dependent (Section 3.3.1). Fortunately,
a simpler linear/data-independent scan that reads the entire local cache once can
achieve the same eviction rate and is simpler to implement hardware-wise. Suppose
the local cache can hold up to C blocks. Then the eviction algorithm reads the local
cache C times; for each read, control logic determines the highest level in the ORAM
tree that the corresponding block can be evicted to. This is a Boolean function whose
outcome depends on the leaf index assigned to the corresponding block, the current
path being read/written and the load on each bucket along the path. The load on
each bucket is stored in flip-flops and is updated after each access. This scan uses the
insight that if the highest level that blocks b1 and b2 can be mapped to is level l, the
eviction rate is independent of which block is evicted to level l.

5.5.2 Systems Integration-Related Issues

In addition to storing each cache block’s tag in on-chip cache tag tables (as in a normal
processor), Ascend must also store the current Path ORAM leaf index associated with each
cache block in tag tables as well. This adds an additional L bits per entry for each block in
the tag table, where L < 32 typically (see Section 3.2.1). Leaf indices are needed to support
L2 (last-level) cache evictions: when a cache block is evicted from the L2, it is added back
to the ORAM interface’s local cache. In order to get evicted to the ORAM tree during the
Path ORAM writeback operation (Step 5 in accessORAM()), each block in the local cache
must have an associated leaf also stored in the local cache at that time.

Despite being Ascend’s last-level memory, Path ORAM can be inclusive or exclusive in
the same sense as the on-chip caches. Suppose a block b, whose program address is u, is
currently mapped to Path ORAM leaf l. In an exclusive Path ORAM:

1. If Ascend has a last-level cache miss for u: the ORAM interface performs
accessORAM(u, read,−) operation to read b, and replaces b with a dummy block
in the data ORAM tree.

2. If (b, u, l) is evicted from Ascend’s last-level cache, it is added to the ORAM interface
local cache and pushed to the ORAM tree during the Path ORAM writeback operation
(i.e., in the background).

In an inclusive Path ORAM:

57

1. If Ascend has a last-level cache miss for u: see corresponding operation for the exclu-
sive case.

2. If (b, u, l) is evicted from Ascend’s last-level cache:

(a) If b is clean: do nothing. Conceptually, the block is removed from the system
because an up-to-date copy is already owned by the ORAM interface. To obfus-
cate the power draw of clean evictions, a dummy SRAM write can be performed
to the ORAM interface local cache.

(b) If b is dirty: perform accessORAM(u,write, b) to replace the stale copy in the
ORAM tree. Note that with small probability, the bucket containing the stale
copy of b will be read into the local cache, as part of another ORAM operation,
while the dirty copy of b is present in the local cache. For security reasons,
the dirty block and stale block cannot be merged if this happens: an explicit
accessORAM(u,write, b) operation must always be made.9

The position map ORAMs (if the Recursive Path ORAM is used) still contain the mapping
for (b, u) in both inclusive/exclusive setups.

We will assume an exclusive Path ORAM for the following reasons. First, the inclusive
case is more complex because it needs to (conditionally) perform explicit Path ORAM
operations to write back dirty lines. As noted, this operation may also leak privacy if not
performed properly. Second, it is not clear what benefit (from a local cache occupancy
standpoint) inclusive ORAMs will have over exclusive ORAMs. Suppose a program is
scanning memory (i.e., the on-chip caches will fill) and that each block read is read-only
(i.e., each block evicted from the last-level cache will be clean). This is intuitively the best
case scenario for the inclusive setup. With an inclusive cache, each last-level cache miss will
(potentially) add a block to the local cache (i.e., the block that was read and remapped).
The last-level eviction (if any) will not add a block to the local cache because that block
was clean. With an exclusive Path ORAM, each last-level cache miss will not add a block
to the local cache, since that block will have been forwarded to the on-chip caches. On the
other hand, each last-level miss for the exclusive case will cause a last-level eviction, which
will add a block to the local cache. Thus, in this pathological scenario (which was designed
to benefit the inclusive case) the inclusive and exclusive add the same number of blocks to
the local cache per last-level miss.

Note that the above argument may not hold when the last-level (L2) on-chip cache is
exclusive, since an exclusive L2 may evict blocks to the ORAM interface, yet still hit in the
L2 (Section 5.4.6.1). In that case, writing clean blocks to the ORAM interface can have
higher impact.

5.5.3 Performance-Related Issues

We will only use the version of early completion (Section 3.2.3) that forwards data to
Ascend’s pipeline after the entire path has been read into the ORAM interface. This choice
is made for energy efficiency reasons: to obfuscate the power draw for the most aggressive
early completion scheme (i.e., forward the requested data block as soon as it is read into
the local cache), the ORAM interface would have to forward real or dummy data every

9If we allow stale and dirty lines to be merged based on other ORAM operations, the leaf accessed during
accessORAM(u,write, b) will be correlated to the sequence of previous accesses. This was also why security
broke with the block remapping background eviction scheme (Section 3.3.4).

58

cycle during the read path step in accessORAM(). We believe that this change would have
a disproportionate energy-performance trade-off.

5.6 Interval Policies: Dynamically Trading Off Power & Per-
formance

Once intervals are designed and cache accesses/coherence/etc are obfuscated, each memory
can additionally be given an interval policy that says whether higher levels (e.g., the pipeline
or L1 caches) inside Ascend will continue to be accessed while a lower level (e.g., the L2
or ORAM) is doing real/dummy work. Interval policies were introduced in Section 4.3.3
and apply to all of the instruction pipeline, caches and ORAM because these components
interact in a clear producer/consumer fashion. As mentioned in Section 4.3.3, the big idea
behind these policies is to improve energy efficiency for programs that have more regular
behavior.

In the next several sections we will explain how to set policies so that the server can
make performance and energy trade-offs based on its apriori knowledge of the program
running on Ascend. We will not discuss secure SRAM or WDDL-related concerns in this
section and point out that the interval policy idea generally applies to any DPA resistant
logic that can be switched between on/off states (Section 4.2.3).

We allow for each memory level i to have its own policy Si (Si ∈ P ∀i) and say that
each Si = SI (for speculative) or = CI (for conservative). (Notation note: “memory level
i = 1” refers to the L1 DCache). If Si = SI: memory level i being accessed, as instructed
by its interval, does not impact the state of the rest of the Ascend chip. This is implicitly
the scheme we have assumed for each memory up to this point. If Si = CI: the instruction
pipeline, L1 ICache10 and cache levels 1, . . . , i − 1 are switched to the off state, regardless
of their intervals, while memory level i is performing an access. Since no circuit can do
work in the off state, the CI policy causes higher levels of the system to logically stall by
extension.

To be secure, each Si causes strictly data-independent behavior: i.e., if Si = SI, the
higher levels never depend on whether memory level i is accessed, and always depend on
memory level i for the CI policy. As with public intervals, we want the server to be able
to set each Si dynamically so that chip behavior can be tailored to different programs.
Figure 5-5 shows one way to implement interval policies (for the architecture in Section 5.1)
that matches the above definitions and constraints. The takeaway is that the logic cost to
implement dynamic policies as opposed to fixed policies is cheap: several AND/OR gates
per memory.

For the interested reader, Section 5.6.1 goes over the signal behavior in Figure 5-5 in
detail. Sections 5.6.2-5.6.4 discuss some common policy combinations, and how the server
can choose which one to use for a given program.

5.6.1 Interval Policy Gate-level Signal Behavior

This section discusses the timing in Figure 5-5 in detail. Following the figure, assume SI is
encoded as logic 1 and CI is encoded as 0. As usual, each memory has an input buffer (shown
as 1 for the L1 DCache) which stores pending requests and data block evictions. We do

10There is a 0% chance that any L1 ICache access will do useful work if the pipeline is switched to the off
state.

59

INC:

Clock

Chip pins

Data
L1D
FSMPipeline

L1
DCache

S1

I_L1D = 1

INC:

When L1 is
accessed

L2
FSM L2

Cache
INC:

When L2 is
accessed

ORAM
FSM ORAM

Interface

Requests & evictions, synchronized to intervals

Stall signals

1

2

3

4

5 RDYENABLE6

S2
S3PENABLE

I_D_L2 = 2 I_ORAM = 3

Figure 5-5: Interval policy gate-level implementation. S1,...,3 implement interval policies
as discussed in Section 5.6. In this design, SI is encoded as logic 1 and CI is encoded as
0. When the speculative policy is in effect for the L2 (for example), S2 = 1. When the
PENABLE signal is 1, the pipeline is switched to the on state.

not show the L1 ICache because its on/off state is tied to the pipeline (see previous section).
At a high level, the buffer passes requests through to its memory only when allowed by its
interval FSM (e.g., the L1D/L2/ORAM FSMs in the figure).

Consider how the pipeline interacts with the L1 DCache as an example. The INC signal
(2) is pulsed to increment the L1D FSM’s internal counter.11 Initially, the L1 DCache is
not performing an access and is in the off state. When the L1D FSM’s counter reaches the
value corresponding to the I L1D input (i.e., the L1 DCache interval, 3):

1. The L1 DCache clears its RDY signal (5) to logic 0 and switches to the on state.

2. An access is made to the L1 DCache, which performs the steps discussed in Sec-
tion 5.4.2. If there is any real data in the L1 buffer at this time, that data is passed
to the L1 DCache (4); otherwise dummy work is sent. By the end of this step, any
requests or block evictions to the L2 cache are now stored in the L2 buffer.

3. The INC signal into the L2 FSM is pulsed once. If the L2 FSM’s counter reaches the
interval threshold I D L2, repeat these steps for the L2 cache.

4. The L1 DCache sets its RDY signal to logic 1 and switches back to the off state.

The ENABLE signal (the output of the AND gate labeled 6) implements interval policies:
we say that the INC signal only increments its FSM’s internal counter when ENABLE is set to
logic 1. As long as ENABLE is 0, no accesses will be made to the corresponding memory and
that memory will not consume dynamic power. Examining the gate behavior in Figure 5-5,
the ENABLE signal prevents the L1D FSM’s internal counter from incrementing in one of
three circumstances:

1. The L1 is currently servicing a request (i.e., its RDY signal is logic 0). We assume no
pipelined memory accesses for simplicity.

11E.g., INC is pulsed every cycle for the L1D FSM.

60

2. The L2 cache is currently servicing a request and S2 = 0 = CI, which means the L2
was given a conservative policy.

3. The ORAM interface is currently servicing a request and S3 = 0 = CI.

Similar rules apply to the L2 cache and ORAM. With the ORAM, however, we will toggle
the ENABLE to logic 1 when the ORAM read path operation completes, following the early
completion optimization (Section 3.2.3). We will discuss intuition for the server choosing
policies in the next few sections.

5.6.2 Example: Fully Speculative Policies

If the server wants (a) to maximize performance for a given interval setting or (b) has low
confidence in the correct setting for each memory interval, it should set all memory levels
to the speculative interval (SI) policy.

Performance maximization. By definition, a fully speculative policy means that the
pipeline is always in the on state and all memories are accessed at their respective intervals,
regardless of when any other memory is accessed. Thus, if a consumer memory is performing
a dummy access, a fully speculative policy boosts performance because there is no program
data dependency and the producer (a higher level memory or the instruction pipeline) can
continue making forward progress. If the consumer is performing a real access, there is
a program data dependency and the producer cannot make forward progress. A normal
processor would stall when there is an outstanding dependency; to maintain security, the
producer(s) must evaluate dummy work until the dependency is satisfied, wasting energy.

See Figure 5-6a for a detailed example. Almost immediately (t = 2 cycles), the pipeline
reaches i1 which needs data from ORAM; thus all work performed until t = 6027 is dummy
work—wasting a significant amount of energy. At the same time, once i1 retires the pipeline
is able to execute 10 more instructions and reach the next memory-bound instruction i11—
before the next ORAM access is made. Thus, the second ORAM access is a real access. The
big point here is that the pipeline was only able to reach i11 in time because the pipeline
was never switched to the off state while a memory was being accessed.

Low confidence. Another way to look at interval policies is through how confident the
server is in setting interval values for a specific program. In Figure 5-6, I L1D/I D L2/I ORAM

are set to 1/2/3, respectively, which the server must specify. If the server is not confident in
this interval setting,12 it expects Ascend’s memories to be doing dummy work some of the
time (in effect creating false data dependencies). To minimize performance loss due to false
dependencies, the server should opt for the pipeline to never stall on a false dependency—
which is the essence of the speculative policy.

5.6.3 Example: Fully Conservative Policies

If the server has high confidence that it set each interval correctly, it should set all memory
levels to the conservative interval (CI) policy.

With this scheme, all higher levels in the system stall when a consumer is performing
real/dummy work. If the consumer memory is performing real work, the conservative
policy saves energy because higher levels and the pipeline are waiting on an actual program
dependency. If the consumer was doing dummy work, time is wasted because the higher

12The program may not have been sufficiently profiled offline or may contain large amounts of data-
dependent control flow that cannot be captured well with static, strict intervals.

61

Time

Access in progress (RDY = 0, on state)Waiting for access (RDY = 1, off state) Cache refill

L1D FSM state

L2 FSM state

ORAM FSM state

PENABLE
D D D i1 retiresDi0 i2 i3 i4 i5 i6i1

(b) Fully Conservative All caches and pipeline wait for data to return

Real request Dummy request

Real request

Past this point, Ascend stalls and wastes time
despite there being no dependency on ORAM

L1D FSM state

L2 FSM state

ORAM FSM state

PENABLE
Di1 D D D D D D D Di0 D D i2 i3 i4 i5 i6 i7 i8

(a) Fully Speculative All caches and pipeline do wasted dummy work

i1 i9 DD

Real request

DD

Real request

All work past this point
is wasted dummy work

Real requestReal request
i11D DD

0 2 4 6 8 10 12 14 16 18 20 22 24 26 6026 6029 6032 6035 6038 6041 6044 6047 6050 6053

L1D FSM state

L2 FSM state

ORAM FSM state

PENABLE
DDi1 D D D D D D D D D D D D D D D D Di0

(c) Hybrid All caches and pipeline wait for data to return

Real request

Real request

D i2 i3 i4 i5 i6 i7 i8i1 i9 D DD
Real request

i11D DD D D D

Real request
All caches and pipeline
wait for data to return

Figure 5-6: How interval policy impacts system timing and energy consumption. Assume the
signal names (RDY, PENABLE) from Figure 5-5. Instructions are labeled i#; D means dummy
work was performed by the instruction pipeline. Arrows represent cache accesses. For each
part of the diagram, only i1 and i11 access memory and both of these instructions need
to access ORAM. I L1D/I D L2/I ORAM are 1/2/3, respectively. That is, the L1 DCache is
accessed every cycle; the L2 cache is accessed every second L1 DCache access; the ORAM is
accessed every third L2 cache access. Accessing the L1/L2/ORAM takes 1/3/6000 cycles,
respectively.

levels could be making forward progress but are not allowed to preserve security. Note that
the conservative policy only reduces dynamic power consumption: even when a memory or
the instruction pipeline is in the off state, it still has leakage power.

As we will show in Chapter 7, the fully conservative policy is very sensitive to each cache’s
interval setting. See Figure 5-6b: as with the fully speculative policy, the conservative policy
is able to reach i1 before the first ORAM access is made. During the first 6026 cycles, the
conservative policy is therefore the right decision: very similar amounts of forward progress
are made relative to the speculative scheme but the energy consumption for the conservative
policy is far less (i.e., when the ORAM is accessed, the rest of Ascend is clock gated). On
the other hand, once the first ORAM access returns, the conservative scheme cannot reach
i11 by the time the second ORAM access is made. This is a result of the pipeline stalling
when any memory access is outstanding. Hence, the second ORAM access is dummy and
the system unnecessarily stalls for ∼ 6000 cycles.

Livelock prevention. We point out that accessing caches and ORAM at synchronous
intervals (see Section 5.1) is important in preventing livelock when the system uses a fully
conservative policy.13 Consider a design similar to Figure 5-5 where every interval is syn-
chronous to the clock. E.g., the L1 cache is accessed IL1 cycles after the last L1 access
completes, the L2 is accessed IL2 cycles after the last L2 access completes, etc. Given cer-
tain interval settings for each memory, the stall signal sent to the instruction pipeline may

13Note: this livelock is distinct from the livelock associated with ORAM background eviction; see Sec-
tion 3.3.3.

62

always be high and no program forward progress will ever be made. For instance, if each
interval is set to a very low value, the union of stall signals (see Figure 5-5) may always
be high. By accessing consumer memory level i only after the producer memory level i− 1
is accessed some integer number of times, the producer necessarily makes forward progress
after the consumer completes each access.

5.6.4 Example: Hybrid Policies

Recall that the server can set a different policy for each memory: a hybrid policy refers
to any policy where for any two memory levels i and j, Si = SI and Sj = CI. (Figure 5-5
supports these hybrids without change).

The hybrid we will focus on in this thesis applies the speculative policy to each cache
and the conservative policy to the ORAM. This policy is based on the observation that
the ORAM latency is orders of magnitude greater than the L1 or L2 latencies. In other
words: the low-hanging fruit to saving energy while preserving performance is to maximize
the chance of sending useful work to the ORAM. See Figure 5-6c: the hybrid policy is
equivalent to the fully speculative scheme in terms of performance and almost as efficient
energy-wise as the fully conservative scheme while the first ORAM access is outstanding.
Also like the fully speculative scheme, the hybrid is able to reach i11 by the second ORAM
access, once again achieving the best of both worlds.

63

64

Chapter 6

Certified Execution

Certified execution allows the user to detect whether a malicious server (a) passed off results
obtained from a different program, (b) ran a program for some number other than T cycles,
or (c) tampered with Ascend’s external memory (i.e., ORAM) during execution. Ascend
can obtain a certificate of execution as follows. During initialization Ascend computes
and locally stores a hash of its inputs: h = hash(P ||x||y) where || is the concatenation
operation. When the processor finishes after T cycles, the result of the computation is
signed together with h and T . The signature together with P and y is sent back to the
user.1 In order to guarantee that, by verifying the signature, the user (or third party) is
convinced that the result was produced after T cycles of executing P (x, y), the processor
needs to integrity-verify the external memory [17]. ORAM requests are made as described
in Chapter 3, and as in the Aegis processor [20, 27] encrypted values read from the ORAM
tree are integrity-verified.

6.1 Motivation

The first motivation for certified execution is to tolerate malicious servers that try to cheat
by running for fewer than T steps, or running a program different from P , since the certifi-
cate will not verify. Even if the client is not capable of verifying the program hash against
P , however, certified execution is still helpful in a multi-interactive protocol setting.

Multi-interactive protocols generalize the two-interactive protocol from Section 2.2 by
allowing the user to send an intermediate result back to the server so that more work can be
done. The benefit is that the protocol will yield P (x, y) instead of an intermediate result;
the downside is additional privacy leakage. Without certified execution, this leakage can
easily break security: for each server-user interaction, the server can return the intermediate
result after 1 additional cycle is run (for example). If the user interacts with the server x
times, the server will suspect that the program took exactly x cycles to run. With certified
execution, the user controls leakage: the user may ask the server to run for T1 cycles, then
T2, etc.2 The user will know for certain that each interaction will be run for the specified

1If a trusted third party certifies hash(P) to correspond to a trustworthy algorithm with P ’s specification,
then instead of P the server may send back hash(P) together with y, the third party certificate and h =
hash(hash(P)||x||y) (generated by Ascend). In the case P is supplied by the server, this protects the server
from revealing the detailed code of P . If P is supplied by the user, then P is known to the user, so, it does
not need to be sent back.

2One strategy might be that Ti+1 = 2 · Ti.

65

B3 B4 B6Level 2

Level 1

Level 0

B5

B0

Level 0

Level 1

Level 2 h5 = H(B5) h6 = H(B6)h3 = H(B3) h4 = H(B4)

A
u

th
e

n
ti

ca
ti

o
n

 T
re

e

Stash

(h0 stored inside Ascend)
depends on h1, h2, B0, f , f

Reads

Writes

P
at

h
 O

R
A

M

O
R

A
M

In

te
rf

ac
e Ascend pins

Leaf 1 Leaf 2 Leaf 3 Leaf 4

h0 ,f , f0
0

1
0

B1 ,f , f0
1

1
1 B2 ,f , f0

2
1
2

h1 depends on h3, h4, B1, f , f 0
1

1
1 h2 depends on h5, h6, B2, f , f 0

2
1
2

0
0

1
0

Figure 6-1: Integrity verification on top of Path ORAM. hash() is abbreviated H(). All data
touched in external memory per Path ORAM access is shaded.

number of cycles, which allows the user to obfuscate the true running time by its choice of
each Ti.

6.2 Integrity Verification

To implement certified execution, we build an integrity verification layer on top of Path
ORAM (Section 3.2.1) to verify that all the retrieved blocks from the ORAM tree are
authentic, i.e., they were produced by Ascend, and fresh, i.e., when a block is loaded from
ORAM, it corresponds to the latest version that Ascend wrote to ORAM. The integrity
verification layer allows Ascend to certify whether its computation is based on correct inputs
from ORAM. As discussed previously, Ascend only interacts with the outside world through
ORAM.

A strawman approach to implementing the integrity layer is to store a Merkle tree in
external memory. Each leaf of the Merkle tree stores a 160-bit hash (e.g., if using SHA-1)
of a data block in the ORAM. We note that this scheme would work with any kind of
ORAM, and similar ideas are used in [52]. To verify a block, a processor needs to load
its corresponding path and siblings in the Merkle tree and check the consistency of all the
hash equations. This scheme has large overheads for Path ORAM (triples access latency),
because all the Z(L+1) data blocks on a path have to be verified on each ORAM access. So
Z(L+ 1) paths through the Merkle tree must be checked per ORAM access, which contain
Z(L+ 1)2 hashes in total. (Z and L are given in Section 3.2.1).

To avoid having to initialize the authentication tree at program start time,3 we add two
bits to each bucket—labeled f i0 and f i1 for bucket i and stored in external memory along
with bucket i—that are conceptually valid bits for bucket i’s children. We say bucket i is
reachable from the root bucket if all valid bits on the path, from the root bucket to bucket i,
equal 1. We define reachable(Bi) = 1 if Bi was reachable at the start of a particular ORAM

3We assume that at start-up time, the authentication and ORAM trees consist of random bits corre-
sponding to the uninitialized DRAM state.

66

access and = 0 otherwise. We maintain the invariant that all reachable buckets from the
root bucket have been written to through ORAM operations at some point in the past.

Each intermediate node in the authentication tree now stores the hash of the concate-
nation of (a) child bucket valid flags, (b) the corresponding bucket in the Path ORAM tree,
and (c) the sibling hashes for that intermediate node. Authentication works as follows:
Suppose the root bucket is labeled B0 and the root hash/child valid flags (stored inside the
ORAM interface) are h0/f

0
0 /f10 respectively. We initialize h0 = H(0) and f00 = f01 = 0 at

program start time. Following the figure: to perform an ORAM access to block B5 mapped
to leaf l = 3, the ORAM interface performs the following operations:

1. ORAM path read: read B0, B2 and B5 and child valid flags f20 , f21 .

2. Read sibling hashes for the path (h1 and h6).

3. Compute h′5 = H(B5), h
′
2 = H(f20 ||f21 ||(f20 ∨ f21) ∧ B2||f20 ∧ h′5||f21 ∧ h6), h′0 =

H(f00 ||f01 ||(f00 ∨ f01) ∧ B0||f00 ∧ h1||f01 ∧ h′2), where ‘∨’ and ‘∧’ are logical OR/AND
operators.4

4. If h0 = h′0, the path is authentic and fresh!

5. Update child valid flags: f00
′ = f00 , f01

′ = f20
′ = 1 and f21

′ = f21 ∧reachable(B2). Update
the root bucket child valid flags (inside the ORAM interface) to f00

′,f01
′.

6. ORAM path writeback: evict as many blocks as possible from the stash to the path
3 (forming B′0, B

′
2 and B′5). Write f20

′,f21
′ as the new child valid flags for B′2.

7. Re-compute h5, h2 and h0; write back h5 and h2.

All data touched in external memory is shaded in Figure 6-1.
Note that only the sibling hashes need to be read in from the authentication tree. The

hashes on the path of interest are computed by the processor, by hashing the buckets read
via the Path ORAM operation concatenated to the sibling hashes. We point out that since
hashes are computed from the leaves to the root, only the reachable portion of the path
in the authentication tree needs to be read per access. That is, if the path to B5 is being
accessed (see above) and f00 = f01 = 0 at the time of the access, h′0 = H(0||0||0||0||0) = H(0),
which is independent of any values in the authentication tree. Conceptually, the child valid
flags indicate a frontier in the ORAM/authentication trees that has been touched at an
earlier time.

In summary, on each ORAM access at most L � (L + 1)2Z (sibling) hashes need
to be read into the processor and L hashes (along the path) need to be written back to
the external authentication tree. This operation causes low performance overhead beyond
accessing ORAM.

4Note that (f i
0 ∨ f i

1) ∧ Bi = Bi if reachable(Bi) = 1 and is only needed to get the correct value for h′
0

before the first access is made. This OR-AND operation is applied to other non-leaf buckets for the sake of
consistency, but is not required.

67

68

Chapter 7

Evaluation

To evaluate Ascend, we will first provide an argument for security; then, we will explore
power and performance trade-offs.

7.1 Security

In order to argue Ascend’s security, we need to show that at most a negligible amount of
private information about user-specified inputs may leak. We consider an adversary A who
experiments with Ascend by running its own programs on the private inputs with time
budgets of its own choice and by controlling the communication from external RAM whose
state is known to A at any time. A observes the power pins and I/O pins. The power trace
from the power pins can be analyzed, e.g., by SPA and DPA (which, together, we refer
to as PA for power analysis). The I/O pins only show the digital output of the ORAM
interface, this includes the time when bits are outputted.1 A uses the combination of all
observed information to try to correctly predict some private information with non-negligible
probability.

A security proof (sketch) for Ascend relies on three properties:

1. Below, we define power analysis (PA) resistance and use this property to show that if
Ascend is PA resistant, then any adversary A can be simulated by a second A′ who
has no access to the power pins at all, but does have access to each data-independent
parameter (e.g., server-specified intervals and policies) at every moment in time.

2. By assuming the semantic security of AES based on the user’s session key and assum-
ing the indistinguishability of the (keyed) PRNG output from truly random output,
the security property of ORAM holds. This property states that the bit sequence that
is exchanged over the I/O channel cannot be distinguished from bit sequences that
are exchanged with the ORAM interface for random load/store request patterns that
come from L2 (last-level) cache. This means that A′ can be simulated by a third A′′
that only receives timing information about when output bits are transmitted over
the I/O channel. (A′′ does not receive the bit values or a power trace).

3. Since the timing of transmissions is solely based on server/adversary specified intervals
and interval policies, this timing information can be simulated by a fourth adversary

1Power fluctuations on top of the digital output are assumed to be smoothed away by a phase locked
loop. An alternate assumption would be that the adversary is not monitoring power on the I/O pins.

69

A′′′ who receives no output from Ascend at all. That is, no non-negligible information
about private encrypted inputs leaks to any of the adversaries, in particular, A.

7.1.1 Circuit Requirements for PA Resistance

For our reduction from A to A′ to work, we need for the circuits that Ascend is built upon
to have the following definition of PA resistance (we only give an informal sketch here). Let
BN be a circuit for which we want to define PA resistance. We assume adversaries who
want to learn/predict information about BN’s state variables s as a function of time. For
example, if BN represents AES for some symmetric key K, then K is part of s. If BN
represents Ascend, then the decrypted private inputs are at one time or another part of
s. PA resistance should quantify to what extent the adversary is limited in learning more
information about s than what would be possible without access to the power trace.

In our definition we consider probabilistic polynomial time (ppt) adversaries A who (1)
may interact with BN as a black-box by only observing/controlling the power pins and I/O
pins and (2) may also have access to some other side channel O that leaks information about
s. We say BN is ε-PA resistant if, for all O and for all A, there exists a ppt simulator S
whose output distribution, given O but not BN’s power trace, is “ε-indistinguishable” from
the output distribution of A. This definition says that whatever A predicts can be closely
simulated (as quantified by ε) by a simulator who does not have access to BN’s power trace.

Our definition in terms of simulators and side channels is useful for proving the security
of a composition of primitives. Suppose that part of the output of BN1 serves as part of
the input to BN2 and that A is given side channel O. Then, A with access to a new side
channel, given by the composition of BN2 and O, will try to attack BN1. Since BN1 is
ε1-PA resistant, there exists a simulator S ′ such that the output distributions of A and
S ′ are ε1-indistinguishable. Now adversary A′ defined as S ′ with access to side channel
O attacks BN2. Since BN2 is ε2-PA resistant, there exists a simulator S such that the
output distributions of A′ and S are ε2-indistinguishable. By using a triangle inequality,
we conclude that the output distributions of A and S are (ε1 + ε2)-indistinguishable, hence,
the composition of BN1 and BN2 is (ε1 + ε2)-PA resistant (notice that aggregation of the
power pins to BN1 and BN2 in the composed circuit only improves PA resistance).

We note that our definition resembles the line of thought in recent work [48, 58] which
corresponds to a definition of PA resistance where “ε-indistinguishable” is replaced by a
similarity metric on what is observed by A and what is modeled by S.

7.1.2 Relation to Circuit Primitives

Given the circuit primitives from Chapter 4, ε-indistinguishability roughly corresponds to
normalized energy/standard deviation (NED/NSD) or the difference in power draw given
the set of possible inputs to BN. Informally, our composability definition requires that each
circuit’s observable state (Section 4.2.4) change only as a function of data-independent
events. In other words, the security of the entire system reduces to the security of the
WDDL and cell-1 SRAM primitives.

Given our primitives, BN is composed of an SRAM array, a Boolean network composed
of gates/flip-flops or a combination of these. Consider BN1 and BN2 being ε1 and ε2-
indistinguishable (where ε-indistinguishability corresponds to how NED/NSD is defined for
each type of circuit—see Sections 4.2.1-4.2.2).

If BN2 is composed of logic gates and flip-flops, its behavior is defined by when it is in

70

the pre-charge and evaluation phase, which logic values are present at each input when it
is in pre-charge and evaluation, and when clock enable is set (i.e., when BN2 is in the on
state—see Section 4.2.3). From previous discussion:

1. When clock enable is set is fully determined by public parameters in P (Section 4.2.3).

2. Given that clock enable is set: when BN2 is in evaluation/pre-charge depends only on
data-independent counters (Section 4.2.1.2).

3. The values on each wire during pre-charge are always the same (Section 4.2.1).

Thus, BN1 can only influence BN2 by changing which logic values are present in each
evaluation phase.

If BN2 is an SRAM array, its behavior is determined by its address a, data d, operation
op (read/write) and clock enable inputs. Given the architecture proposed in Chapter 5, both
clock enable and op are fully determined by public parameters in P and static behavior. For
example, when the public interval starts an L1 DCache access (Section 5.4.2), a read (cycle
1, after the access starts) is followed by a write (cycle 3, after the access starts). Thus, BN1

can only influence BN2 by changing a and d into the SRAM array.

Thus, regardless of BN2, BN2 can only be influenced by factors already captured within
its definition of NED/NSD. We conclude that the composition between BN1 and BN2 is
(ε1 + ε2)-PA resistant.

7.2 Performance and Power

In this section we will evaluate Ascend’s power and performance overheads relative to an
insecure processor.

7.2.1 Methodology

7.2.1.1 Benchmarks

We evaluate processors like Ascend over a subset of the SPEC06-int benchmarks—SPEC
puts stress on the memory hierarchy [34] and therefore tests Ascend’s overheads (intervals,
memory access obfuscation, the ORAM interface, etc) to the extent possible. We classify
SPEC into three categories: memory bound, balanced and compute bound (Table 7.1).
These categories are based on observed cache miss rates and will help us explain results.

Table 7.1: Benchmark categories.

Memory bound Balanced Compute bound

bzip2, libq, mcf hmmer, astar, perlb, gcc, gobmk h264, omnet, sjeng

7.2.1.2 Comparison Points

We compare the following processors:

71

baseline: An insecure processor that runs programs “in the clear.” The insecure system
has a normal memory controller to main memory, does not obfuscate circuit behav-
ior/build any circuit out of DPA resistant logic or encrypt/decrypt any data. baseline
has no public parameters: when some circuit (e.g., the cache) is given work, the work
is carried out as soon as the circuit becomes available.

ascend io: A version of Ascend that protects the I/O channel (Chapter 3) only. This design
uses all ORAM-related optimizations mentioned in the thesis: use of background
eviction, early completion, AES pad size reduction. ORAM is accessed at a public
interval IORAM (i.e., P = {IORAM}), but the chip only stalls when a real ORAM
request is made.

ascend: The complete Ascend proposal. In addition to ascend io, this design assumes WD-
DL/cell-1 SRAM for concreteness (Section 4.2), applies DPA resistant logic and
architecture-level optimizations as discussed throughout Chapters 4-5. This configu-
ration is parameterized by the intervals from Section 5.1.3 and the interval policies
from Section 5.6. We note that for SPEC benchmarks, the L1 ICache miss rate is
∼ 0%—thus we will fix IL1I and II→L2 to very large values and abbreviate ID→L2 to
IL2. Thus, P = { IL1D, IL2, IORAM , S1, S2, S3 }, and we will vary these parameters
in our experiments.

We show ascend io to show an intermediate, yet meaningful, level of security. For instance,
an adversary may not have access to the power pins at all (i.e., is only capable of performing
software-based attacks).

7.2.1.3 Simulator and Metrics

We model processors with a cycle-level simulator based on the public domain SESC [14] sim-
ulator that uses the MIPS ISA (recall Section 5.3). Instruction/memory address traces are
first generated through SESC’s rabbit (fast forward) mode and then fed into a timing model
(Table 7.2) and power model (Table 7.3). Each experiment uses SPEC reference inputs,
fast-forwards 1-20 billion instructions to get out of initialization code and then monitors
performance/power until 3 billion instructions worth of application forward progress is made
(dummy instructions do not count). Performance-wise, this is equivalent to an instructions
per cycle (IPC) metric. Power is measured in Watts. To get a holistic comparison, we will
use a combined power-performance product which is given by:

PPP(ascend conf) =
IPC(baseline)

IPC(ascend conf)
∗ PWR(ascend conf)

PWR(baseline)

where PWR() gives average power consumption in Watts. In other words, the PPP metric
is Ascend’s performance overhead times power overhead.

The top section in Table 7.3 (labeled Events) shows nanojoules per individual processor
operation (assuming a 1 GHz clock, 45 nm technology, and no security countermeasures).
Power consumption for baseline is modeled by counting the number of processor opera-
tions per simulation, multiplying each count by its energy expenditure in nanojoules, and
converting the sum of these products into power expenditure in Watts.

AES energy (Ascend only) is taken from [40], scaled down to our frequency and up
to a 1 AES block/cycle throughput; the FPU (Efpu) is modeled after a single-precision
fused multiply-add from [44]. We were not able to find comparable energy numbers for

72

Table 7.2: Processor timing model and baseline architecture. We assume the cache hierarchy
organization from Section 5.1.

Core model

in order, single issue, instructions advance 1 pipeline stage/cycle

Pipeline stages per Arith/Mult/Div instr 1/4/12
Pipeline stages per FP Arith/Mult/Div instr 2/4/10

On-Chip Memory

L1 I/D Cache 32 KB, 4-way
L1 I/D Cache hit+miss latencies 1+0/2+1
L2 Unified/Exclusive L2 Cache 1 MB, 16-way
L2 hit+miss latencies 10+4
Cache/ORAM block size (B/8) 128 Bytes
L1/L2 Cache bus bandwidth (F/8) 64 Bytes/cycle
On/Off-chip network/pin bandwidth (P) 16 Bytes/cycle

Main memory (DRAM/ORAM) capacity 4 GB

the ALU (Ealu) so we approximate it to be the same as the FPU.2 Epins models each pin
transition as the amount of energy stored in a capacitor (given by 1

2CV
2), assuming 1 pF

capacitance 1 V. Other energies (caches, register files (rf), cache buffers, etc) are taken
from CACTI [13]. To orient the reader, the IPC and power consumption for baseline given
our timing and power model is shown in Table 7.4.

The Compound Ops section in Table 7.3 shows each compound processor operation
assumed for ascend. Additional overheads from DPA logic are discussed below, in Sec-
tion 7.2.1.5. #(ORAM transfers) is the number of 128-bit data transfers that occur per
ORAM access. The number of compound operations can be converted into Watts in the
same way as with the insecure processor.

7.2.1.4 Cache Energies

All L1 caches in our evaluation are designed to be parallel tag/data array lookup (i.e., the
design in Figure 5-2). This is a high performance design, representative of real L1 cache
designs in the industry. The L2 caches have serial tag/data array lookups, allowing only a
single way to be activated per access. This again follows industry: larger highly-associative
caches that are not on a processor’s critical path should employ a more power-conscious
design. Recall the discussion from Section 5.4.3: to hide which cache way contains the block
of interest in the L2 cache, we increase the energy consumption per L2 access for ascend by
16×—the number of ways in the cache, given by #(L2 ways) in Table 7.3. We will not try
to approximate the overhead of accessing multiple subarrays per way, but remark that the
L1/L2 caches generated by CACTI in Table 7.2 contain 2/4 subarrays per way, respectively.

7.2.1.5 Additional DPA Resistant Logic Overheads

To model the overhead from DPA resistant logic (modeled after WDDL and cell-1 SRAM
cells, see Section 4.2), we:

2Note that since the L1 ICache is accessed constantly (Section 5.1.3), the ALU/FPU energies are insignif-
icant.

73

Table 7.3: Power model for processor operations. srcL1 is used to indicate which L1 cache
will be refilled on an L2/ORAM access, and can be one of L1I, L1D, (L1I, ascend) or
(L1D, ascend).

Events :

Erf,int = .0032 // two read, one write

Erf,fp = .0048 // “ ”

Efpu = .0148 // one instruction

Ealu = Efpu // “ ”

EL1D = 0.609 // read/write

EL1I = EL1D // “ ”

EL1,refill(srcL1) =

⌈
B

F

⌉
∗ EsrcL1

EL2 =

⌈
B

F

⌉
∗ .766 // “ ”

Epin = .064 // per 128 bit (P = 16 Bytes) transfer

Elocal$ = .0588 // per 128 bit read/write

EAES = .33 // per 128 bit block

Compound Ops :

EI.pipe,ascend = (Erf,int + Erf,fp + Efpu + Ealu)

EL1D,ascend = 2 ∗ EL1D // read + write

EL1I,ascend = EL1I // read

EL2,ascend(srcL1) = 2 ∗ (#(L2 ways) ∗ EL2) + 2 ∗ EL1,refill(srcL1)

// read + write to L2, lazy L1 evictions, way obfuscation

EORAM = #(ORAM transfers) ∗ (Epins + EAES + Elocal$)+

2 ∗ (EL1,refill(L1I) + EL1,refill(L1D))

Table 7.4: Representative baseline IPC/Power (in Watts) over SPEC reference inputs.

bzip2 libq mcf gobmk sjeng hmmer astar perlb gcc h264 omnet

IPC 0.292 0.298 0.203 0.375 0.391 0.358 0.360 0.328 0.329 0.310 0.348
Power 0.283 0.232 0.218 0.303 0.308 0.301 0.301 0.296 0.299 0.309 0.304

1. Adjust cache access/instruction cycle latencies to take into account circuit pre-charge.
With our cycle latency reduction optimizations from Sections 5.2 and 5.4, this typically
adds 1 cycle to the baseline latencies in Table 7.2. We do not model additional cycle
latency per SRAM access, if there is indeed any in practice (Section 4.2.2.2).

2. Increase all circuit power consumptions in Table 7.3 by 2× (to account for comple-
mentary logic and secure SRAM cells) with two exceptions:

(a) Epins does not increase because the pins themselves are not DPA resistant.

74

(b) EAES increases by 4×: 2× for the complementary logic overhead and 2× be-
cause we need two times as many AES blocks to maintain 1 AES block/cycle
throughput (due to WDDL pre-charge reducing throughput by 2×).

We do not normalize for area between the baseline and ascend, and assume the same
clock frequency in all experiments. In some cases, area overhead from primitives such as
WDDL is straightforward: For example, if baseline supports an inter-cache bus of F bits
(which requires F wires), ascend will require F ′ = 2 · F to achieve the same bandwidth, as
each wire must be complemented. Furthermore, cell-1 SRAM arrays and related work are
reported to incur a 40%-70% area overhead [31, 36]. The area overhead for large WDDL
circuits (e.g., the pipeline) is unclear due to unpredictable place-and-route tools.

We remark that should ascend be area-normalized to baseline, the size/associativity/etc
parameters for different chip memories/etc (Table 7.2) should be re-evaluated. For example,
suppose the area overhead of each ascend component is 2×. The näıve solution is to reduce
the L2/L1 capacity by 50%. A better solution would be to keep the L1 capacity the same
and reduce the L2 by more than 50%.

7.2.2 Path ORAM in Secure Processors

In this section, we will determine which ORAM configuration to use for the rest of the
chapter. In all experiments, we assume an ORAM with a 4 GB capacity that stores up to
1 GB of program data (which is sufficient for the SPEC workloads [35]) and only consider
configurations whose ORAM interface can be implemented using < 200 KB of dedicated
on-chip storage. With these constraints, we will need to use the Recursive Path ORAM
construction (Section 3.2.2). Recall that for the Recursive Path ORAM:

1. On-chip storage consists of each ORAM’s local cache and the smallest ORAM’s posi-
tion map.

2. Each ORAM needs to be accessed on each memory request, which gives an access
latency of t =

∑X
i=1CyclesPerAccessi cycles, where X is the number of Path ORAMs

in the recursive construction and CyclesPerAccessi is the cycle latency to access
ORAM i, given by Equation 3.1.

7.2.2.1 Choosing ORAM Block Size

We will first optimize each ORAM’s data block size B. From Equation 3.1, we know that
decreasing the block size B for ORAM i reduces the cycle latency for ORAM i. From
Section 3.2.1.4, we see that to get an ORAM with constant capacity as B decreases, N
(the number of data blocks in the ORAM tree) must increase. Thus, the position map for
ORAM i increases as B decreases. This gives a trade-off: to decrease access latency for
ORAM i, more ORAMs may be needed to reduce the final position map to a reasonable
size manageable in on-chip storage.

In all experiments, we will fix the block size B for the data ORAM. Recall that B for
the data ORAM is also Ascend’s on-chip cache block size (see Table 7.2), which is set to
exploit spatial locality in programs. There is, however, no reason to use a large block size
for the smaller (position map) ORAMs because all we need from each position map ORAM
per access is a leaf label, which is typically smaller than 4 Bytes. Thus, a smaller block size
may be preferred for all position map ORAMs.

75

0

1000

2000

3000

4000

5000

6000

128 64 32 128 64 32 16 128 64 32 16 128 64 32 16

A
cc

e
ss

 la
te

n
cy

 (c
yc

le
s)

Position map block size (Bytes)

ORAM 5 ORAM 4
ORAM 3 ORAM 2
Data ORAM

strawORAM, Z=4 optORAM, Z=4 optORAM, Z=3

B =

optORAM, Z=2

Figure 7-1: Latency breakdown in cycles for each ORAM in the Recursive Path ORAM
construction. The number of ORAMs for each configuration is set to minimize overall access
latency, subject to the constraint that on-chip storage in the ORAM interface is less than
200 KB.

0

2

4

6

8

10

12

14

bzip2 mcf gobmk sjeng hmmer libquantum h264ref omnetpp astar perlbench gcc Avg

P
er

fo
rm

an
ce

 o
ve

rh
ea

d

optORAM, Z=2
optORAM, Z=3
optORAM, Z=4
strawORAM, Z=4

Figure 7-2: Performance impact, varying Z and Path ORAM optimizations.

Figure 7-1 shows the optimal block size for the position map ORAMs. In all experiments,
each position map ORAM is given the indicated block size. strawORAM uses the strawman
encryption scheme (Section 3.2.1.1) and optORAM uses the counter-based encryption scheme
(Section 3.2.1.2). For each block size, we add Path ORAMs to the Recursive construction
until the total on-chip storage is less than 200 KB, assuming each local cache is limited
to 100 entries, plus the length of one path. The local cache constraint is important: in
the figure, it is not clear whether the Z = 3 or Z = 2 configurations will be usable, since
those configurations can lead to large, average local cache occupancies (Section 3.3) if our
background eviction technique (Section 3.3.2) is not used. If Z = 3 or Z = 2 are usable, they
can achieve a 41% and 93% reduction in raw access latency, relative to strawORAM, Z = 4.

Notice that for strawORAM, Z = 4, decreasing the position map block size hits dimin-
ishing returns and can’t achieve its best performance point if the position map block size
is < 64 Bytes. This is because the overhead to encrypt each block in strawORAM is large:
a 128-bit pad per block. optORAM, on the other hand, can achieve better performance
with a 32-Byte position map block size, when Z = 4, 3—leading to an overall performance
increase. optORAM eventually hits diminishing returns: if the position map block size is
< 32 Bytes, or if Z = 2, the counter dominates the size of each block.

7.2.2.2 Choosing Z, the Number of Blocks Per Bucket

We now evaluate the performance-optimal configurations from Figure 7-1 on the SPEC
benchmarks, and show the effect of our optimization techniques.

76

Table 7.5: ORAM configurations used for performance comparison in Section 7.2.2.
strawORAM assumes no optimizations from the thesis and is equivelent to an ORAM con-
figuration used in [50]. optORAM assumes all optimizations. The x/2 cycle latency modifier
refers to the early completion optimization—ORAM latency for those configurations is x/2
cycles, but a new ORAM request can only be made once every x cycles.

Design Pt. Data/Pos. Map ORAM Block Size B # ORAMs Latency (cycles)

strawORAM, Z = 4 128/128 3 5362
optORAM, Z = 4 128/32 4 3752/2
optORAM, Z = 3 128/32 4 3090/2
optORAM, Z = 2 128/64 4 2260/2

Figure 7-2 compares end-to-end performance using the designs in Table 7.5. All per-
formance overheads are relative to baseline. All optORAM configurations use background
eviction, early completion and the counter-based encryption scheme. The strawORAM uses
none of these optimizations—and is therefore limited to Z = 4—for comparison purposes.
Overall, optORAM, Z = 3 with a 32 Byte position map block size performs best, and
reduces average execution time by 58% compared to strawORAM, Z = 4. Furthermore,
optORAM, Z = 3 incurs only 2.4× performance overhead relative to baseline. Thus, we will
use optORAM, Z = 3 as our ORAM configuration for the rest of the chapter.

Noteworthy is that optORAM, Z = 3 improves upon optORAM, Z = 2 by 3%, de-
spite the smaller access latency for optORAM, Z = 2. This is because optORAM, Z = 2
requires a greater number of background evictions per access, as was shown in Table 3.1.
Not surprisingly, the improvement is most significant for the memory bound benchmarks
(libquantum, mcf and bzip2).

7.2.3 Public Parameter Design Space Exploration

In this section, we will show the performance/power impact from public intervals which,
together, completely specify Ascend’s observable behavior. Recall from Section 1.3: the
server can profile each program that it plans to run offline to learn that program’s common
case behavior. The server can then set each public parameter for each program, when that
program is run on hidden user inputs, based on this common case behavior.

To imitate this setup, we will use two different inputs for every benchmark: a training
input and a test input.3 When possible, both the training and test inputs are SPEC reference
inputs. In certain cases (e.g., mcf, sjeng, libquantum) there is only one reference input and
the training input is set to a SPEC training input. The only exception is libquantum, where
we chose a large pair of composite numbers to factor (mimicking the reference input).4

The training input is public and owned by the server. For each benchmark P and cor-
responding training input, we will sweep values in P such that power-performance product
is minimized—giving us a concrete setting for each parameter, which we refer to as PP,train.
We then compare baseline, running the test input, with an Ascend configuration running
the test input, where public parameters in Ascend are set to PP,train.

3This evaluation will only use a single training input per benchmark. Thus, our results may be improved
through using additional training inputs and taking the best average parameter setting.

4We found that libquantum’s behavior was similar for many sufficiently large composite numbers.

77

Note that for any setting of PP,train, the server will be able to predict Ascend’s power
consumption exactly given any user input. (If this was not the case, Ascend would not be
secure). Thus, if PP,train results in a power consumption that exceeds some power budget,
the server can change PP,train in a way that minimizes performance degradation for the
training input.

7.2.3.1 Performance/Power for ascend io

This section gives the overhead for ascend io, which completely hides program behavior on
the I/O channel only. Using the results from Section 7.2.2, Figure 7-3 shows the performance
and power overheads for each benchmark when the ORAM is set to an interval. In the figure:
train shows, for each benchmark and training input, the power/performance overhead for the
value of IORAM (swept between 1 and 2000 clock cycles) that minimizes power-performance
product. test shows power/performance on the test input, using the same ‘optimal’ value
for IORAM as used on the training input for the same benchmark.

Generally, the IORAM value chosen by the training input yielded similar perfor-
mance/power overheads for the test input. Several exceptions are astar, hmmer, bzip2
and perlbench—which actually perform better with test than with train. This is due to
test having (coincidentally) less dependence on external memory than train. For instance,
the L1D/L2 miss rates for bzip2 with train/test are 1.3%/38% and 0.5%/25%, respectively.
The other outliers are gcc and mcf, which perform worse with the test input for the same
reason that bzip2 performs better. We point out that this is not unexpected for gcc—
control flow and data accesses for that benchmark depend heavily on the input. For mcf,
L1D/L2 Cache miss rates for the training input are 27%/11% and the corresponding test
input miss rates are 14%/27%. This suggests that the training point should perform worse,
since its L1 DCache miss rate is substantially higher than that of the test input. Since the
test point has a higher L2 Cache miss rate, however, the average number of cycles between
each ORAM request is still lower than with the training point.5 Thus, the dependence on
ORAM is greater for the test input and performance suffers.

Overall, preventing leakage on the I/O channel causes an average performance/power
overhead of 2.6×/2.2×, respectively, relative to baseline. It is noteworthy that setting
ORAM to an interval causes only 9.5% additional performance overhead, relative to running
ORAM without intervals (Section 7.2.2.2).

7.2.3.2 The Impact of Intervals and a Fully Speculative Policy

We will now evaluate the fully speculative interval policy (Section 5.6.2) for the complete
Ascend proposal (ascend). Figure 7-4 (top/middle/bottom) shows how IPC and power,
given the training input, varies as IL1D/IL2/IORAM vary, respectively. For example, Fig-
ure 7-4 (top) fixes IL1D to a specified value, fixes S1 = S2 = S3 = 1, and sweeps IL2/IORAM .
Each point (with corresponding power consumption given as the red dot) corresponds to
the parameter setting that maximizes performance. We vary IL2 and IORAM between 1
and 50 for all experiments. To constrain the design space, we sweep IL1D from 1 to 5 but
additionally show the result for when IL1D = 50 for consistency.

5We note that the % of dynamic instructions that access memory is similar for training/test inputs. So,
to estimate the average number of cycles between when each input needs to access ORAM, one can use

L1D$hit
L1D$miss%

∗ L2$hit
L2$miss%

, where the numerators refer to cycle latency per access and denominators refer to miss

rates. Through this check, the test input needs to access ORAM 27% more than the training input.

78

1

1.5

2

2.5

3

3.5

4

4.5

1

2

3

4

5

6

7

8

9

bzip2 mcf gobmk sjeng hmmer libquantum h264ref omnetpp astar perlbench gcc Avg

P
o

w
e

r
o

ve
rh

e
ad

P
er

fo
rm

a
n

ce
 o

ve
rh

ea
d

train test

Figure 7-3: The best training point (in terms of power-performance product) and resulting
test point given the same values for IORAM . Power is shown as the red dot.

1

11

21

31

41

51

1

2

3

4

5

6

7

8

bzip2 mcf gobmk sjeng hmmer libquantum h264ref omnetpp astar perlbench gcc

P
o

w
e

r
o

ve
rh

e
ad

P
er

fo
rm

an
ce

 o
ve

rh
ea

d

L1DInt = 1

L1DInt = 2

L1DInt = 3

L1DInt = 4

L1DInt = 5

L1DInt = 50

10 10.5 9.5 9.7 8.8

8.7

1

6

11

16

21

26

31

36

41

46

1

3

5

7

9

11

bzip2 mcf gobmk sjeng hmmer libquantum h264ref omnetpp astar perlbench gcc

P
o

w
er

 o
ve

rh
ea

d

P
er

fo
rm

an
ce

 o
ve

rh
ea

d

L2Int = 1

L2Int = 10

L2Int = 20

L2Int = 30

L2Int = 40

L2Int = 50

1

11

21

31

41

51

1

2

3

4

5

6

7

8

9

bzip2 mcf gobmk sjeng hmmer libquantum h264ref omnetpp astar perlbench gcc

P
o

w
er

 o
ve

rh
ea

d

P
e

rf
o

rm
a

n
ce

 o
ve

rh
e

ad

OramInt = 1

OramInt = 10

OramInt = 20

OramInt = 30

OramInt = 40

OramInt = 50

Figure 7-4: Performance and power impact from varying public intervals with a fully specu-
lative policy. Each graph fixes the interval shown in the legend (right) and varies the other
intervals to find the point that maximizes performance. Each bar represents performance
slowdown and each dot represents power overhead.

Varying IL1D (Figure 7-4 (top)) has the most impact on the compute bound benchmarks.
For instance, varying IL1D from 1 to 3 decreases performance for h264 by 42%, but only
decreases power consumption by 4.2%. This is because h264 has a very low L1 DCache miss
rate (< .1%) and a % dynamic instruction composition that is 52% memory instructions—
making its performance very sensitive to the L1 DCache hit latency. Other compute bound
benchmarks are similar. (We focus on varying IL1D between 1 and 5 for performance

79

0%

20%

40%

60%

80%

100%

bzip2 mcf gobmk sjeng hmmer libquantum h264ref omnetpp astar perlbench gcc

Lo
n

g
R

eq
u

es
t

R
at

e L1DInt = 1

L1DInt = 2

L1DInt = 3

L1DInt = 4

L1DInt = 5

L1DInt = 50

Figure 7-5: The percentage of long requests sent to the L1 DCache, for the points shown in
Figure 7-4 (top).

reasons, but show IL1D = 50 for consistency).

Notice that peformance does not degrade monotonically as IL1D increases (e.g., IL1D = 4
yields better performance, on average, than IL1D = 3). This is because our instruction
pipeline does not fetch a new instruction until the last instruction retires, which was a design
decision and not fundamental (Section 5.2). Due to our pipeline, IL1D = 3 is usually too
small and new memory requests often occur when the L1 DCache is servicing an outstanding
real/dummy request (we refer to this case as a long L1 DCache request). Long requests
incur a potentially large performance penalty (i.e., a L1D$hit + IL1D cycle L1 DCache hit
latency, where L1D$hit is the cycle latency for an L1 DCache hit, without intervals). Thus,
long requests impact performance more heavily as IL1D = 1 → 3. Figure 7-5 shows the
long request rate for each point shown in Figure 7-4 (top). Notice that between IL1D = 3
and IL1D = 4 (e.g., for h264), both the performance overhead and percentage of long L1
DCache requests drops significantly.

Varying IL2 (Figure 7-4 (center)) has a dramatic impact on overall power. This is
because EL2,ascend (see Table 7.3) depends on the number of ways in the L2 cache—for
our parameter setting, an L2 access costs ascend ∼ 51 nJ, whereas the baseline system can
perform the same access for between 1.5 − 3 nJ (depending on whether an L1 eviction
occurred). One way to decrease this overhead is to re-architect the L2 Cache and L2 access
protocol. We assume lazy L1 evictions (which marginally increases the cost of an L2 access)
and a read+write compound L2 access (Section 5.4.6). We could also reduce the number
of L2 ways, or perform the write operation at a separate interval (i.e., if the L2 is inclusive
and the program has a significant amount of read-only data, as explained in Section 5.4.2).

Without making any hardware changes, however, a simple yet effective solution is to
just increase IL2 (causing the L2 cache to be accessed less frequently). By increasing IL2
from 1 to 50, overall power consumption drops by a factor of 3.5×, yet performance (on
average) drops only by 22%. The memory bound benchmarks are corner cases—in partic-

0%

20%

40%

60%

80%

100%

O
R

A
M

 d
u

m
m

y
ac

ce
ss

 r
at

e

Figure 7-6: The percentage of dummy requests made to the ORAM, for the point shown
in Figure 7-4 (bottom) that constrains IORAM = 1. Conceptually, this is the point that
maximizes the dummy request rate to ORAM.

80

ular, increasing IL2 causes mcf to drop in performance by 66%, yet the same change seems
to have no performance consequence for libquantum. This is due to the early completion
ORAM optimization (Section 3.2.3). Not shown: libquantum has a 99% L2 cache miss
rate and mcf has an 11% L2 miss rate. With early completion, benchmarks can continue
making forward progress as soon as the read path operation (Step 3 in accessORAM() in
Section 3.2.1) completes. Because libquantum (almost) always misses the L2 cache, it is
always able to make a real request to the ORAM between when the Path ORAM writeback
operation (Step 5) starts and the next call to accessORAM() is made—regardless of IL2.
This is important because it allows us to dramatically decrease the power consumption for
libquantum “for free.” mcf, on the other hand, has a lower L2 miss rate and therefore needs
to access the L2 cache more times (i.e., do more work) in order to generate a real request
to ORAM.

Varying IORAM (Figure 7-4 (bottom)) has the greatest impact on the memory bound
benchmarks (mcf and libquantum in particular). We can tell that the drop in performance
is due to IORAM being overset (i.e., is too large) for two reasons. First, as IORAM increases,
memory bound benchmark performance decreases. Second, on average, those two bench-
marks make dummy accesses to ORAM ∼ 3.6% of the time (see Figure 7-6)—generally, the
faster ORAM is accessed, the better. The early completion ORAM optimization yields a
very small ORAM dummy rate, even for the point shown in the graph (where IORAM = 1).
Notice that varying IORAM does not have a big impact on power. The lack of impact is
because changing IORAM does not impact the values for other intervals (as opposed to IL1D,
discussed in Section 5.1.3).

7.2.3.3 Performance/Power for ascend (Speculative Policy)

Putting ideas from the previous section together, Figure 7-7 shows the performance/power
overheads for ascend running each benchmark on both training and test inputs. This exper-
iment re-uses the methodology from Sections 7.2.3-7.2.3.1, constrained to a fully speculative
interval policy.

As with ascend io, certain benchmarks perform better on the test input than the training
input. Let us reconsider bzip2, whose L1D/L2 miss rates with train/test are 1.3%/38% and
0.5%/25%, respectively. Since miss rates for the test input are smaller than with the training
input, each interval is set too low for test. Yet, the test input still performs better than
the training input because the fully speculative policy allows forward progress to be made
in higher levels (e.g., the pipeline) while lower levels (e.g., the L1 DCache) are servicing
dummy requests. Overall, the fully speculative policy has an average performance and
power overhead of 3.6× and 6.9×, respectively, relative to baseline.

7.2.3.4 Case Study: Memory Bound libquantum

We will now perform a more in-depth analysis of libquantum, a memory bound benchmark.
For reference, relevent statistics for libquantum are shown in Table 7.6. libquantum is
interesting because its % memory instructions and L1 DCache miss rate suggests that it is
not memory bound, but its L2 miss rate is very high (99%), effectively making it memory
bound in an Ascend setting.

Since libquantum’s L2 miss rate is so high, it spends most of its time accessing ORAM
(as stated in Section 7.2.3.2). For instance: nearly all settings for each public interval
yielded a ∼ 0% ORAM dummy request rate. Thus, intuition suggests that a hybrid interval

81

1

3

5

7

9

11

13

1

3

5

7

9

11

13

bzip2 mcf gobmk sjeng hmmer libquantum h264ref omnetpp astar perlbench gcc Avg

P
o

w
e

r
o

ve
rh

e
ad

P
er

fo
rm

an
ce

 o
ve

rh
ea

d

train test

Figure 7-7: The best training point (in terms of power-performance product) and resulting
test point given the same values for each interval. Power is shown as the red dot. All points
use a fully speculative policy.

Table 7.6: Relevant benchmark statistics for libquantum, for the training and test inputs.
% memory instructions refers to the dynamic instruction sequence per input. All statistics
are taken over 3 billion real instructions.

training test

% memory instructions 18 28
L1 DCache miss rate (%) 4.1 2.9

L2 cache miss rate (%) 99 99

policy (Sections 5.6.4) that switches the caches and pipeline to the off state, while ORAM is
being accessed, will reduce energy without impacting performance. Figure 7-8 (left) shows
Pareto performance/power curves for a fully speculative, fully conservative (Section 5.6.3)
and hybrid policy for libquantum only. For this experiment, we swept IL1D between 1− 5,
and IORAM between 1−50, as done in Section 7.2.3.2, for each interval policy. We widened
the search space for IL2 to be between 1 − 100, to ensure that any result would not have
artificially high energy consumption due to accessing the L2 too often (see the discussion
of IL2 in Section 7.2.3.2).

The main result is that the hybrid policy causes the fully speculative policy’s Pareto
curve to shift down: for the training input, power consumption drops by 56% (relative to
the fully speculative policy), while performance degrades negligibly (∼ 1%). Thus, using
the hybrid interval policy is a compelling choice for libquantum. Figure 7-8 (right) shows
power/performance for libquantum when run with the test input. For this experiment: we
manually selected a P, constrained to the hybrid policy and using training inputs, whose
performance was equal to the fully speculative points6 and that minimized power consump-
tion for this performance level. This was done to get the desired effect: a drop in power
consumption for negligible loss in performance. We then, as usual, applied this setting of
P to the test input; we see that the test input behaves very similarly to the training in-
put. This result, when combined with the results from the last section, give us an average
performance and power overhead of 3.6× and 6.6×, respectively, relative to baseline.

The reason that libquantum gets reproducible power efficiency with the hybrid scheme
is that its L2 miss rate is high and predictable. During each ORAM read path operation
(Step 3 in accessORAM() in Section 3.2.1), the Ascend chip (aside from the ORAM interface)
switches to the off state to conserve energy. Since the ORAM dummy rate is almost

6I.e., a point on the performance wall of IPC = .045 in Figure 7-8 (left).

82

0.25

0.75

1.25

1.75

2.25

2.75

3.25

3.75

0.01 0.02 0.03 0.04 0.05

P
o

w
er

 (
W

)

IPC

Hybrid

Fully conservative

Fully speculative

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

P
o

w
e

r
o

ve
rh

e
ad

P
e

rf
o

rm
an

ce
 o

ve
rh

ea
d

train, fully speculative test, fully speculative

train, hybrid test, hybrid

Figure 7-8: libquantum case study. (Left) Pareto curves for different interval policies.
(Right) Power/performance improvements for the hybrid policy over the fully speculative
policy.

0%, this does not severely impact performance. While the ORAM writeback operation
(Step 3 in accessORAM()) is happening, Ascend is in the on state and the right strategy
in terms of setting intervals is for the Ascend chip to perform as little work as possible
(reducing energy) such that the next L2 access is made as close to, but not after, the
ORAM writeback operation completes. Finally, the next ORAM read operation begins and
the process repeats.

Notice that the fully conservative policy still achieves lower power consumptions than
either the fully speculative or hybrid scheme. At the same time, performance suffers dra-
matically (40%) even for the point with the highest performance. This drop in performance
is not necessarily fundamental and may be an artifact of constraining our design space ex-
ploration for each public interval value. This presents a problem: if the conservative policy’s
optimal setting for each public interval varies widely for each benchmark, it may require
excessive amounts of profiling to find good interval settings for the conservative scheme.
The next section will discuss heuristics to find good interval settings, without having to
sweep a range of values.

7.2.4 Heuristics For Setting Public Parameters

Up to this point, we have relied on the server profiling each benchmark on training inputs
by sweeping values for each public parameter in P. This has the disadvantage that as
|P| becomes large—which may be desirable in order to capture more fine-grained behavior
found in programs (see Section 5.4.2 for some examples)—the amount of profiling that has
to be done may increase exponentially. A natural question is whether the server can guess
values for each public parameter, given a |P|-independent amount of work that grows much
slower with |P|.

In this thesis, we designed each interval with a higher-level meaning in mind. For
example, the IL2 is the number of times the L1 DCache must be accessed before making an
L2 access (Section 5.1.3). A good guess for IL2, therefore, might factor in the L1 DCache
miss rate. The insight is that given program P and training input M , P (M)’s L1 DCache
real miss rate is independent of the value of any parameter in P. Thus, the server need only
run P (M) once, set PP,train based on statistics such as miss rate, and apply this setting to

83

0

20

40

60

80

100

120

140

160

bzip2 mcf gobmk sjeng hmmer libquantum h264ref omnetpp astar perlbench gcc Avg

P
w

r-
P

er
f

P
ro

d
u

ct
 Fully speculative (full sweep-avg, train)

Fully speculative (full sweep-best, train)
Fully speculative (heuristic, train)
Fully speculative (heuristic, test)
Fully conservative (heuristic, train)
Fully conservative (heuristic, test)

Figure 7-9: Power-performance product, varying interval policy, interval selection heuristic
(not shown), and benchmark input.

the test input.
We now describe heuristics for setting each public interval based on these ideas. Suppose

Q(P (M)) (Q for short) is the dynamic sequence of all instructions issued by P (M). In all
cases, M is the training input. Then each interval can be estimated by:

IL1D =

⌈
|Q| ∗ L1I$hit +

∑|Q|
i=1 Exe(Qi)∑|Q|

i=1 Mem(Qi)

⌉

IL2 =

⌈
1

L1Dmiss(P (M))

⌉
IORAM =

⌈
1

L2miss(P (M))

⌉
where L1I$hit is instruction cache hit latency (given in Table 7.2), L1Dmiss()/L2miss() return
the miss rates for the L1 DCache/L2 cache. Exe(Qi) returns the execute stage cycle latency
for the ith instruction (given for each instruction type in Table 7.2) and Mem(Qi) returns
1 if the ith instruction is a memory instruction (or returns 0 otherwise). Intuitively, IL1D
is set to the average number of cycles between when consecutive memory instructions send
requests to the L1 DCache (factoring out cache miss latency).

In practice, we find that for certain benchmarks, the heuristic for IL1D oversets that
interval by a large amount. For instance, the heuristic for IL1D yields values that range
between 5 and 14. Yet in previous sections, we found that certain benchmarks (e.g., the
compute bound benchmarks) suffer large hits in performance if IL1D > 1. The heuristic
for IL1D may be wrong for these benchmarks because of memory access time patterns
that cannot be captured in intervals (e.g., when a function call is made, many memory
instructions occur consecutively to push/pop the stack). Thus, in the following discussion
we will evaluate two settings for intervals:

1. heuristic full: Set IL1D, IL2 and IORAM as specified above.

2. heuristic partial: Set IL2 and IORAM as given above, and set IL1D = 1 always.7

and choose the setting that yields the better power-performance product (PPP) on the
training input.

Figure 7-9 shows PPP varying the public interval search heuristic, benchmark input and
interval policy. To summarize labeling in the graph:

7This means that IL2 and IORAM might be underset. We found that adjusting IL2 and IORAM to
compensate has little impact in power/performance, unless many values are swept—which somewhat defeats
the purpose of using the heuristics. We note that increasing IL2, to compensate for IL1D = 1, causes large
performance degradation.

84

1

6

11

16

21

1

3

5

7

9

11

13

bzip2 mcf gobmk sjeng hmmer libquantum h264ref omnetpp astar perlbench gcc

P
o

w
e

r
o

ve
rh

e
ad

P
er

fo
rm

an
ce

 o
ve

rh
ea

d
 Fully speculative (full sweep-best, train) Fully speculative (heuristic, train)

Fully speculative (heuristic, test) Fully conservative (heuristic, train)

Fully conservative (heuristic, test)

Figure 7-10: Power-performance breakdown (as before, power is shown as a red dot), varying
interval policy, interval selection heuristic (not shown), and benchmark input.

1. Fully speculative (full sweep− best, train) means fully sweep the space of interval values
given the training input (as done in Section 7.2.3.2) and the fully speculative interval
policy. Choose the interval setting with the best (lowest) PPP and run that point on
the training input.

2. Fully speculative (full sweep− avg, train) means the same as #1, except choose the
interval setting in the sweep that yields the mean of PPP. This will be used for
comparison purposes only.

3. Fully conservative (heuristic, test) means use heuristic full and heuristic partial to set
each interval value (see previous paragraph) given the training input and a fully
conservative interval policy. Record which heuristic yielded a lower PPP and use the
parameter values chosen by that heuristic on the test input.

In all cases, public intervals are set based on the behavior of the training input. For com-
parison purposes, we show results for when both the training and test inputs are evaluated
given those interval settings.8

7.2.4.1 Interval Policy Recommendations

The first observation in Figure 7-9 is that both the speculative and conservative poli-
cies, when evaluated on the training inputs, yield average PPPs that are on-par with
Fully speculative (full sweep− best, train). In fact, the fully conservative policy yields a
30% improvement in PPP over Fully speculative (full sweep− best, train). This means
that by using the two heuristic interval settings, we can achieve better quality of re-
sults than a baseline speculative scheme, without sweeping interval values. We show
Fully speculative (full sweep− avg, train) to make a point about PPP variance: the aver-
age PPP is worse than the best by 68%, so our heuristics had the potential to perform quite
badly. We note (not shown) that for the fully speculative policy, 5 out of 11 benchmarks
yielded better PPPs with heuristic partial, and 3 out of 11 chose heuristic full given a fully
conservative policy.

8Note that we won’t use heuristics to set interval policies. Unlike intervals, which have natural heuristics
such as instruction composition and miss rate, it is less clear how to guess which interval policy will yield
the best PPP. One idea for future work might be to perform analysis on multiple training inputs, to see the
extent to which program behavior changes based on input (i.e., if program behavior is input-independent,
as is the case with software encryption algorithms, the fully conservative policy is a compelling choice).
Fortunately, using heuristics to guess intervals is more important than guessing interval policy because the
space of interval values far exceeds the space of interval policies.

85

Table 7.7: Recommended interval and interval policy settings given interval setting heuris-
tics.

Benchmark IL1D IL2 IORAM Interval policy

astar 10 15 38 Fully Speculative
bzip2 1 74 3 Fully Conservative
libq 14 25 2 “”
mcf 9 4 9 “”

gobmk 1 56 29 “”
sjeng 1 181 11 “”

hmmer 4 183 3 “”
gcc 1 189 7 “”

perlb 1 74 13 “”
h264 1 599 508 “”

omnet 1 52 2476 “”

The second observation in Figure 7-9 is that the better PPP occurs for both training
and test inputs with the same interval policy. This means that if the server selects (for ex-
ample) the fully conservative policy for mcf—because Fully conservative (heuristic, train) has
a better PPP than Fully speculative (heuristic, train)—this decision correctly predicts that
Fully conservative (heuristic, test) yields a better PPP than Fully speculative (heuristic, test).
This is important because it means we can perform small additional amounts of offline
profiling, on top of the interval selection heuristics, to set each interval policy. Based on
analyzing PPP for the training input, the server should choose the parameter values given
in Table 7.7 for each benchmark, when running the test input, which are summarized here.

1. The server should select the conservative policy for every benchmark except for astar
(see Figure 7-9).

2. (Not shown) The server should select heuristic full for 4 benchmarks (mcf, libquantum,
hmmer, astar). The remaining benchmarks should use the heuristic partial setting.

The exact settings for each benchmark is shown in Table 7.7. Putting these decisions
together while evaluating the test inputs, our interval selection heuristics yield 5.2× perfor-
mance and 4.7× power overhead, on average, relative to baseline (see Figure 7-10).

Figure 7-10 breaks down performance and power overhead explicitly for the data shown
in Figure 7-9. Generally, the fully conservative policy sacrifices some amount of performance
for a disproportionate savings in energy. For example, between speculative and conservative
policies, mcf loses 10% performance but improves in power consumption by 82%. This means
the interval selection heuristics are working and that the test input does not significantly
deviate from training input behavior. (If the test input did deviate significantly, or if the
heuristic generated wildly incorrect values, the frequent stalls imposed by the conservative
interval policy would cause large performance degradations as seen with libquantum in
Section 7.2.3.4). Note that for some benchmarks (e.g., hmmer), the conservative policy
seems to perform better than the corresponding speculative point. This is an artifact of
each policy choosing whichever heuristic setting—heuristic full, etc—yields a better PPP on
the training input. We note (not shown) that heuristic partial yields better performance and
worse energy efficiency than heuristic full, regardless of interval policy.

86

Chapter 8

Related and Future Work

We now describe work related to performing secure computation on encrypted data and
discuss future research directions for the Ascend setting.

8.1 Related Work

We break related work into the following categories: fully-homomorphic encryption (theo-
retical, more secure than Ascend) and tamper-resistant hardware (practical, less secure than
Ascend). Lastly, we discuss other work done to secure either the I/O or power channels,
individually.

8.1.1 Fully Homomorphic Encryption (FHE) Techniques

In [39], Craig Gentry presented the first fully homomorphic encryption (FHE) scheme [3, 38]
that allows a server to receive encrypted data and perform, without access to the secret
decryption key, arbitrarily-complex dynamically-chosen computations on that data while it
remains encrypted. FHE evaluates programs as circuits and therefore implicitly assumes
batch computation as does Ascend. FHE, however, assumes no physical security and is
impervious to all physical side channels (I/O, power, EM, etc). FHE is currently theoretical:
performance overheads are roughly seven orders of magnitude for straight-line code, and
significantly more for general-purpose batch programs. Since FHE offers such a strong
security guarantee, we will briefly discuss some work related to running general-purpose
batch programs under FHE.

Several works [41, 53] have investigated how to run simple programs under FHE. In
[41], a domain-specific language based on Haskell was designed to support simple FHE-
based programs without data-dependent loops. [53] shows how information flow tagging
can limit leakage due to control flow constructs.

Several works [51, 43] have investigated FHE for general-purpose batch programs. [51]
described program interpreter-level techniques for efficiently mapping programs with com-
plex control flow constructs to FHE. In that work, program execution can be optimized
for the common-case; in exchange, the user gets a probabilistic guarantee that a program
completes (which is similar to Ascend’s notion of running for T time). Brenner et al. [43] de-
scribe a processor architecture—built out of software FHE circuits—for running encrypted
programs. An important difference between Ascend and the work of Brenner et al. (aside
from their reliance on FHE) is that for each instruction, Brenner et al. incurs overheads

87

proportional to the size of the program data and instruction memories. This will incur
orders of magnitude more overhead, on top of the overhead from FHE alone. Ascend uses
ORAM and server-specified intervals to allow execution to be optimized on a program by
program basis.

8.1.2 Secure Hardware and TCB Minimization

8.1.2.1 TPM-Related

The TPM [23, 9, 33] is a small chip soldered onto a motherboard and capable of performing
a limited set of secure operations. The TPM is able to provide a proof (attestation) to the
user that a particular sequence of steps were taken in launching the user’s application. Both
AMD (with SVM extensions [1]) and Intel (with TXT [60]) provide support for the TPM.
The setup for both is similar: on a special instruction, the processor chip is flushed except
for a specified peice of trusted setup code (typically a VMM) and the VMM launches the
user application. The TPM’s attestation, along with the processor chip’s hardware support,
proves to the user that (a) the program was run in isolation and (b) that the trusted setup
code was used to launch the program. One representative project is Flicker [2], which
describes how to leverage both AMD/Intel TPM technology to launch a user program
while trusting only a very small amount of code (as opposed to a whole VMM). In all cases,
the user program, TPM, processor chip, and setup code is trusted.

8.1.2.2 Tamper-Resistant (Single-Chip) Processors

The eXecute Only Memory (XOM) architecture [18, 19, 12] is designed to mitigate both
software and certain physical attacks. In XOM, security requires applications to run in
secure compartments, where both instructions and data are encrypted and from which data
can escape only on explicit request from the application itself. XOM assumes that operating
systems are completely untrusted and potentially malicious. XOM needs to be augmented
with protection against replay attacks on memory, and assumes trust in the user program.
To the best of our knowledge, XOM was not built in hardware.

Aegis [20], a single-chip secure processor, was the first secure processor to include mem-
ory integrity verification and encryption on-chip so as to allow external memory to be
untrusted. Two versions of Aegis were proposed, one with an untrusted OS and another
with a trusted kernel. Only the latter was implemented in hardware [27]. Like XOM, Aegis
must be protected against replay attacks and trusts the user program in all cases.

8.1.2.3 Untrusted Programs

Star-CPU [47] introduces an architectural template for proving no leakage through (in
particular) the timing channel. In that work, the notion of “trusted constants” set at
boot time is related to our notion of public server-specified parameters as both ideas make
observable behavior data-independent. However, Ascend and Star-CPU use these constants
to suppress fundamentally different sources of leakage: inter-thread leakage in the case of
Star-CPU and leakage against an adversary watching the I/O and power pins in the case
of Ascend. Furthermore, Ascend allows the server to change these ‘constants’ as a means
to improve efficiency, based on program analysis performed offline. The Ascend chip is
designed so that these changes do not impact security. Star-CPU does not discuss how
these constants should/could be changed, and what impact this would have on the system’s

88

security. We applaud the efforts in [47] to provably verify their designs. Similar analysis for
the power-obfuscated Ascend architecture discussed in Chapter 5 is an interesting direction
for future work.

DataSafe [49] is another work that tolerates untrusted programs. In that work, private
data is given special policies by the user and trusted hardware, a software hypervisor and
software policies handlers manage data and polices to prevent leakage using information flow
tracking ideas. DataSafe does not consider covert leakage channels—namely time, power
and memory access pattern.

8.1.2.4 Differences to Ascend

The difference between Ascend and Flicker/Aegis/XOM is that Ascend only requires trust
in the Ascend chip itself: crucially the user program is untrusted. Ascend only requires
that the server run some program that performs useful computation for the user.1 The user
program may be malicious or buggy. In either case, hardware mechanisms within Ascend
prevent the program from being able to leak private data-dependent information over the
I/O and power channels.

In TPM-related works and Aegis/XOM, user programs are assumed to be trusted or will
only be run if they are deemed “trustworthy.” As programs grow in size, it becomes more
difficult to formally verify intended/trustworthy behavior. For sufficiently large programs,
the problem becomes intractable. Furthermore, programs are patched over time and must
be re-verified after each patch; each patch forces the program to be re-verified, placing
additional burden on the server and user.

Even if a program is deemed trustworthy, however, Ascend’s threat model (Section 2.3)
assumes a more powerful adversary than previous works. For instance, the I/O and power
channel leakage is outside the TPM’s threat model [23]. Thus, TPM-based systems may
consider a program to be trusted even if that program does leak through its I/O or power
signature. The same is true for XOM, Aegis and DataSafe. Star-CPU protects the timing
channel in the case when multiple contexts are sharing the same processor. In that work,
normal access control mechanisms prevent one context from reading the data of another
thread—thus, on-chip data does not have to be encrypted but on-chip access patterns must
be hidden (to prevent leakage through the cache footprint). We point out that hiding
cache access patterns (their work) and hiding main memory access patterns (our work) are
completely different problems. Further, Star-CPU does not consider the power channel.

8.1.3 Obfuscating the I/O Channel

The least-common-denominator primitive to obfuscate the I/O channel is Oblivious-RAM
(ORAM), which completely hides memory access pattern (see Chapter 3.2 for citations).
Built on ORAM-like ideas, HIDE [24] (and follow-on work [30]) adds architectural support
for obfuscating memory access patterns through the idea of randomly shuffling memory lo-
cations between consecutive accesses. However, to have reasonable performance overheads,
HIDE only applies this technique within small chunks of memory (usually 8 KB to 64 KB).
In our threat model, obfuscation over small chunks breaks security because the server can
engineer a curious program to perform inter-chunk accesses based on private data, and de-
cipher all the encrypted data. Further, since no software in the Ascend model is trusted,

1If the server does not fulfill this requirement, we say that it is performing a denial of service attack.

89

we cannot rely on a trusted compiler to create a new program that groups memory requests
into a single chunk—as is done in HIDE.

8.1.4 Obfuscating the Power Channel

In this thesis, we optimize PA resistant circuits (see Chapter 4 for citations) and use these
primitives to construct a complete secure co-processor (Chapter 5) that does not leak at
the microarchitecture level. To the best of our knowledge we are the first to propose a
complete chip architecture that mitigates all architectural leakage, supports general-purpose
batch programs, and does so while allowing the server to trade-off performance and power
dynamically.

Another mitigation for PA analysis is algorithm blinding [42]. This technique is the
algorithm-level counterpart to circuit bit masking techniques [21]. The idea is to mask the
inputs to a secure circuit and then de-mask the outputs so that intermediate power traces
do not leak useful information. This technique is effective in mitigating leakage for certain
crypto algorithms (e.g., RSA [8]) whose inputs and outputs can be masked and de-masked.
It is unclear how to perform masking for general-purpose batch programs.

A program-level countermeasure suitable for general-purpose programs is to write [11] or
compile [26] the program so that every program path performs data-independent amounts
of work. [26] discusses these transformations in terms of timing-attacks only; [11] suggests
using similar ideas to mitigate SPA attacks for algorithms such as RSA (which performs
square/multiply operations depending on key bits). Ascend can be viewed as a hardware
counterpart to these techniques; to our knowledge, the software-based techniques have not
explored how to improve performance through common-case program behavior, as done in
Ascend and [51].

8.2 Future Work

We now discuss interesting directions for future work with Ascend.

8.2.1 Program Model

The batch programming model requires that the application run in a sandbox—in our case
the Ascend processor plus its ORAM. This limits the amount of off-chip data that Ascend
can access and also limits how Ascend can interact with its user.

To support very large working sets (Terabytes in size, as in Big Data applications),
Ascend’s initialization will become a system bottleneck and the overhead from ORAM will
increase. First: by definition, the batch model needs to load any data that the program
might touch at program start time (Section 2.2, Step 3). For Big Data applications, this
itself would take a long time (extrapolating from Section 7.2.2: our highest-performance
ORAM design has a bandwidth of ∼ 50 MB/s, if the ORAM is accessed continuously).
Second: it is not clear how the overhead from ORAM will increase if one assumes large
data sets. For instance, our results assume the ORAM can be stored completely in DRAM.
An ORAM for Big Data applications would have to be stored in disk, incurring multiple
disk accesses per ORAM access. [52] proposes such a system, but requires thousands of
trusted co-processors to jointly access the larger ORAM which greatly expands the TCB
beyond the Ascend proposal.

90

One extension that can tackle both of the above problems is to support stream compu-
tation (related to Private Information Retrieval (PIR) in the literature [6]). In that case,
unencrypted public data is streamed into Ascend, which performs private filter/query op-
erations. Only query “matches” are stored in ORAM. The insight is that in unstructured
search, data is touched once. Thus a small ORAM may be sufficient to support arbitrarily
large data streams.

Batch programs by definition do not interact with other programs or users. Despite this,
multi-interactive protocols (Section 6.1) are a first-step towards interaction. In that case,
the user and Ascend can interact at intervals (or every Ti cycles where each Ti is set by the
user) to decide if the computation should be run for more time. Interacting at intervals can
be adapted for other tasks—such as receiving key strokes from the user, if the program has
a shell. Furthermore, multiple Ascend chips can theoretically interact if such an interaction
passes encrypted values at strict intervals and all Ascend chips are currently owned by the
same user (or a set of trusted users).

8.2.2 Operating Systems, Multiple Threads and Multi-Programming

We also constrained Ascend to support one single-threaded batch program at a time. Impor-
tant extensions are to include multi-threaded programs and multi-program workloads. The
important question is whether a single user controls all threads/programs on the Ascend
chip, or whether the chip is shared between multiple (untrusted) users.

We believe that Ascend can support single user multi-threading and multi-programming
without significant modification. Suppose the user wants to run programs P1, . . . , Pn on pri-
vate inputs M1, . . . ,Mn, for some n. In that case, the server can load P ′ = Pvmm(P1, . . . , Pn)
into Ascend, where Pvmm is an untrusted VMM that can context switch between the dif-
ferent programs as it likes. The high-level idea is that as long as P ′ is also a batch program
(i.e., does not interact beyond the Ascend+ORAM sandbox), it leaks no more information
than any other batch program run within Ascend. As before, the entire result of running
P ′(M1, . . . ,Mn) is encrypted and returned to the user. The server never learns when data-
dependent context switches happen, or anything else about the intermediate or final states
of the VMM that the server could not deduce apriori.

Running multi-threaded applications with a single user can work similarly. Of course,
with multi-threading support one may want to re-architect Ascend to have multiple cores.
In that case, the power obfuscation problem becomes more difficult because multi-core cache
coherence is more involved than choosing between inclusive/exclusive caches (Section 5.4.5).

Multi-threading/programming with multiple (untrusted) users creates new security chal-
lenges. This case is fundamentally different from the above cases because untrusted users
will be able to decrypt the results of untrusted threads/programs and this adds leakage
channels such as cache footprint/timing/etc. There is a large literature for these types of
attacks, and the problem is discussed in [47].

8.2.3 Additional Side Channels

In this thesis, we only consider the I/O and power side channels. We showed these attack
surfaces not only because of their prevalence but also to show how the concept of specifying
the observable behavior of the processor apriori can be generalized.

Others side channels include passive attacks such as leakage through EM/RF emis-
sions [16] (which is similar to the power channel) or invasive attacks such as triggering

91

faults [10]. Given a primitive to obfuscate signals in the value domain for the EM channel
(i.e., an EM counterpart to a power analysis resistant logic), we believe that the idea of
data-independent parameters (intervals, producer/consumer policies) can be used to secure
the EM/RF channels. We note that logics like WDDL try to make capacitive discharge
throughout the chip data-independent, which is a source of EM flux that leads to EM at-
tacks. Thus, these techniques may be sufficient to thwart EM attacks. We do not, however,
claim to have addressed this source of leakage yet.

It may or may not be possible for the server to use invasive attacks (i.e., triggering faults)
to coerce Ascend into leaking privacy. On the one hand, the entire Ascend chip is architected
to perform data-independent amounts of work. Thus, if a fault attack were to flip a bit in
program memory or change an interval, this would not leak privacy. In the former case, the
program may crash but observable behavior should still be indistinguishable from normal
program operation. On the other hand, if the adversary can change the symmetric key
inside Ascend to a value of his/her choosing through a fault attack, security can be broken.

Introduced in Section 8.1.2.3, cache footprint-based attacks pose another direction for
future work. We believe that our work and others (such as Star-CPU [47]) can be merged so
that threads can safely and efficiently share hardware resources. For example, a program’s
working set over time can be determined apriori by a server using public inputs to that pro-
gram. The server can then use that information to create a static schedule that determines
how much cache/eviction buffer/pipeline/etc the thread should get when running the user’s
input. Here, the static schedule is performing the same job as the set of knobs P that we
have described in this thesis. What separates the idea from traditional static scheduling is
that our ‘static’ schedule can change over time, as long as it changes based on the server’s
apriori profiling. This direction leads to new questions. For example, if multiple threads
share a core and each thread requests 50% of the cache for 1000 cycles, how can a scheduler
decide who gets what resources?

8.2.4 More Advanced Microarchitecture

The microarchitecture we presented in Chapter 5 was not meant to be limiting. Ascend
can support multiple cores, a more advanced pipeline and other conventional architectural
structures in theory.

That said, it is useful to understand which structures are more and less efficient given
the primitives that Ascend is built upon (ORAM, WDDL, cell-1 SRAMs in this thesis).
For instance:

1. Since ORAM access latency is orders of magnitude more than conventional DRAM,
an architecture that supports multiple outstanding loads to main memory may not
be as effective (i.e., ORAM latency dominates always).

2. Since all ways in an associative cache must be accessed on each cache access to pre-
vent leakage through the power channel, cache associativity should be constrained for
energy-consumption reasons (Section 5.4.3).

3. Since registers that have back-pressure add a pipeline stage (due to WDDL pre-
charge), feed-forward designs are preferable.

On the other hand, certain structures do map efficiently to our primitives. For example,
the re-order buffer (i.e., to support out-of-order execution) is already implemented as a
fully-associative table, which obfuscates which address is being looked up by default.

92

8.2.5 Additional Public Parameters

A big idea used throughout the thesis was to specify Ascend’s observable behavior through a
set of parameters (we explored setting different circuits to intervals and levels of the memory
hierarchy to speculative/conservative policies). These parameters are also not meant to be
limiting—more parameters that perform different data-independent functions may be added
to improve efficiency in different respects.

One aspect of these parameters that we have not yet explored is how they should be
changed dynamically by the server while a program is running. In our evaluation, each
parameter was set at program start time. This was not necessary: for instance, when a
program changes phase it may be preferable to change memory access intervals. As before,
any dynamic change to a parameter must be made solely based on offline analysis done by
the server: mechanisms within Ascend will prevent the server from finding out how well its
strategy performed on the user’s data.

Another aspect left unexplored is parameter expressivity. Intervals are limited in that
they require that an equal amount of time pass in between two accesses. In the SPEC
benchmarks, other patterns occur with regularity. For example, when a program makes a
function call it typically performs a sequence of store operations followed by a sequence of
load operations. Intervals are ill-suited for this behavior because they implicitly assume
that memory operations are not consecutive. This may be the reason that using the % of
dynamic memory instructions statistic to set IL1D (Section 7.2.3) performs poorly.

93

94

Chapter 9

Conclusion

This thesis has shown the viability of Ascend, a secure processor architecture that prevents
privacy leakage over the I/O and power channels, and additionally guarantees integrity over
the I/O channel, while only requiring trust in a single processor chip. Crucially, the program
running on the processor is untrusted and may be malicious. To get efficiency and to trade-
off performance and power without compromising security, Ascend can be parameterized
on a program to program basis by the server, based on the server’s apriori knowledge of
each program that will be run.

Surprisingly, the performance/power overheads associated with our architectural mech-
anisms are only 3.6×/6.6× (when the server is given large amounts of offline time to sweep
public parameter values) and 5.2×/4.7× (when the server uses heuristics to estimate pub-
lic parameter values) while running SPEC benchmarks. Furthermore—when protecting
the I/O channel only—performance/power overhead drops to only 2.6×/2.2×. This re-
sult makes Ascend practical, and capable of running real programs with roughly the same
overhead as running programs in interpreted languages.

95

96

Bibliography

[1] Advanced micro devices. amd64 virtualization: Secure virtual machine architecture
reference manual.

[2] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi
Isozaki. Flicker: an execution infrastructure for tcb minimization. SIGOPS Oper. Syst.
Rev.

[3] R. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy homomor-
phisms. Foundations of Secure Computation, 1978.

[4] O. Goldreich. Towards a theory of software protection and simulation on oblivious
rams. In STOC, 1987.

[5] R. Ostrovsky. Efficient computation on oblivious rams. In STOC, 1990.

[6] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In FOCS, pages 45–51, 1995.

[7] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious rams.
In J. ACM, 1996.

[8] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In CRYPTO, pages 104–113, 1996.

[9] W. Arbaugh, D. Farber, and J. Smith. A Secure and Reliable Bootstrap Architecture.
In Proceedings of the 1997 IEEE Symposium on Security and Privacy, pages 65–71,
May 1997.

[10] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking
cryptographic protocols for faults (extended abstract). In EUROCRYPT, pages 37–51,
1997.

[11] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. pages
388–397. Springer-Verlag, 1999.

[12] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. Architectural Support for Copy and Tamper Re-
sistant Software. In Proceedings of the 9th Int’l Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-IX), pages 168–177,
November 2000.

[13] Premkishore Shivakumar and Norman J. Jouppi. CACTI 3.0: An integrated cache
timing, power, and area model. Technical report, February 2001.

97

[14] Jose Renau. Sesc: Superescalar simulator. Technical report, university of illinois
urbana-champaign ECE department, 2002.

[15] K. Tiri, M. Akmal, and I. Verbauwhede. A dynamic and differential cmos logic with sig-
nal independent power consumption to withstand differential power analysis on smart
cards. In Proceedings of the 28th ESSCIRC 2002., sept. 2002.

[16] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj Rohatgi. The em
side-channel(s). In Revised Papers from the 4th International Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES ’02, pages 29–45, London, UK, UK,
2003. Springer-Verlag.

[17] Blaise Gassend, G. Edward Suh, Dwaine Clarke, Marten van Dijk, and Srinivas De-
vadas. Caches and Merkle Trees for Efficient Memory Integrity Verification. In Proceed-
ings of Ninth International Symposium on High Performance Computer Architecture,
New-York, February 2003. IEEE.

[18] D. Lie, J. Mitchell, C. Thekkath, and M. Horwitz. Specifying and verifying hardware
for tamper-resistant software. In Proceedings of the IEEE Symposium on Security and
Privacy, 2003.

[19] D. Lie, C. Thekkath, and M. Horowitz. Implementing an untrusted operating system
on trusted hardware. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, pages 178–192, 2003.

[20] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas De-
vadas. aegis: Architecture for Tamper-Evident and Tamper-Resistant Processing.
In Proceedings of the 17th ICS (MIT-CSAIL-CSG-Memo-474 is an updated version),
New-York, June 2003. ACM.

[21] Daisuke Suzuki, Minoru Saeki, and Tetsuya Ichikawa. Random switching logic: A coun-
termeasure against dpa based on transition probability, 2004. dice@iss.isl.melco.co.jp
12755 received 3 Dec 2004.

[22] K. Tiri and I. Verbauwhede. A logic level design methodology for a secure dpa resistant
asic or fpga implementation. In Proceedings of DATE, 2004., feb. 2004.

[23] Trusted Computing Group. TCG Specification Architecture Overview Revision 1.2.
http://www.trustedcomputinggroup.com/home, 2004.

[24] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. HIDE: an infrastructure for effi-
ciently protecting information leakage on the address bus. In Proceedings of the 11th
ASPLOS, 2004.

[25] Stefan Mangard. Masked dual-rail pre-charge logic: Dpa-resistance without routing
constraints. In Systems CHES 2005, 7th International Workshop. Springer, 2005.

[26] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program
counter security model: Automatic detection and removal of control-flow side channel
attacks. In In Cryptology ePrint Archive, Report 2005/368, 2005.

98

[27] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas. Design
and Implementation of the aegis Single-Chip Secure Processor Using Physical Random
Functions. In Proceedings of the 32nd ISCA’05, New-York, June 2005. ACM.

[28] Daisuke Suzuki, Minoru Saeki, and Tetsuya Ichikawa. Dpa leakage models for cmos
logic circuits. In Cryptographic Hardware and Embedded Systems - CHES 2005, 2005.

[29] Zhimin Chen and Yujie Zhou. Dual-rail random switching logic: A countermeasure to
reduce side channel leakage. In CHES 2006, 2006.

[30] Lan Gao, Jun Yang, Marek Chrobak, Youtao Zhang, San Nguyen, and Hsien-Hsin S.
Lee. A low-cost memory remapping scheme for address bus protection. In Proceedings
of the 15th PACT, PACT ’06. ACM, 2006.

[31] E. Konur, Y. Ozelci, E. Arikan, and U. Eksi. Power analysis resistant sram. In
Automation Congress, 2006. WAC ’06. World, pages 1 –6, july 2006.

[32] Konrad J. Kulikowski, Mark G. Karpovsky, and Er Taubin. Power attacks on secure
hardware based on early propagation of data. In In 12th IEEE International On-Line
Testing Symposium, pages 10–12, 2006.

[33] Luis F. G. Sarmenta, Marten van Dijk, Charles W. O’Donnell, Jonathan Rhodes, and
Srinivas Devadas. Virtual Monotonic Counters and Count-Limited Objects using a
TPM without a Trusted OS. In Proceedings of the 1st STC’06, November 2006.

[34] Darryl Gove. Cpu2006 working set size. SIGARCH Comput. Archit. News, 35(1):90–96,
March 2007.

[35] Darryl Gove. Cpu2006 working set size. SIGARCH Comput. Archit. News, 35(1):90–96,
March 2007.

[36] E. Arikan and A. Ataman. A new power analysis resistant sram cell. In International
Conference on ELECO 2009., nov. 2009.

[37] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter. Practical mitiga-
tions for timing-based side-channel attacks on modern x86 processors. In 30th IEEE
symposium on S&P, 2009, may 2009.

[38] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[39] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC’09, pages
169–178, 2009.

[40] S. Mathew, F. Sheikh, A. Agarwal, M. Kounavis, S. Hsu, H. Kaul, M. Anders, and
R. Krishnamurthy. 53gbps native gf(24)2 composite-field aes-encrypt/decrypt acceler-
ator for content-protection in 45nm high-performance microprocessors. In 2010 IEEE
Symposium on VLSIC, june 2010.

[41] Alex Bain, John Mitchell, Rahul Sharma, Deian Stefan, and Joe Zimmerman. A
domain-specific language for computing on encrypted data. In FSTTCS 2011. LIPIcs,
December 2011. Invited paper.

99

[42] Gerrit Bleumer. Blinding techniques. In Encyclopedia of Cryptography and Security
(Volume 2, 2nd Ed.), pages 150–152. 2011.

[43] Michael Brenner, Jan Wiebelitz, Gabriele von Voigt, and Matthew Smith. Secret
program execution in the cloud applying homomorphic encryption. In IEEE DEST
2011, May 2011.

[44] Sameh Galal and Mark Horowitz. Energy-efficient floating-point unit design. IEEE
Transactions on Computers, 60:913–922, 2011.

[45] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic en-
cryption be practical? In Proceedings of the 3rd CCSW ’11, pages 113–124, New York,
NY, USA, 2011. ACM.

[46] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with o((log n)3) worst-
case cost. In Asiacrypt, pages 197–214, 2011.

[47] Mohit Tiwari, Jason K. Oberg, Xun Li, Jonathan Valamehr, Timothy Levin, Ben
Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood. Crafting a
usable microkernel, processor, and i/o system with strict and provable information
flow security. In Proceedings of the 38th ISCA, ISCA ’11, 2011.

[48] Carolyn Whitnall and Elisabeth Oswald. A comprehensive evaluation of mutual infor-
mation analysis using a fair evaluation framework. In CRYPTO 2011, 2011.

[49] Yu-Yuan Chen, Pramod A. Jamkhedkar, and Ruby B. Lee. A software-hardware ar-
chitecture for self-protecting data. In Proceedings of the 19th Conference on Computer
and Communications Security (CCS’12), 2012.

[50] Christopher Fletcher, Marten van Dijk, and Srinivas Devadas. Secure Processor Ar-
chitecture for Encrypted Computation on Untrusted Programs. In Proceedings of the
7th ACM CCS Workshop on Scalable Trusted Computing, pages 3–8, October 2012.

[51] Christopher W. Fletcher, Marten van Dijk, and Srinivas Devadas. Towards an inter-
preter for efficient encrypted computation. In Proceedings of the 2012 ACM Workshop
on Cloud computing security workshop, CCSW ’12, pages 83–94, 2012.

[52] Jacob R. Lorch, James W. Mickens, Bryan Parno, Mariana Raykova 0001, and Joshua
Schiffman. Toward practical private access to data centers via parallel oram. IACR
Cryptology ePrint Archive, 2012:133, 2012. informal publication.

[53] J.C. Mitchell, R. Sharma, D. Stefan, and J. Zimmerman. Information-flow control for
programming on encrypted data. Cryptology ePrint Archive, Report 2012/205, 2012.
http://eprint.iacr.org/.

[54] V. Rozic, W. Dehaene, and I. Verbauwhede. Design solutions for securing sram cell
against power analysis. In Hardware-Oriented Security and Trust (HOST), 2012 IEEE
International Symposium on, pages 122–127, 2012.

[55] Jaewoong Sim, Jaekyu Lee, Moinuddin K. Qureshi, and Hyesoon Kim. Flexclusion:
balancing cache capacity and on-chip bandwidth via flexible exclusion. In Proceedings
of the 39th International Symposium on Computer Architecture, ISCA ’12, pages 321–
332, Piscataway, NJ, USA, 2012. IEEE Press.

100

[56] E. Stefanov and E. Shi. Path O-RAM: An Extremely Simple Oblivious RAM Protocol.
Cornell University Library, arXiv:1202.5150v1, 2012. arxiv.org/abs/1202.5150.

[57] E. Stefanov, E. Shi, and D. Song. Towards practical oblivious RAM. In NDSS, 2012.

[58] Carolyn Whitnall, Elisabeth Oswald, and François-Xavier Standaert. The myth of
generic dpa...and the magic of learning. IACR Cryptology ePrint Archive, 2012:256,
2012.

[59] Ling Ren, Xiangyao Yu, Christopher W. Fletcher, Marten van Dijk, and Srinivas De-
vadas. Design space exploration and optimization of path oblivious ram in secure pro-
cessors. In Proceedings of the 40th International Symposium on Computer Architecture
(ISCA). 2013.

[60] David Grawrock. The Intel Safer Computing Initiative: Building Blocks for Trusted
Computing. Intel Press, 2006.

101

	Introduction
	The Problem with Running Untrusted Programs on Secure Hardware
	Ascend: Program Obfuscation in Hardware
	Big Idea: Public Parameters that Control Observable Behavior
	Thesis Contributions
	Organization
	Conventions and Assumed Background Knowledge

	Framework
	Modeling the Ascend Chip
	Two-interactive Protocols
	Security Model
	Privacy
	Integrity

	Implementation Principles
	Value Domain
	Time Domain
	Public Intervals

	Protecting the I/O Channel
	Chapter Overview
	Value Obfuscation: Oblivious RAM (ORAM)
	Path ORAM
	Strawman Encryption Scheme
	Optimization: Counter-based Encryption Scheme
	Path ORAM Performance and Hardware Assumptions
	Path ORAM Space Requirements

	Recursive Path ORAM
	Optimization: Early Completion

	Path ORAM Failure Probability
	Properties of and Attacks Against Background Eviction Schemes
	Address Sequence and Local Cache Occupancy
	Chip Architecture and Local Cache Occupancy

	Probabilistic Background Eviction
	Security of Probabilistic Background Eviction
	Insecurity of Block Remapping Eviction Schemes

	Time Obfuscation: Public Intervals

	Protecting the Power Channel
	Chapter Overview
	Value Obfuscation: DPA Resistant Circuits
	Logic Gates and Flip-Flops
	Optimization: Flip-flop Elimination
	Optimization: Extending Pre-Charge
	Optimization: Additional Flip-flop Elimination
	Creating Dummy Work

	SRAM Arrays
	Secure SRAM Design and Sources of Leakage
	Secure SRAM Overheads

	Optimization: Controlling Clock Enable
	Observable Circuit States

	Time Obfuscation: Public Intervals, Interval Policies and Rate Matching
	Public Intervals for Groups of Circuits
	Producer/Consumer Rate Matching
	Producer/Consumer Data Dependancies

	Ascend Microarchitecture
	Chip Organization
	Request and Eviction Buffers
	Flow of Requests, Data and Evictions
	Public Intervals

	Instruction Pipeline
	Choosing an ISA
	Cache Hierarchy
	Energy Efficiency via Intervals+Extended Pre-Charge
	Hiding Cache Inputs/Outcomes
	Power Obfuscation and Cache Organization
	Where DPA Resistance is Not Needed
	Hiding Cache Coherence Behavior
	Hiding Cache Outcome for the L2 Cache
	Exclusive L2 Caches
	Inclusive L2 Caches

	ORAM Interface
	Security-Related Issues
	Systems Integration-Related Issues
	Performance-Related Issues

	Interval Policies: Dynamically Trading Off Power & Performance
	Interval Policy Gate-level Signal Behavior
	Example: Fully Speculative Policies
	Example: Fully Conservative Policies
	Example: Hybrid Policies

	Certified Execution
	Motivation
	Integrity Verification

	Evaluation
	Security
	Circuit Requirements for PA Resistance
	Relation to Circuit Primitives

	Performance and Power
	Methodology
	Benchmarks
	Comparison Points
	Simulator and Metrics
	Cache Energies
	Additional DPA Resistant Logic Overheads

	Path ORAM in Secure Processors
	Choosing ORAM Block Size
	Choosing Z, the Number of Blocks Per Bucket

	Public Parameter Design Space Exploration
	Performance/Power for ascend_io
	The Impact of Intervals and a Fully Speculative Policy
	Performance/Power for ascend (Speculative Policy)
	Case Study: Memory Bound libquantum

	Heuristics For Setting Public Parameters
	Interval Policy Recommendations

	Related and Future Work
	Related Work
	Fully Homomorphic Encryption (FHE) Techniques
	Secure Hardware and TCB Minimization
	TPM-Related
	Tamper-Resistant (Single-Chip) Processors
	Untrusted Programs
	Differences to Ascend

	Obfuscating the I/O Channel
	Obfuscating the Power Channel

	Future Work
	Program Model
	Operating Systems, Multiple Threads and Multi-Programming
	Additional Side Channels
	More Advanced Microarchitecture
	Additional Public Parameters

	Conclusion

