
Oblivious RAM: From Theory to Practice

by

Christopher W. Fletcher

B.S. in Electrical Engineering and Computer Science, University of California,
Berkeley (2010)

S.M. in Electrical Engineering and Computer Science, Massachusetts Institute of
Technology (2013)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c© Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
Srinivas Devadas

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

Oblivious RAM: From Theory to Practice
by

Christopher W. Fletcher

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Privacy of data storage has long been a central problem in computer security, having direct
implications for many Internet-era applications such as storage/computation outsourcing
and the Internet of Things (IoT). Yet, the prevailing way we protect our data — through
encryption techniques — doesn’t protect where we read or write in our data. This additional
information, the access pattern, can be used to reverse-engineer proprietary programs as
they run, reveal a user’s physical location or health information, and more, even if data is
correctly encrypted.

This thesis studies a cryptographic primitive called Oblivious RAM (ORAM) which
provably hides a client’s access pattern as seen by untrusted storage. While ORAM is very
compelling from a privacy standpoint, it incurs a large performance overhead and can require
a large amount of client (trusted) storage. In particular, ORAM schemes require the client
to continuously shuffle the data stored in the untrusted storage, using the trusted storage.
Early work on ORAM proves that this operation must incur a client-storage bandwidth
blowup that is logarithmic in the dataset size, which can translate to > 100× in practice.

We address this challenge by developing new tools for constructing ORAMs that allow
us to achieve constant bandwidth blowup while requiring only small client storage. A re-
occurring theme is to grant untrusted storage the ability to perform untrusted computation
on behalf of the client, thereby circumventing lower bound results from prior work. Using
these tools, we construct a new ORAM called Ring ORAM, the first small client storage
ORAM to achieve constant online bandwidth blowup. At the same time, Ring ORAM
matches or improves upon the overall bandwidth of all prior ORAM schemes (given equal
client storage), up to constant factors. Next, we more heavily exploit computation at the
storage to construct Onion ORAM, the first scheme with constant worst-case and overall
bandwidth blowup that does not require heavy weight cryptographic primitives such as fully
homomorphic encryption (FHE). Instead, Onion ORAM relies on more efficient additively
or somewhat homomorphic encryption schemes.

Finally, we demonstrate a working ORAM prototype, built into hardware and taped-out
in 32 nm silicon. We have deployed the design as the on-chip memory controller for a 25
core processor. This proves the viability of a single-chip secure processor that can prevent
software IP or data theft through a program’s access pattern to main memory (having
applications to computation outsourcing and IoT). From a technical perspective, this work
represents the first ORAM client built into silicon and the first hardware ORAM with small
client storage, integrity verification, or encryption units. We propose a number of additional
optimizations to improve performance in the hardware setting.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

Acknowledgements

I would first like to thank my advisor Srini Devadas, Marten van Dijk (my de facto co-
advisor), and Ling Ren (my closest collaborator).

First, to Srini. Srini is that rare individual who is not only strong technically, but also
incredibly optimistic and kind (finally, high energy!). Srini is well known for his technical
breadth. Case in point, he bootstrapped the security project by recognizing the security
application in one of my early computer architecture projects. I had no background in
security, and this was the biggest turning point in my graduate career. I have always been
impressed by the quality of Srini’s ideas. For example, one of Srini’s early ideas in the
security project (back from 2012) survived three years to become the foundation for the
Onion ORAM scheme in this thesis. Finally, I have always appreciated how much freedom
Srini has given me to pursue whatever I was interested in. He let us pursue ORAM to its
conclusion and this was the reason for any of our success. Srini, for allowing us the freedom
to try things that would never work, I thank you. On a personal note, I consider Srini to
be a good friend.

Next, to Marten. To those who don’t know Marten, I recommend having him brainstorm
with you for five minutes on a problem you have been stuck on. What will happen is that,
in the first five minutes, he will find improvements to your scheme. Next, over the course of
the following five hours, he will develop a completely new and more elegant approach. Some
of the coolest ideas in the security project come from these discussions. Marten, thank you
so much for your mentorship; I feel very fortunate to be able to work with you.

Finally, to my collaborator Ling. Ling has been my closest collaborator all throughout
the ORAM work (we even co-founded a company together). Working with Ling is like
having a wizard equally strong in systems and theory available for long brainstorming
sessions every day, all day. Ling, it’s been a real privilege working with you, and I know we
will collaborate again in the future.

Next, I would like to acknowledge my collaborators. The work presented in this thesis is
shared with an amazing group of co-authors, namely: Ling Ren, Albert Kwon, Xiangyao Yu,
Marten van Dijk, Srinivas Devadas, Emil Stefanov, Elaine Shi, Daniel Wichs and Dimitrios
Serpanos. Also, I thank Omer Khan who I collaborated with on multiple projects over the
years. Special thanks to Emil Stefanov and Elaine Shi, whose work provided the foundation
for this thesis. Finally, I would like to thank the Princeton team, who made the chip
tape-out possible: Dave Wentzlaff, Mike McKeown, Tri Nguyen, Jonathan Balkind, Alexey
Lavrov, Yaosheng Fu and others.

Next, I would like to thank my colleagues at MIT CSAIL, and especially to members
of the Hornet group. First, I thank Nickolai Zeldovich, Daniel Sanchez and Vinod Vaikun-
tanathan for sitting on my various qualifying committees. Special thanks to Vinod, for
the discussions on Onion ORAM and Homomorphic Encryption all the way back to the
beginning of that project. To my colleagues in the Hornet group and Floor 8: Jean Yang,

5

Charles Herder, Alin Tomescu, Ilia Lebedev, Victor Costan, Rachael Harding, Keun sup
Shim, Charles O’Donnell, Michel Kinsy, Mieszko Lis, Nirav Dave, Sang Woo and others.
To everyone in the Hornet group, for putting up with security talks and offering feedback
from the perspectives of no less than three areas.

I feel very privileged to have been mentored by some amazing people outside of CSAIL.
I would like to thank Joe Pasquale, Charles Leiserson, John Wawrzynek, Garry Nolan and
Greg Gibeling. In particular, Joe Pasquale has been one of my closest mentors ever since
high school: taking my endless calls to discuss all angles of academics and life, taking me on
trips to Italy for the summer, the list goes on. Joe, the number of insights you have given
me all throughout my academic career is staggering. Thank you for your mentorship and,
above all, your friendship. I would also like to thank Charles for being my academic advisor
and for giving me the opportunity to T.A. 6.172 (Performance Engineering). Charles is
without doubt the best teacher I have ever seen. Charles, it was a real treat to watch you
run 6.172, and I will work to uphold your standard in my future courses and mentorship.

Finally, I would like to thank my girlfriend Cassie, my brother and my parents. Cassie,
you and I have been long-distance for the past five years yet it’s felt like you have been at
my side the whole time. You are the most amazing girlfriend, and my closest confidant. To
our outings in Chicago, cheers! To my brother, Sam: you are my best friend, and the only
person who understands (in particular) that the meteor tattoo is not a football. Once I turn
in this thesis, let’s go to Vegas. To Mom and Dad: words don’t do you guys justice. You
have always loved and supported me unconditionally, and nothing else is possible without
that. Thank you for being my strongest advocates, and best friends.

6

For my family.

8

Contents

1 Introduction 17

1.1 Challenges In Protecting Access Pattern . 18

1.2 The Case for Oblivious RAM . 19

1.3 Thesis Contributions and Organization . 20

2 Preliminaries 25

2.1 ORAM Definition . 25

2.2 Security Definition (Simulator) . 26

2.3 Security Definition (Termination Channel Leakage) 26

2.4 Metrics . 27

2.5 Settings . 29

2.6 Related Work . 30

2.6.1 ORAM History . 30

2.6.2 State of the Art ORAMs . 32

2.6.3 ORAM in Specific Settings . 32

2.7 Summary of Notations . 34

3 Ring ORAM 35

3.1 Path ORAM Overview . 36

3.2 Path ORAM Challenges . 37

3.3 Contributions . 37

3.4 Overview of Techniques . 38

3.5 Ring ORAM Protocol . 40

3.5.1 The Basics . 40

3.5.2 Read Path Operation . 42

3.5.3 Evict Path Operation . 43

3.5.4 Early Reshuffle Operation . 44

3.5.5 Security Analysis . 45

3.5.6 Other Optimizations . 45

3.5.7 Recursive Construction . 46

3.6 Stash Analysis . 46

3.6.1 Proof outline . 46

3.6.2 Infinity ORAM . 46

3.6.3 Bounding the Stash Size . 47

3.6.4 Stash Size in Practice . 48

3.7 Bandwidth Analysis . 49

3.8 Evaluation . 51

9

3.8.1 Bandwidth vs. Client Storage . 51

3.9 Ring ORAM with Large Client Storage . 52

3.10 Bucket Structure (Reference) . 52

4 Onion ORAM 55

4.1 Attempts to “Break” the Goldreich-Ostrovsky Bound 56

4.2 Contributions . 57

4.3 Overview of Techniques . 58

4.4 Bounded Feedback ORAM Protocol . 60

4.4.1 The Basics . 60

4.4.2 New Triplet Eviction Procedure . 61

4.5 Onion ORAM (Additively Homomorphic Encryption) 63

4.5.1 Additively Homomorphic Select Sub-protocol 64

4.5.2 Detailed Protocol . 64

4.5.3 Bounding Layers . 65

4.5.4 Remarks on Cryptosystem Requirements 65

4.6 Security Against A Fully Malicious Server 65

4.6.1 Abstract Server Computation ORAM 66

4.6.2 Semi-Honest to Malicious Compiler 66

4.7 Optimizations and Analysis . 68

4.7.1 Optimizations . 68

4.7.2 Damg̊ard-Jurik Cryptosystem . 69

4.7.3 Asymptotic Analysis . 69

4.7.4 Concrete Analysis (Semi-honest case only) 70

4.7.5 Other Optimizations . 71

4.8 Proofs . 72

4.8.1 Bounded Feedback ORAM: Bounding Overflows 72

4.8.2 Onion ORAM: Bounding Layers of Encryption 72

4.8.3 Malicious Security Proof . 73

4.9 Onion ORAM (Somewhat Homomorphic Encryption) 75

4.9.1 BGV-Style Somewhat Homomorphic Cryptosystems 76

4.9.2 Somewhat Homomorphic Select Sub-protocol 76

4.9.3 Onion ORAM Protocol over BGV 77

4.9.4 Optimizations . 77

4.9.5 Asymptotic Analysis . 78

4.10 Asymptotic Results for Exponential Security 80

5 Tiny ORAM 81

5.1 Design Challenges for Hardware ORAM . 81

5.1.1 Challenge #1: Position Map Management 82

5.1.2 Challenge #2: Throughput with Large Memory Bandwidths 82

5.2 Contributions . 83

5.3 Design Prototypes and Availability . 84

5.4 Path ORAM Overview (Detailed) . 84

5.4.1 Recursive ORAM . 87

5.4.2 Overhead of Recursion . 88

5.5 Frontend . 88

5.5.1 PosMap Lookaside Buffer . 89

10

5.5.2 PosMap Compression . 91
5.5.3 PosMap MAC . 93
5.5.4 Security Analysis . 96

5.5.4.1 PosMap Lookaside Buffer 96
5.5.4.2 PosMap MAC (Integrity) 96
5.5.4.3 PosMap MAC (Privacy) . 97

5.6 Backend . 98
5.6.1 Building Tree ORAMs on DRAM . 98
5.6.2 Stash Management . 99
5.6.3 Reducing Encryption Bandwidth . 101

5.7 Evaluation (Simulation) . 104
5.7.1 Methodology . 104
5.7.2 ORAM Latency and DRAM Channel Scalability 104
5.7.3 PLB Design Space . 105
5.7.4 Scheme Composability . 106
5.7.5 Comparison to Non-Recursive ORAM with Large Blocks 106
5.7.6 Performance Evaluation Using A Ring ORAM Backend 107

5.8 Evaluation (FPGA Prototype) . 108
5.8.1 Metrics and Baselines . 108
5.8.2 Implementation . 109
5.8.3 Access Latency Comparison . 110
5.8.4 Hardware Area Comparison . 110
5.8.5 Full System Evaluation . 111

5.9 Evaluation (ASIC Prototype, post Synthesis) 111
5.9.1 Metrics . 112
5.9.2 Implementation . 112
5.9.3 Results . 113
5.9.4 Alternative Designs . 113

5.10 Evaluation (ASIC Prototype, post Layout/Tape-out) 113
5.10.1 Tape-out Area and Performance . 114
5.10.2 Functional Tests and Power Measurements in Silicon 114

6 Conclusion 117

11

12

List of Figures

2-1 ORAM usage settings . 29

3-1 Tree ORAM server storage . 36
3-2 The reverse lexicographical eviction order. 44
3-3 Determine eviction frequency as a function of bucket size 49
3-4 Bandwidth as a function of bucket size . 50
3-5 Ring ORAM analytic bandwidth as a function of Z 51
3-6 Concrete bandwidth vs. Path ORAM . 51

4-1 Bounded Feedback ORAM (no server computation) 62
4-2 Illustration of ORAM tree state immediately after a sequence of evictions . 63
4-3 Onion ORAM Concrete Bandwidth Overhead (AHE) 71

5-1 Recursive Path ORAM algorithm . 85
5-2 Recursive ORAM and paging . 87
5-3 The percentage of Bytes read from PosMap ORAMs 88
5-4 PLB-enabled ORAM Controller . 91
5-5 Illustration of subtree locality . 98
5-6 Stash eviction illustration . 99
5-7 Data read vs. decrypted on RAW ORAM access 102
5-8 Trading-off bandwidth and encryption units 103
5-9 PLB design space . 106
5-10 Scheme composability . 106
5-11 Scalability to large ORAM capacities . 107
5-12 Comparison to Phantom . 107
5-13 Performance improvement from Ring ORAM 108
5-14 FPGA ORAM average access latencies on benchmarks 112
5-15 Chip block diagram (post tape-out) . 116

13

14

List of Tables

2.1 Notations and parameters . 34

3.1 (Overview) Ring ORAM analytic bandwidth 37
3.2 (Overview) Ring ORAM overheads in practice 38
3.3 Maximum stash occupancy for realistic security parameters 49
3.4 Analytic model for choosing Ring ORAM parameters 50
3.5 Breakdown between offline and overall bandwidth 52
3.6 Ring ORAM bucket format . 53

4.1 (Overview) Onion ORAM asymptotic bandwidth 58
4.2 Onion ORAM detailed asymptotics . 80

5.1 Processor configuration (simulation) . 105
5.2 ORAM access latency by DRAM channel count 105
5.3 Optimizations implemented in hardware . 109
5.4 FPGA area/performance comparison . 111
5.5 ASIC pre tape-out area results . 112
5.6 ASIC post tape-out area results . 114
5.7 ASIC post tape-out power/frequency results 115

15

16

Chapter 1

Introduction

Security of data storage is a huge problem in nearly all aspects of the Internet connected
world. Consider several ubiquitous settings: outsourced storage, computation outsourcing
and the Internet of Things (IoT).

In outsourced storage, users outsource private data storage from their private infras-
tructure to remote cloud servers. Data can now be stolen at any point in the cloud in-
frastructure; for instance, at the server itself (e.g., by insiders [38]), at the internet-server
boundary (based on the Snowden revelations [67]) or in transit (e.g., [82]).

Further, in computation outsourcing and IoT, sensitive information is stored on cloud
servers, or other potentially hostile environments, as it is being computed upon. Despite the
promise of tamper-resistant systems (e.g., [43]) and bootstrapping trust from a known CPU
state (e.g., [97]), which protect data while it resides on-chip (or on-package), data can still
be stolen via software or physical attacks when it is stored off-chip (e.g., in main memory
or disk). For instance, it has been shown how memory can be accessed by exploiting cloud
resource sharing [36] and vulnerable firmware [94, 2]. In IoT, the attacker may have physical
access to devices, which it can use to extract data using (for example) test cards [23], bus
probing [16] or technology-specific techniques [35].

A natural starting point to address this issue is to encrypt all data written to untrusted
storage. For example, consider client-side encryption which defines two parties: a trusted
client and untrusted server (storage). When data passes to/from the server, it is encrypt-
ed/decrypted by the client. Only the client holds the secret key. Thus, the server cannot
decrypt the data it stores unless it is able to break the encryption scheme. Client-side
encryption is used today. For example, it is implemented at the chip boundary in remote
processors to protect main memory (e.g., Intel SGX [62]) and at the client boundary to
protect outsourced storage applications (e.g., [30]).

Program 1 An example program that runs on a remote processor and leaks the integer a
through the program address pattern.

1: function Leaky(integer a, array M)
2: return M[a]
3: end function

A big problem with client-side encryption (and other systems that protect only the data
itself) is that it does not protect all aspects of how the client interacts with the server’s
storage. Where storage is accessed, the access pattern, can also reveal secret information.
For a distilled example, consider the program Leaky (Program 1). This program may run

17

on a remote ‘secure’ processor where the access pattern to memory is visible to an attacker.
In this case, even if the inputs a and M are loaded into memory encrypted, a must be
decrypted during program execution to complete the memory access M[a]. Depending on
where the encrypted array M is stored (e.g., on a remote disk/server, main memory, etc),
a may be revealed to a variety of system components (e.g., the Internet, the network to
disk, the processor memory bus, etc). This example exhibits the root cause of the problem,
which applies to a variety of realistic settings. For example:

• Suppose a patient stores his/her genome on a remote server and wishes to check if
he/she has an allele/SNP (i.e., which is located at a specific point on the genome)
which corresponds to cancer. If an observer (e.g., an insurance company) learns
where that patient is looking in its genome, the observer can infer that the patient
was concerned about cancer. Similar examples can be drawn from users requesting
geo-location, financial and database queries over other sensitive information (e.g.,
[53, 78]).

• A common task in personal and cloud computing is to run a proprietary program on
a remote processor. One of the open challenges with this deployment is to prevent
software IP theft : the program distributor wants to avoid malicious parties from being
able to reverse-engineer the program as it runs. Unfortunately, an observer capable
of monitoring how a program accesses main memory can, in fact, reverse engineer the
program’s conditional and loop structure, simply by monitoring address requests to
main memory [27, 33, 78].

• In the inverse of the software IP theft setting, a user may wish to outsource private
data to a remote processor to compute some result. In this case, the program may
be selected by the server hosting the processor (e.g., a cloud service which cannot be
attested by the user) and is therefore untrustworthy [48, 49]. Untrusted programs
running on sensitive data are a serious concern: the program may directly or inad-
vertently leak the user’s data. For example, the Leaky program (Program 1) may
perform a legitimate task, but none-the-less leaks privacy.

1.1 Challenges In Protecting Access Pattern

The underlying problem in the above examples is inherent in how we write programs today:
to be performant, program control flow and and memory access behavior depends on the
sensitive information we wish to hide. Indeed, a strawman solution to eliminate all access
pattern leakage is to perform the same amount of work, regardless of the program’s sensitive
inputs. In the worst case, this requires that the program scan all of memory on every access
– e.g., download the entire genome to analyze a single allele – incurring huge performance
overheads.

A natural question to ask is: can encryption solve this problem? Generally, the answer
is no, considering practical constraints. Encrypting an address makes that address unus-
able by the memory unless the remote memory has the corresponding decryption key or
the system is using certain cryptographic schemes. First, distributing decryption keys has
serious limitations. In particular, the trust boundary now includes all of remote storage and
the burden is on memory manufacturers to re-design their products to (safely) perform key
exchange. Second, certain encryption schemes (e.g., private information retrieval [14] or ho-
momorphic encryption [6]) can securely search over encrypted data. However, these schemes

18

have an inherent problem: the scheme must compute over every element in the database.
Otherwise, an observer trivially knows what elements were not selected. This has even
worse overheads than scanning memory due to these schemes’ computational complexities.
To summarize, we desire address pattern protection that doesn’t make assumptions on the
untrusted storage, and is asymptotically more efficient than scanning memory.

Another question is: can we get away with incomplete protection? Incomplete access
pattern protection is implicit in the state of the art hardware extensions from Intel, called
Intel SGX [62, 94]. In that system, the access pattern may be called ‘partially hidden’
because the subset of memory accesses that cause page faults are directly revealed to the
untrusted operating system. Recently, however, researchers showed how even this amount of
leakage can be used to reconstruct the outline of medical images in medical applications [92].
Another example in this vein is the HIDE framework, by Zhuang et al. [27]. HIDE provides
access pattern protection assuming constraints on the spatial locality in the program access
pattern.1 But HIDE makes no guarantees for programs with arbitrary access patterns
and, in particular, leaks non-negligible information for even a single access if there are no
restrictions on where that access may occur (such as in the examples from Section 1). To
summarize, we desire a general solution that doesn’t make assumptions about the program
access pattern, or about how much privacy is leaked on a particular memory access.

Another way to see the danger in the above attacks is to look at society’s move from
deterministic to randomized encryption schemes. In the University and Industry, we teach
our students not to use deterministic encryption because it is “insecure,” in particular it is
subject to frequency analysis attacks. The access pattern can be viewed in a similar light: as
client-side encryption becomes ubiquitous, frequency attacks on the remaining un-encrypted
information (the access pattern) can become the new low-hanging fruit.

1.2 The Case for Oblivious RAM

To address the above problems, this thesis studies a cryptographic primitive called Obliv-
ious RAM (ORAM), which provably eliminates all information leakage in memory access
patterns [9, 13].

As with client-side encryption, an ORAM scheme is made up of a client and server
with data blocks residing on the server. Consider two sequences of storage requests A
and A′ made to the server, where each sequence is made up of read (read, addr) and
write (write, addr , data) tuples. ORAM guarantees that from the server’s perspective: if
|A| = |A′|, then A is computationally indistinguishable from A′. Informally, this hides all
information in A and A′: whether the client is reading/writing to the storage, where the
client is accessing, and the underlying data that the client is accessing.

ORAM addresses all the weaknesses discussed in the previous section. First, ORAM
is asymptotically efficient: for a database of size N , modern ORAM schemes only need
to download/re-upload O(polylog N) data blocks from untrusted memory, per access (as
opposed to the O(N) cost of scanning memory). Second, ORAM makes no assumptions on
the external memory. Memory is considered untrusted, or actively malicious, and need not
manage private keys. Finally, ORAM provides the same level of protection regardless of
the access pattern and assumes all memory accesses are visible to the adversary.

Since its proposal by Goldreich and Ostrovsky [9, 13], ORAM has become an important

1In particular, HIDE guarantees access pattern privacy as long as maxi,j |ai − aj |, for memory requests
i, j with addresses ai, aj , never exceeds a threshold (e.g., 4 KBytes of address space).

19

part of the cryptographic “swiss army” knife, and has been proposed to secure numerous
settings, both practical and theoretical. On the practice side, ORAM has been proposed
to secure outsourced storage (e.g., [58]), hide secure processor behavior to external memory
(e.g., [49, 66]) and implement searchable encryption with small leakage (e.g., [63]). Ad-
ditionally on the cryptography side, ORAM has become an important building block in
constructing efficient secure multi-party computation protocols (e.g., [52]), proofs of re-
trievability [59], and Garbled RAM [65].

Despite recent advancements and numerous potential applications, however, the primary
impedance to ORAM adoption continues to be its practical efficiency. To achieve privacy
as advertised, ORAM schemes require that the client continuously shuffle (i.e., physically
re-locate) data as it is stored on the server. This shuffling has incurred Ω(logN) bandwidth
blowup between client and server in all ORAM proposals — which translates to 25× to
> 100× overhead in practice. In fact, the seminal work by Goldreich and Ostrovsky [9, 13]
proved that the shuffling bandwidth must be at least logarithmic in N for an ORAM scheme
to be secure.

To confound the problem, the shuffling requires a potentially large amount of trusted
storage on the client side, and the most performant schemes require more storage. It is
especially challenging to reduce bandwidth overhead while maintaining small client storage.
This is obviously desirable: ORAM exists to securely outsource storage. Indeed, the most
performant ORAM schemes (e.g., [73]) require GBytes (to tens of GBytes) of client storage
to handle TByte-range ORAMs. This immediately rules out their applicability to settings
where the client storage must be small; for example, if it must fit in the on-chip memory of a
remote processor (which is the case with the software IP theft and computation outsourcing
settings discussed above). On the other hand, the state of the art construction that can
be deployed in a remote processor (i.e., requires only KBytes to MBytes of client storage)
incurs > 8× the bandwidth overhead of the most performant schemes [71].

1.3 Thesis Contributions and Organization

Given the aforementioned efficiency challenges of modern ORAM schemes, this thesis con-
siders the following question:

Can we design practical ORAM schemes
that simultaneously require only small client storage?

To address this challenge, we present new tools to design small client storage ORAM schemes
for theory and practice, and construct the first small client storage ORAM prototype man-
ufactured in hardware silicon. I have developed the results of this thesis in collaboration
with the following co-authors: Ling Ren, Albert Kwon, Xiangyao Yu, Marten van Dijk,
Srinivas Devadas, Emil Stefanov, Elaine Shi, Daniel Wichs and Dimitrios Serpanos.

Notation: In this section, we differentiate between online, offline and overall client-
server bandwidth. By online, we mean just the bandwidth needed between when the client
requests a block and receives that block — this is a proxy for access latency and is important
in a real system. By overall, we mean the total bandwidth overhead including the shuffling
cost. Offline bandwidth is overall minus online bandwidth.

The thesis consists of two main parts.

• Chapters 3 and 4 develop two new and general tools for constructing ORAM schemes,
called bucket-size independence and bounded feedback. Using these tools, we construct

20

the first small client storage ORAM schemes that achieve constant bandwidth
overhead, while requiring only standard cryptographic assumptions, relative to an
insecure system. These results improve on the Ω(logN) bandwidth blowups in prior
work.

A re-occurring theme which will be central to these results is to allow the server to
perform untrusted computation in addition to performing memory reads/writes. We
use this idea to bypass previous lower bound results [9, 13] and note that it is a realistic
assumption in many settings, such as when the memory is located on a remote server
with a software stack. In particular, Chapter 3 shows how to achieve constant online
bandwidth with a small amount of untrusted computation. Chapter 4 shows how to
leverage more untrusted computation to achieve constant overall bandwidth.

• Chapter 5 describes the design, implementation, and evaluation of the first ORAM
controller manufactured into a real silicon chip. This work, taped out in 32 nm silicon,
is the first hardware ORAM controller with small client storage, integrity verification,
and encryption units. As a proof of concept, we have deployed our design as the
on-chip memory controller for a 25 core processor. The ORAM controller passed post
tape-out bring-up tests in a lab setting – thereby proving the feasibility of a single-chip
secure processor capable of preventing software IP or data theft through the access
pattern to main memory.

This chapter also proposes a number of optimizations to improve ORAM’s perfor-
mance, area and energy consumption in the hardware setting. Most of these opti-
mizations appear in the final silicon chip. A re-occuring theme with the optimizations
was to not only improve performance, but to try and simplify the design (an especially
important consideration when building hardware).

We now give an overview of each chapter. For a detailed narrative on the techniques
used in Chapters 3 and 4, see Sections 3.4 and 4.3, respectively.

Chapter 2 – Preliminaries. We start by introducing security definitions for ORAM in
several settings and efficiency metrics which will be studied later in the thesis. We then
describe the usage settings for ORAM most related to the thesis and give a history of prior
work in ORAM starting with the first ORAM schemes by Goldreich and Ostrovsky.

Chapter 3 – Ring ORAM. We present a new ORAM construction called Ring ORAM,
the first small client storage ORAM to achieve constant online bandwidth. Ring ORAM
simultaneously matches or improves upon the overall bandwidth of all prior ORAM schemes
(given equal client storage), up to constant factors. The core building block in Ring ORAM
is a series of techniques which together allow it to achieve bucket-size independent band-
width, which we also use extensively in Chapter 4.

We highlight the following results, published in [91]:

• Section 3.5: We show how to achieve constant online bandwidth overhead with small
client storage, if the server is able to perform perform untrusted base-2 XOR computa-
tions. This constitutes a > 60× online bandwidth improvement over prior small client
storage schemes. In absolute terms for a realistic parameterization, this configuration
(prior work) has online bandwidth overhead of 1.4× (80×) and overall bandwidth
blowup of 59.7× (160×).

21

• Without server computation, Ring ORAM parameterized for small client storage im-
proves online bandwidth relative to prior work by 4× and overall bandwidth by 2−3×.

• Section 3.6: On the theory side, we present a simpler and tighter analysis than prior
work. Further (in Section 3.7), we show how to use our analysis to optimally set
parameters to minimize bandwidth overhead in practice, given a user-specified client
storage budget.

• Section 3.9: Finally, we show how Ring ORAM matches the bandwidth of prior art
large client storage ORAM schemes (e.g., [73]) when given comparable client storage.
Thus, Ring ORAM is essentially a unified paradigm for ORAM constructions in both
large and small client storage settings.

Chapter 4 – Onion ORAM. We present a new ORAM construction called Onion
ORAM, the first ORAM scheme with constant worst-case, overall bandwidth blowup that
does not require heavy weight cryptographic primitives such as fully homomorphic encryp-
tion (FHE). Onion ORAM circumvents the Goldreich-Ostrovsky [9, 13] lower bound without
FHE by combining more efficient additively homomorphic encryption schemes with a new
technique called bounded feedback. Since our proposal, bounded feedback has been directly
adopted by subsequent third party work on constant bandwidth blowup ORAMs [90]. Due
to its reliance on cheaper cryptographic techniques, we view Onion ORAM as taking an
important step towards practical constant bandwidth blowup ORAMs.

This chapter additionally contains the following results, published in [95]:

• We show how to parameterize Onion ORAM using the Damg̊ard-Jurik cryptosys-
tem (Section 4.5) or a somewhat homomorphic encryption scheme such as R-LWE
(Section 4.9). (These schemes rely on the Composite Residuosity and Learning with
Errors assumptions, respectively.) Both configurations achieve constant worst-case
bandwidth blowup, and constant client/server storage blowups — asymptotically op-
timal in each category.

• Section 4.6: We develop novel techniques to achieve security against a malicious server,
without resorting to expensive and non-standard techniques such as SNARKs. In par-
ticular, our construction only relies on the existence of collision-resistant hash func-
tions. Taken together, this and the above bullet give us the first constant bandwidth
ORAM in the malicious model from standard assumptions.

• We propose a number of optimizations (Sections 4.7, 4.7.4 and 4.9.4) that make asymp-
totic and constant factor improvements.

• Section 4.7.4: We concretely evaluate the scheme over the Damg̊ard-Jurik cryptosys-
tem, taking into account all constant factors. Using an 8 MByte block size, Onion
ORAM improves over prior work by > 20× and achieves ∼ 8× bandwidth overhead
in absolute terms.

Chapter 5 – Tiny ORAM, integrated with the Ascend Processor. We design and
implement Tiny ORAM, the first ORAM controller built into silicon and the first hardware
ORAM controller with small client storage, integrity verification, or encryption units. The
design, written in Verilog, has been open sourced at http://kwonalbert.github.io/oram.

22

http://kwonalbert.github.io/oram

We built Tiny ORAM to be integrated into an Ascend processor, the author’s prior
collaborative work [49, 60], which can be used to protect processor access pattern in set-
tings such as software IP theft prevention and secure computation outsourcing (Section 1).
Thus, a major focus of this chapter is also to propose new optimizations that apply to
the hardware/secure processor, and to evaluate those optimizations in the context of a real
prototype. To that end, this chapter contains the following results:

• We propose techniques to securely cache (Section 5.5.1) and compress (Section 5.5.2)
the ORAM position map, the central structure in modern ORAM schemes which con-
stitutes the bulk on client (on-chip) storage. These techniques reduce extra bandwidth
needed to maintain the position map by 95%.

• Section 5.5.3: We propose a new integrity scheme for position-based ORAM that is
asymptotically optimal in its hash bandwidth requirements (a > 68× improvement
over prior work). This scheme and those in the previous bullet appear in [86].

• In Section 5.6, we present techniques to avoid hardware performance bottlenecks due
to DRAM architecture, memory bandwidth through the ORAM stash (a crucial client
datastructure), and the ORAM’s encryption units. The last technique (Section 5.6.3)
also reduces necessary encryption bandwidth at the algorithm level by ∼ 3×. These
schemes appear in [69] and [87].

• Finally, we present a thorough evaluation of our designs in simulation (Section 5.7), on
an FPGA board (Section 5.8) and via an ASIC tape-out (Section 5.9-5.10). The post
tape-out ASIC results appear in [96]. For completeness, we also simulate expected
benefits of Ring ORAM in hardware (Section 5.7.6).

In simulation, our hardware ORAM (Ring ORAM, projected) runs a suite of bench-
marks with an average 4× (3×) slowdown vs. an insecure system. This corresponds
to latencies measured from our ASIC prototype, which can lookup a 1 GByte non-
recursive ORAM lookup for a 512 bit block in ∼ 1275 processor cycles (an insecure
access costs ∼ 58 cycles). The ASIC design has a hardware area of .51 mm2 in 32 nm
technology, runs at 857 MHz, and consumes 299 mW of power – measured on real
hardware post tape-out.

The evaluation results are encouraging. Our hardware ORAM, when integrated into the 25
core test chip, is small : roughly the size of a processor core or ∼ 1/72-th the area of the test
chip. At 857 MHz and the bandwidths described, the ASIC is capable of servicing 43 MB of
client requests per second, with an access latency of 1.4 µs. This means running programs
on hardware ORAM can have similar overheads to running a language in an interpreter.

Chapter 6 – Conclusion. We summarize the results of the thesis and discuss avenues
for future work.

23

24

Chapter 2

Preliminaries

In this chapter, we give formal definitions for ORAM. We first give a strong and general
security definition, which achieves simulator-based security against a malicious adversary.
We then discuss ORAM metrics and how they impact practice, and give a history of prior
work.

2.1 ORAM Definition

Following Apon et al. [72], we define ORAM as a reactive two-party protocol between the
client and the server, and define its security in the Universal Composability model [20]. We
use the notation

((c out, c state), (s out, s state))← protocol((c in, c state), (s in, s state))

to denote a (stateful) protocol between a client and server, where c in and c out are the
client’s input and output; s in and s out are the server’s input and output; and c state and
s state are the client and server’s states before and after the protocol.

Definition 1 (Oblivious RAM (ORAM)). An ORAM scheme consists of the following
interactive protocols between a client and a server.

((⊥, C), (⊥,D)) ← Setup(1λ, (D,⊥), (⊥,⊥)): An interactive protocol where the client’s
input is a memory array D[1..N] where each memory block has bit-length B; and the
server’s input is ⊥. At the end of the Setup protocol, the client has secret state C,
and server’s state is D (which typically encodes the memory array D).

((data, C′), (⊥,D′)) ← Access((op, C), (⊥,D)): To access data, the client starts in state
C, with an input op where op := (read, addr) or op := (write, addr , data); the server
starts in state D, and has no input. In a correct execution of the protocol, the client’s
output data is the current value of the memory D at location addr (for writes, the
output is the old value of D[addr] before the write takes place). The client and server
also update their states to C′ and D′ respectively. The client outputs data := ⊥ if the
protocol execution aborted.

We say that the ORAM scheme is correct, if for any initial memory D ∈ {0, 1}BN ,
for any operation sequence op1, op2, . . ., opm where m = poly(λ), an op := (read, addr)
operation would always return the last value written to the logical location addr (except
with negligible probability).

25

2.2 Security Definition (Simulator)

We will adopt two security definitions throughout this thesis. The first follows a standard
simulation-based definition of secure computation [18], requiring that a real-world execution
“simulate” an ideal-world (reactive) functionality F .

Ideal world. We define an ideal functionality F that maintains an up-to-date version of
the data D on behalf of the client, and answers the client’s access queries.

• Setup. An environment Z gives an initial database D to the client. The client sends
D to an ideal functionality F . F notifies the ideal-world adversary S of the fact that
the setup operation occurred as well as the size of the database N = |D|, but not of
the data contents D. The ideal-world adversary S says ok or abort to F . F then says
ok or ⊥ to the client accordingly.

• Access. In each time step, the environment Z specifies an operation op := (read, addr)
or op := (write, addr , data) as the client’s input. The client sends op to F . F notifies
the ideal-world adversary S (without revealing to S the operation op). If S says ok to
F , F sends D[addr] to the client, and updates D[addr] := data accordingly if this is
a write operation. The client then forwards D[addr] to the environment Z. If S says
abort to F , F sends ⊥ to the client.

Real world. In the real world, an environment Z gives an honest client a database D.
The honest client runs the Setup protocol with the server A. Then, at each time step, Z
specifies an input op := (read, addr) or op := (write, addr , data) to the client. The client
then runs the Access protocol with the server. The environment Z gets the view of the
adversary A after every operation. The client outputs to the environment the data fetched
or ⊥ (indicating abort).

Definition 2 (Simulation-based security: privacy + verifiability). We say that a protocol
ΠF securely computes the ideal functionality F if for all probabilistic polynomial-time real-
world adversaries (i.e., server) A, there exists an ideal-world adversary S, such that for all
non-uniform, polynomial-time environments Z, there exists a negligible function negl such
that

|Pr [RealΠF ,A,Z(λ) = 1]− Pr [IdealF ,S,Z(λ) = 1]| ≤ negl(λ)

At an intuitive level, our definition captures the privacy and verifiability requirements for
an honest client (the client is never malicious in our setting), in the presence of a malicious
server. The definition simultaneously captures privacy and verifiability. Privacy ensures
that the server cannot observe the data contents or the access pattern (the contents of any
opi). Verifiability ensures that the client is guaranteed to read the correct data from the
server.

2.3 Security Definition (Termination Channel Leakage)

The two outcomes from running the protocol in the previous section are: (1) the adversary
deviates from the protocol, which may cause the client to prematurely abort, or (2) the
adversary lets the protocol complete. In (1), which we call the termination channel, there is
no privacy leakage since we require the existence of S that, for all Z, can predict when the

26

termination occurs a-priori (i.e., independent of the access pattern given by Z). In (2), there
is some leakage: the adversary learns how many accesses were requested by Z. However,
we are not interested in preventing this leakage since it once again does not depend on the
operations (the access pattern) submitted by Z.

In this section, we want to relax this definition to permit some small, but access pattern-
related, leakage through the termination channel. Doing so will enable several performance
optimizations in Chapter 5 (hardware ORAM).1 Informally, the change to the real world
adversary’s view is the following. If the adversary is semi-honest, the protocol terminates
when Z stops submitting operations and the adversary only learns (2) above, as with the
previous definition. If the adversary is malicious, the protocol may terminate before (2)
occurs, but when it terminates will be a function of the adversary’s strategy, randomness
in the protocol, and importantly the access pattern specified by Z. For the purposes of
satisfying the definition, we wish to show that when/if the protocol terminates is the only
new information the adversary is able to learn. More formally,

Definition 3 (Termination channel security: privacy). An ORAM scheme leaks privacy
only over the termination channel if for every (malicious) adversary A, there exists a func-
tionality F such that the following two distributions are computationally indistinguishable.

1. (Real world). Same as the real world in Section 2.2, where the real-world distribution
is the adversary A’s view of the protocol. We denote with a bit b whether the client
decided to abort (output ⊥) at some point in the protocol. The number of accesses
made by the client until it stops making requests (or aborts) is denoted m′.

2. (Ideal world). Same as the real world experiment, except for the following change.
For a given experiment in the real world, the client’s interactions with the server
are replaced by the functionality F , which is given b and m′ but not the client data
requests. Throughout the protocol, F produces a view (the ideal-world distribution) for
the adversary A which is a function of only b and m′.

Definition 4 (Termination channel security: verifiability/integrity). Consider the following
correctness experiment. The client and A run m′ rounds of the Access protocol, at which
point the protocol naturally terminates or prematurely aborts as described above. Correctness
requires that except with negligible probability op1, op2, . . ., opm′−1 are correct (if the client
aborted) or op1, op2, . . ., opm′ are correct (otherwise). Correctness of each trace follows the
definition from Section 2.1 and is from the perspective of Z.

2.4 Metrics

We will gauge ORAM schemes primarily on the following performance metrics. Note re-
garding notation: Metrics are in bits unless otherwise specified.

Client/server storage. The client/server’s storage, given by |C| and |D| in the above
definitions, refers to the number of blocks held by the client and server at the start of
an Access operation. In all the schemes we describe, the client/server storage after and
during each call to Access will be the same asymptotically as the starting size, so we will

1Note that this change will leak non-negligible privacy. We will be explicit as to where it is used in
Chapter 5.

27

not distinguish these cases. Following conventions from prior work, we say client storage is
small if it is O(B polylog N) and large if it is Ω(B

√
N) — where B is the data block size

in bits. We consider an insecure block storage system to require O(BN) server storage and
O(B) client storage, thus this is optimal for an ORAM as well.

Client-server bandwidth. Client-server bandwidth (bandwidth for short) refers to the
number of blocks sent between the client and server to serve all Access operations, over the
number of accesses made (i.e., is amortized). Insecure block storage systems require O(B)
bandwidth. When we say an ORAM requires O(B logN) bandwidth, this may also be
interpreted as O(logN) bandwidth blowup/overhead relative to the insecure system. Note
that some ORAM schemes only achieve their best bandwidth given large-enough blocks. If
the allowed block size is larger than the client application’s desired block size, the bandwidth
blowup increases proportionally.

In addition to the primary metrics, we will analyze the following as they become relavent
to different constructions.

Online bandwidth. The online bandwidth during each access refers to the blocks trans-
ferred before the access is completed from the client’s point of view. By the “client’s point
of view,” we are mainly interested in the case when the access type is read: i.e., online band-
width represents the critical-path operation, the time between when the client requests a
block and receives that block. To hide whether the operation type is read or write, however,
ORAM schemes typically make Access perform the same operations from the server’s per-
spective, regardless of operation type. So, for the rest of the thesis online bandwidth will
refer to the blocks transferred before data is returned to the client, as if every client oper-
ation was a read.2 After the online phase of Access, more block transfers may be required
before the access is complete, which we call the offline phase.

Worst-case bandwidth. The worst-case bandwidth refers to the per-Access bandwidth
if amortization is not possible. For certain ORAM schemes, the bandwidth per call to
Access is naturally the same for every call (in which case worst-case equals bandwidth). In
other schemes (including ones that we present), offline bandwidth can be pushed to future
calls to Access to improve the online bandwidth of multiple consecutive requests. This is
to improve performance of “bursty workloads:” if the client must make two read requests
before proceeding in its computation, the effective online bandwidth is the online bandwidth
of both calls to Access and the offline bandwidth of the first call to Access.

Server computation. The server computation is the amount of untrusted, local com-
putation performed by the server, in addition to performing simple memory read/write
operations. In the first ORAM papers [9, 13], the server is assumed to only perform read
and write operations to untrusted storage. In practice, many recent constructions have
implicitly assumed the server is able to perform some amount of computation on data to re-
duce client-server bandwidth. Depending on the amount of computation, the computation
may become the system bottleneck.

2The ORAM literature sometimes makes this distinction by saying logical write operations return ⊥ to
the client.

28

Other metrics: Number of round-trips. The number of round-trips refers to the
round-trip block traffic between client and server during each call to Access. As in regular
systems design, more roundtrips means worse performance since future operations must
wait for the interconnect latency between client and server.

2.5 Settings

Many of the techniques presented in the thesis are general and help improve any ORAM
deployment. We mention two settings in later chapters, described below (Figure 2-1).

Cloud processors

Client

TCB

Network

ORAM

Client data

(Can perform computation)

Outsourced storage

Untrusted
cloud

(a) File server setting

Secure processor

Client

ORAM

Client data

TCB

Initialization,
Key exchange

Memory bus

TCB

Untrusted
Cloud

Secure processors

Trusted Computation
Limited client storage

(b) Secure processor setting

Figure 2-1: Outsourced storage and secure processor ORAM usage settings. Green is
trusted.

Outsourced storage. Here, a client (e.g., a mobile device or in-house data management
system) wishes to securely store data on a remote storage provider. We assume the storage
provider acts as block storage (e.g., Amazon S3): the operations exposed to the client are
to read/write blocks of data [83]. The trusted computing base (TCB) is the client machine:
we wish to eliminate access pattern leakage, given a potentially malicious adversary, at all
points beyond the client (e.g., the network, server, etc).

29

Secure processor. Here, a client wishes to outsource computation to a server or to
obfuscate its execution in an Internet-of-Things (IoT) environment. In the outsourcing
setting, there is a remote client, a secure processor on the server, and the rest of the
server state (e.g., its DRAM / disk hierarchy). In a setup phase, the client loads data
and (possibly) a program into the secure processor using conventional secure channels and
attestation techniques. Once setup, the secure processor computes the result of running the
program on the privided data, and sends it back to the client (also using secure channels).
In the IoT setting, a processor collects and computes on data in a hostile environment where
the adversary may have physical access to the device. The TCB is the secure processor and
the remote client (if one exists).

As the program runs, we wish to eliminate access pattern leakage to main memory,
given a potentially malicious adversary, when last-level cache (LLC) misses occur. Several
possible attacks include cold boot [35], intercepting data on the memory bus [23, 16], BIOS
flashing [2, 37], and in general multiple processors (or helper modules such as the Intel
Management Engine [94]) sharing main memory in space or time.

2.6 Related Work

We now review prior ORAM work more generally, as well as in the contexts described in
the previous section.

2.6.1 ORAM History

We start by describing the three main families of ORAM schemes. The goal is to show
the progression of ideas over time, and to introduce several core techniques that will be
used later in the thesis. The three schemes detailed below all require O(B) client storage
(asymptotically optimal).

Square root ORAM (1987)

The study of ORAM was initiated by Goldreich [9], who sought to address the problem of
software IP theft. This problem is similar to our secure processor setting: for a program
running on a remote secure processor, one wishes to hide a program’s control flow as deter-
mined by the address pattern to main memory. The trivial solution is to scan all of memory
on each access, which has O(BN) online/overall bandwidth.

To address the high online bandwidth in the trivial scheme, Goldreich proposed the
square root ORAM. In this design, the server memory is into two regions: a main O(N)
block region and a shelter of size O(

√
N) blocks. The main region is filled with O(N) real

blocks and O(
√
N) dummy blocks. All blocks are encrypted using a semantically secure

scheme and shuffled together. This mechanism of permuting an array full of real blocks
and dummy blocks will be used heavily throughout the thesis. How the permutation is
selected is implementation dependent; the square root ORAM uses a random oracle / hash
function followed by an oblivious sort.

To make an access, the client first scans the entire shelter. If the block is found there, the
client reads a random, previously unread dummy block from the main region. Otherwise,
the client uses the hash function to determine the address of the block of interest in the
main region. Finally, the real or dummy block is re-encrypted and appended to the shelter.

30

Thus, the online bandwidth is O(B
√
N). The intuition for security is that each read scans

the shelter, and performs a read to a random, previously unread slot in the main region.

Every O(
√
N) accesses, the main region runs out of dummies and must be fully re-

permuted by the client. [9] achieves this eviction step by using an oblivious sort and a new
keyed hash function to re-mix the shelter into the main region and re-permute the main
region. Using the sorting algorithm described in the paper, this step requires O(B) client
storage, and O(BN logN) bits to be transferred every O(

√
N) accesses, giving the scheme

a O(B
√
N logN) amortized bandwidth.

Hierarchical ORAM (1996)

Goldreich and Ostrovsky proposed the hierarchical ORAM [13] to improve the online and
overall bandwidth of the square root algorithm. The key idea is to, instead of having one
main memory region and shelter, organize the server as a pyramid of permuted arrays where
each array is geometrically (e.g., a factor of 2) larger than the previous array. Each permuted
array acts as the main region in the square root ORAM, and thus is parameterized by a
hash function and has space reserved for dummy blocks.

To access a block, each level in the pyramid is accessed as if it were the main region in
the square root ORAM. To avoid collisions in the hash function for the smaller levels, each
slot in each permuted array is treated as a bucket of size O(logN) blocks. The hash function
now maps blocks to random buckets. Buckets are downloaded atomically by the client when
read/written to, and the bucket size is set to make overflow probability negligible. Thus,
online bandwidth is O(log2N): the cost to access O(logN) buckets (one per level in the
pyramid) of O(logN) blocks each.

Instead of scanning a shelter, each block accessed is appended to the smallest level
of the pyramid after that access. Eventually (like the shelter), the top (or root) of the
pyramid will fill, and an eviction step must merge it into the second pyramid level. When
the second level fills, it along with the first level is merged into the third level, so on to
the largest level of O(N) blocks. In general, merging levels 0 through i involves completely
re-shuffling the contents of those levels into a new array which becomes level i + 1. The
worst case and amortized bandwidth cost of this operation is O(N log2N) and O(log3N)
blocks, respectively.

Tree ORAM (2011)

Shi et al. [46] proposed the tree ORAM to decrease the worst-case bandwidth cost of the
hierarchical ORAM to be O(polylogN) blocks. All ORAM schemes in this thesis are tree
ORAMs.

The key idea in the tree ORAM is that, instead of blocks stored in level i having
complete freedom on where they will be re-shuffled into in level i+1 (as with the hierarchical
solution), blocks may only live in a single pre-ordained bucket per level. This is accomplished
by connecting the buckets in the hierarchical ORAM pyramid as if they were nodes in a
binary tree, and associating each block to a random path of buckets from the top bucket
(the root) bucket) to a leaf in the tree.

To access a block the client first looks up a position map, a table in client storage
which tracks the path each block is currently mapped to, and then reads all the buckets on
the block’s assigned path. The scheme achieves access pattern privacy by re-mapping the
accessed block to a new random path when it is accessed. Similar to [13], the tree ORAM

31

requires buckets to be size O(logN) for reasons that will be described below. Thus, online
bandwidth is also O(B log2N).

Similar to the hierarchical ORAM, each block accessed is appended to the root bucket at
the end of each access. To prevent the root bucket (or any other bucket) from overflowing,
an eviction procedure downloads O(1) buckets per level per access to try and push blocks
down the tree subject to blocks needing to stay on their assigned paths. This operation has
an amortized and worst-case bandwidth overhead of O(B log2N).

ORAM Recursion. As described, the position map is Ω(N logN) bits in size which is
too large. To address this issue, Shi et al. [46] also proposed ORAM recursion to reduce the
client storage to O(logN) bits. The basic idea is to store the position map in a separate
ORAM, and store the new ORAM’s (smaller) position map on-chip. This may be performed
recursively until the client storage due to the final position map is O(logN) bits. Clearly,
looking up a block for the client now requires looking up all the position map ORAMs in
addition to the main data ORAM. Using the parameters in [46], the amortized bandwidth
(including the cost of recursion) becomes O(B log3N). (More detail about recursion is given
in Chapter 5.)

2.6.2 State of the Art ORAMs

We now review the most efficient ORAMs, which are improvements to the above families.

The most efficient schemes asymptotically are due to Goodrich et al. [42], Kushilevitz
et al. [54] and Circuit ORAM [5]. In the large client storage setting, Goodrich et al. [42]
achieves a bandwidth of O(B logN) with client storage O(BN ε) (for ε > 0). With small
client storage, Kushilevitz et al. [54] achieves O(B log2N/ log logN) bandwidth with O(B)
client storage. Both of these schemes assume B = Ω(logN) and are hierarchical ORAMs.
On the other hand, Circuit ORAM is a tree ORAM that achieves ω(B logN) bandwidth
with O(B) client storage, but only when B = Ω(log2N).

Counting constant factors, the most bandwidth efficient schemes are the SSS ORAM [56]
and Path ORAM [71]. The SSS ORAM uses O(B

√
N) client storage to achieve O(B log2N)

bandwidth. In practice, the SSS ORAM is often parameterized with c ∗ O(BN) client
storage (for c � 1), where it can achieve O(B logN) bandwidth with hidden constant 1.
Path ORAM uses ω(B logN) client storage to achieve O(B logN + log3N) bandwidth.
Depending on parameters, Path ORAM’s hidden bandwidth constant is ≥ 8. SSS is a
hierarchical ORAM while Path ORAM is a tree ORAM.

All of the above schemes that we described explicitly (as well as the schemes we construct
in this thesis) have O(BN) server storage — asymptotically optimal.

2.6.3 ORAM in Specific Settings

For the next several subsections, we give ORAM schemes and systems built that are relevant
to the settings from Section 2.5.

ORAM for Outsourced Storage

Several systems have been built to enable ORAM in the outsourced storage setting, includ-
ing PrivateFS [58], Shroud [64], Oblivistore [70] and Curious [83]. PrivateFS and Oblivis-
tore follow the traditional ORAM model, and Oblivistore (based on the SSS ORAM [56])

32

claims the best performance (between 10× and 100× bandwidth overhead). Oblivistore
can trivially be combined with another construction called Burst ORAM [73] to decrease
bandwidth further. Shroud assumes multiple trusted co-processors running on the server
to reduce bandwidth.

Server Computation ORAM

Many state-of-the-art ORAM schemes or implementations (especially in the outsourced
storage model) make use of server computation. Two recent works, Burst ORAM [73] and
Path PIR [79], use server computation to reduce online bandwidth to O(B) bits. The
SSS ORAM [56, 70] and Burst ORAM [73] assumed the server is able to perform matrix
multiplication or XOR operations. Path-PIR [79] and subsequent work [84, 81] increased the
allowed computation to additively homomorphic encryption. Apon et al. [72] and Gentry et
al. [61, 3] further augmented ORAM with Fully Homomorphic Encryption (FHE). Williams
et al. [57] and Bucket ORAM [85] rely on server computation to achieve a single online
roundtrip.

Server Computation ORAM vs. Other Cryptographic Primitives

We remark that recent works on Garbled RAM [75, 65] can also be seen as generalizing the
notion of server computation ORAM. However, existing Garbled RAM constructions incur
poly(λ)·polylog(N) client work and bandwidth blowup, and therefore Garbled RAM does not
give a server-computation RAM with a competitive bandwidth blowup. Reusable Garbled
RAM [76] achieves constant client work and bandwidth blowup, but known reusable garbled
RAM constructions rely on non-standard assumptions (indistinguishability obfuscation, or
more) and are prohibitive in practice.

Secure Processors and ORAM

Academic work on single-chip (tamper-resistant) secure processors goes back to eXecute
Only Memory (XOM) [24, 25, 19] and Aegis [26, 29]. In XOM, security requires applications
to run in secure compartments, where both instructions and data are encrypted and from
which data can escape only on explicit request from the application itself. Aegis, a single-
chip secure processor, performs memory integrity verification and encryption on all data
written to main memory so as to allow external memory to be untrusted. Intel SGX’s
memory encryption engine is very similar to this mechanism [62, 94].

Recently, a secure processor called Ascend [49, 60] was proposed to improve security
over the main memory channel through hardware ORAM in addition to encryption/in-
tegrity checking. The goal of Ascend is to run untrusted programs and still maintain data
privacy/integrity from an adversary with unrestricted access to main memory. We note
that Ascend’s threat model requires more protection than just the access pattern channel
(e.g., it aims to protect the timing channel [74]). These additional channels are outside the
scope of the thesis.

Concurrently, Maas et al. built Phantom [66], the first hardware implementation of
ORAM on FPGAs. Tiny ORAM (Chapter 5) can be seen as follow-on work to Phantom,
and may serve as the on-chip memory controller in the Ascend processor. Further, Chang
et al. [89] built Ghostrider, a system which uses programming language techniques to decide
when and how to access ORAM. Ghostrider is complementary to this thesis in the sense
that Ghostrider relies on hardware ORAM as a primitive.

33

Notation Meaning

N Number of real data blocks in ORAM

B Data block size in bits

Z Environment/running program

A Adversary (server/memory)

Introduced for Ring ORAM (Chapter 3)

L Depth of the ORAM tree

Z Maximum number of real blocks per bucket

S Number of slots reserved for dummies per bucket

A Eviction frequency (larger means less frequent)

G Eviction counter

T Maximum stash occupancy (not counting the transient path)

P(l) Path from the root bucket to leaf l

P(l, i) The i-th bucket (towards the root) on P(l)

P(l, i, j) The j-th slot in bucket P(l, i)

Introduced for Onion ORAM (Chapter 4)

C The number of chunks in each data block

BC Chunk size in bits (B = C ·BC)

V The set of chunk indices corresponding to verification chunks

Introduced for Tiny ORAM (Chapter 5)

H The number of ORAMs in the recursion

X The number of leaves stored per PosMap block

Table 2.1: Thesis parameters and notations.

2.7 Summary of Notations

Table 2.1 overviews this thesis’ commonly used notations. All logarithms (if left unspecified)
are base 2.

34

Chapter 3

Ring ORAM:

An Efficient Small Client Storage ORAM

This chapter presents Ring ORAM, the most bandwidth-efficient ORAM scheme for the
small client storage setting. At the core of the construction is an ORAM that achieves
“bucket-size independent bandwidth,” which unlocks numerous performance improvements.
In practice, Ring ORAM’s overall bandwidth is 2.3× to 3× better than the prior-art scheme
for small client storage. Further, if memory can perform simple untrusted computation,
Ring ORAM achieves constant online bandwidth (∼ 60× improvement over prior art for
practical parameters). On the theory side, Ring ORAM features a tighter and significantly
simpler analysis than prior art. Finally, we show how to parameterize Ring ORAM for the
large client storage setting, where its efficiency matches the state-of-the-art schemes in that
setting.

Historically, research to apply ORAM in practice has followed two divergent tracts,
depending on the application domain. When the client has a large storage budget, hierar-
chical ORAMs [15] such as the SSS construction [56, 73] are preferred since they can achieve
bandwidths as low as 1 ∗ B logN . In practice, however, these constructions’ client storage
budgets may be tens of GBytes, which may be too large for a space-constrained client.

For example, when the client is a remote secure processor, client storage is restricted
to the processor’s scarce on-chip memory (KBytes to MBytes). In that setting, tree
ORAMs [46] such as Path ORAM [71] are required, which has bandwidth 8 ∗ B logN .
Unfortunately, hierarchical ORAMs and tree ORAMs look quite different, and the above
properties have had the effect of splitting the community’s efforts. Ideally, one wishes for
a single ORAM scheme that can be parameterized for and be performance-competitive in
any setting.

Ring ORAM takes a step in this direction, by improving on Path ORAM when pa-
rameterized for small storage and matching the SSS ORAM when parameterized for large
storage. Ring ORAM is also the first small client storage ORAM to achieve constant online
bandwidth. The majority of this chapter focuses on the small client storage setting and
Path ORAM, so we now provide a summary of that scheme. In Section 3.9, we show how
to parameterize Ring ORAM for the large client storage setting.

35

Server

Position mapClient Stash

Z = 4

log N levels~

Figure 3-1: Path ORAM server and client storage. Suppose the black block is mapped to
the shaded path. In that case, the block may reside in any slot along the path or in the
stash (client storage).

3.1 Path ORAM Overview

We now give a brief overview of Path ORAM as it is relevant to Ring ORAM. The ORAM
we later build into hardware (Chapter 5) will be based on Path ORAM, and we will describe
it in more detail there.

Path ORAM (and Ring ORAM) is a tree ORAM [46] (Section 2.6.1) and server storage
is structured as a binary tree of roughly L = O(logN) levels. Each node in the tree is a
bucket that can hold up to a small - O(1) - number Z of data blocks. Each path in the
tree is defined as the sequence of buckets from the root of the tree to some leaf node. Each
block is mapped to a random path, and must reside somewhere on that path.

As with the original tree ORAM: To access a block, the client first looks up a position
map, a table in client storage which tracks the path each block is currently mapped to, and
then reads all the (∼ Z logN) blocks on that path into a client-side data structure called the
stash. The requested block is then remapped to a new random path and the position map
is updated accordingly. Lastly, the algorithm invokes an eviction procedure which writes
the same path we just read from, percolating blocks down that path.

We remind readers not to confuse the above read/write path operation with read-
ing/writing data blocks. In ORAM, both reads and writes to a data block are served
by the read path operation, which moves the requested block into client storage to be op-
erated upon secretly. The sole purpose of the write path operation is to evict blocks from
the stash and percolate blocks down the tree.

Recursion. Recursion for Path ORAM and Ring ORAM is the same as with the tree
ORAM (Section 2.6.1). In this chapter, we assume both Path ORAM and Ring ORAM
use instances of themselves for recursion. Thus, for simplicity, most of the analysis in this
chapter will be for a single instance (“the non-recursive” version) of both schemes.

Parameters and Costs. Path ORAM’s bandwidth is 2Z logN because each access reads
and writes a path in the tree. To prevent blocks from accumulating in client storage, the
bucket size Z has to be at least 4 (experimentally verified [71, 66]) or 5 (theoretically
proven [4]).

36

Table 3.1: Our contributions. Bandwidths are given for non-recursive versions of each
scheme. Ranges in constants for Ring ORAM are due to different parameter settings. XOR
refers to the XOR technique from [73].

Online Bandwidth Overall Bandwidth

Path ORAM ZB logN = 4B logN 2BZ logN = 8B logN
Ring ORAM ∼ 1 ∗B logN (3 to 3.5) ∗B logN

Ring ORAM + XOR ∼ B (2 to 2.5) ∗B logN

3.2 Path ORAM Challenges

Despite being a huge improvement over prior schemes, Path ORAM is still plagued with
several important challenges. First, the constant factor 2Z ≥ 8 is substantial, and brings
Path ORAM’s bandwidth overhead to > 150× for practical parameterizations. In contrast,
the SSS construction does not have this bucket size parameter and can achieve close to
1 · logN bandwidth. (This bucket-size-dependent bandwidth is exactly why Path ORAM
is dismissed in the large client storage setting.)

Second, despite the importance of overall bandwidth, online bandwidth—which deter-
mines response time—is equally, if not more, important in practice. For Path ORAM, half
of the overall bandwidth must be incurred online. Again in contrast, an earlier work [73]
reduced the SSS ORAM’s online bandwidth to O(1) blocks by granting the server the ability
to perform simple XOR computations. Unfortunately, their techniques do not apply to Path
ORAM, or any small client storage ORAM that has competitive practical performance.

3.3 Contributions

Ring ORAM is a careful re-design of the tree-based ORAM to achieve an online bandwidth
of O(1), and the amortized overall bandwidth is independent of the bucket size. We compare
analytic bandwidth overhead to Path ORAM in Table 4.2. The major contributions of Ring
ORAM include:

• Small online bandwidth. We provide the first small client storage ORAM scheme
that achieves ∼ 1 online bandwidth, relying only on very simple, untrusted compu-
tation logic on the server side. This represents at least 60× improvement over Path
ORAM for reasonable parameters.

• Bucket-size independent overall bandwidth. While all known tree-based
ORAMs incur an overall bandwidth cost that depends on the bucket size, Ring ORAM
eliminates this dependence, and improves overall bandwidth by 2-3× relative to Path
ORAM in the small client storage regime.

• Simple and tight theoretical analysis. Using novel proof techniques based on
Ring ORAM’s eviction algorithm, we obtain a much simpler and tighter theoretical
analysis than that of Path ORAM. As a byproduct of the analysis, we develop an
analytic model for setting Ring ORAM’s parameters to achieve optimal bandwidth.

Extension to larger client storage. As mentioned, as an interesting by-product, Ring
ORAM can be easily extended to achieve competitive performance in the large client storage
setting. This makes Ring ORAM a good candidate in oblivious cloud storage, because as

37

Table 3.2: Snapshot of overheads (relative to insecure system). Online bandwidth is
the bandwidth needed to serve a request and overall bandwidth includes background work.
XOR refers to the XOR technique from [73] and level comp refers to level compression from
[56] (these are mutually exclusive optimizations with different trade-offs). We show Ring
ORAM without the XOR technique for small client storage in case server computation is
not available in that setting. The constant c in the large client storage case is very small
for realistic block sizes: i.e., for this parameterization the cN term constitutes 1/16 of total
client storage. Bandwidth in the small client storage case does not include the cost of
recursion which is negligible in practice for the large (e.g., 4 KByte) block sizes we consider.

Practical, Asymptotic
Online Bandwidth Overall Bandwidth Client Storage Server Storage

Large client storage (ORAM capacity = 64 TeraBytes, Block size 256 KBytes)

SSS ORAM [56] (level comp) 7.8× O(logN) 31.2× O(logN) 16 GBytes 3.2N
SSS ORAM [56] (XOR) 1× O(1) 35.7× O(logN) 16 GBytes 3.2N

Path ORAM [71] 60× O(logN) 120× O(logN) 16 GBytes 8N
Ring ORAM, XOR 1× O(1) 26.8× O(logN) 16 GBytes 6N

Small client storage (ORAM capacity = 1 TeraByte, Block size 4 KBytes)

Path ORAM 80× O(logN) 160× O(logN) 3.1 MBytes 8N
Ring ORAM 20.4× O(logN) 79.3× O(logN) 3.1 MBytes 6N

Ring ORAM, XOR 1.4× O(1) 59.7× O(logN) 3.1 MBytes 6N

a tree-based ORAM, Ring ORAM is easier to analyze, implement and de-amortize than
hierarchical ORAMs like SSS. Therefore, Ring ORAM is essentially a unified paradigm for
ORAM constructions in both large and small client storage settings. To give readers a sense
for overheads, we compare Ring ORAM to both Path ORAM and the SSS ORAM (with
all parameters set) in Table 3.2.

3.4 Overview of Techniques

We now explain our key technical insights. At a high level, our scheme also follows the tree-
based ORAM paradigm [46]. Server storage is a binary tree where each node (a bucket)
contains up to Z blocks and blocks percolate down the tree during ORAM evictions. We
introduce the following non-trivial techniques that allow us to achieve significant savings in
both online and overall bandwidth costs.

Eliminating online bandwidth’s dependence on bucket size. In Path ORAM, read-
ing a block would amount to reading and writing all Z slots in all buckets on a path. Our
first goal is to read only one block from each bucket on the path. To do this, we randomly
permute each bucket and store the permutation in each bucket as additional metadata.
Then, by reading only metadata, the client can determine whether the requested block is in
the present bucket or not. If so, the client relies on the stored permutation to read the block
of interest from its random offset. Otherwise, the client reads a “fresh” (unread) dummy
block, also from a random offset. We stress that the metadata size is typically much smaller
than the block size, so the cost of reading metadata can be ignored.

For the above approach to be secure, it is imperative that each block in a bucket should
be read at most once—a key idea also adopted by Goldreich and Ostrovsky in their early

38

ORAM constructions [13]. Notice that any real block is naturally read only once, since once
a real block is read, it will be invalidated from the present bucket, and relocated somewhere
else in the ORAM tree. But dummy blocks in a bucket can be exhausted if the bucket is
read many times. When this happens (which is public information), Ring ORAM introduces
an early reshuffle procedure to reshuffle the buckets that have been read too many times.
Specifically, suppose that each bucket is guaranteed to have S dummy blocks, then a bucket
must be reshuffled every S times it is read.

We note that the above technique also gives an additional nice property: out of the
O(logN) blocks the client reads, only 1 of them is a real block (i.e., the block of interest);
all the others are dummy blocks. If we allow some simple computation on the memory
side, we can immediately apply the XOR trick from Burst ORAM [73] to get O(1) online
bandwidth. In the XOR trick, the server simply XORs these encrypted blocks and sends
a single, XOR’ed block to the client. The client can reconstruct the ciphertext of all the
dummy blocks, and XOR them away to get back the encrypted real block.

Eliminating overall bandwidth’s dependence on bucket size. Unfortunately,
näıvely applying the above strategy will dramatically increase offline and overall bandwidth.
The more dummy slots we reserve in each bucket (i.e., a large S), the more expensive ORAM
evictions become, since they have to read and write all the blocks in a bucket. But if we
reserve too few dummy slots, we will frequently run out of dummy blocks and have to call
early reshuffle, also increasing overall bandwidth.

We solve the above problem with several additional techniques. First, we design a new
eviction procedure that improves eviction quality. At a high level, Ring ORAM performs
evictions on a path in a similar fashion as Path ORAM, but eviction paths are selected
based on a reverse lexicographical order [61], which evenly spreads eviction paths over the
entire tree. The improved eviction quality allows us to perform evictions less frequently,
only once every A ORAM accesses, where A is a new parameter. We then develop a
proof that crucially shows A can approach 2Z while still ensuring negligible ORAM failure
probability. The proof may be of independent interest as it uses novel proof techniques and
is significantly simpler than Path ORAM’s proof. The amortized offline bandwidth is
now roughly 2Z

A logN , which does not depend on the bucket size Z either.

Second, bucket reshuffles can naturally piggyback on ORAM evictions. The balanced
eviction order further ensures that every bucket will be reshuffled regularly. Therefore, we
can set the reserved dummy slots S in accordance with the eviction frequency A, such that
early reshuffles contribute little (< 3%) to the overall bandwidth.

Putting it all Together. None of the aforementioned ideas would work alone. Our
final product, Ring ORAM, stems from intricately combining these ideas in a non-trivial
manner. For example, observe how our two main techniques act like two sides of a lever:
(1) permuted buckets such that only 1 block is read per bucket; and (2) high quality and
hence less frequent evictions. While permuted buckets make reads cheaper, they require
adding dummy slots and would dramatically increase eviction overhead without the second
technique. At the same time, less frequent evictions require increasing bucket size Z; without
permuted buckets, ORAM reads blow up and nullify any saving on evictions. Additional
techniques are needed to complete the construction. For example, early reshuffles keep
the number of dummy slots small; piggyback reshuffles and load-balancing evictions keep
the early reshuffle rate low. Without all of the above techniques, one can hardly get any

39

improvement.

3.5 Ring ORAM Protocol

3.5.1 The Basics

We first describe Ring ORAM in terms of its server and client data structures.

Server storage (like Path ORAM) is organized as a binary tree of buckets where each
bucket has a small number of slots to hold blocks. Levels in the tree are numbered from 0
(the root) to L (inclusive, the leaves) where L = O(logN) and N is the number of blocks in
the ORAM. Each bucket has Z + S slots and a small amount of metadata. Of these slots,
up to Z slots may contain real blocks and the remaining S slots are reserved for dummy
blocks as described in Section 3.4. Our theoretical analysis in Section 3.6 will show that
to store N blocks in Ring ORAM, the physical ORAM tree needs roughly 6N to 8N slots.
Experiments show that server storage in practice for both Ring ORAM and Path ORAM
can be 2N or even smaller.

Client storage is made up of a position map and a stash. The position map is a dictionary
that maps each block in the ORAM to a random path in the ORAM tree (each path is
uniquely identified by the path’s leaf node). The stash buffers blocks that have not been
evicted to the ORAM tree and additionally stores Z(L + 1) blocks on the eviction path
during an eviction operation. We will prove in Section 3.6 that stash overflow probability
decreases exponentially as stash capacity increases, which means our required stash size
is the same as Path ORAM. The position map stores N ∗ L bits, but can be squashed to
constant storage using the standard recursion technique [46].

Main invariants. Ring ORAM has two main invariants:

1. (Same as Path ORAM): Every block is mapped to a path chosen uniformly at random
in the ORAM tree. If a block a is mapped to path l, block a is contained either in
the stash or in some bucket along the path from the root of the tree to leaf l.

2. (Permuted buckets) For every bucket in the tree, the physical positions of the Z+S
dummy and real blocks in each bucket are randomly permuted with respect to all past
and future writes to that bucket.

Since a leaf uniquely determines a path in a binary tree, we will use leaves/paths inter-
changeably when the context is clear, and denote path l as P(l).

Access and Eviction Operations. The Ring ORAM access protocol is shown in Algo-
rithm 1. Each access is broken into the following four steps:

1.) Position Map lookup (Lines 3-5): Look up the position map to learn which path l
the block being accessed is currently mapped to. Remap that block to a new random path
l′.

This first step is identical to other tree-based ORAMs [46, 71]. But the rest of the
protocol differs substantially from previous tree-based schemes, and we highlight our key
innovations in red.

40

Algorithm 1 Non-recursive Ring ORAM.

1: function Access(a, op, data′)
2: Global/persistent variables: round

3: l′ ← UniformRandom(0, 2L − 1)
4: l ← PositionMap[a]
5: PositionMap[a] ← l′

6: data ← ReadPath(l, a)
7: if data = ⊥ then
8: � If block a is not found on path l, it must
9: be in Stash �

10: data ← read and remove a from Stash
11: end if
12: if op = read then
13: return data to client
14: end if
15: if op = write then
16: data ← data′

17: end if
18: Stash ← Stash ∪ (a, l′, data)

19: round ← round + 1 mod A

20: if round
?
= 0 then

21: EvictPath()
22: end if

23: EarlyReshuffle(l)
24: end function

2.) Read Path (Lines 6-18): The ReadPath(l, a) operation reads all buckets along P(l) to
look for the block of interest (block a), and then reads that block into the stash. The block
of interest is then updated in stash on a write, or is returned to the client on a read. We
remind readers again that both reading and writing a data block are served by a ReadPath
operation.

Unlike prior tree-based schemes, our ReadPath operation only reads one block from
each bucket—the block of interest if found or a previously-unread dummy block
otherwise. This is safe because of Invariant 2, above: each bucket is permuted randomly,
so the slot being read looks random to an observer. This lowers the bandwidth overhead of
ReadPath (i.e., online bandwidth) to L+ 1 blocks (the number of levels in the tree) or even
a single block if the XOR trick is applied (Section 3.5.2).

3.) Evict Path (Line 19-22): The EvictPath operation reads Z blocks (all the remaining
real blocks, and potentially some dummy blocks) from each bucket along a path into the
stash, and then fills that path with blocks from the stash, trying to push blocks as far down
towards the leaves as possible. The sole purpose of an eviction operation is to push blocks
back to the ORAM tree to keep the stash occupancy low.

41

Unlike Path ORAM, eviction in Ring ORAM selects paths in the reverse lexico-
graphical order, and does not happen on every access [61]. Its rate is controlled
by a public parameter A: every A ReadPath operations trigger a single EvictPath
operation. This means Ring ORAM needs much fewer eviction operations than Path
ORAM. We will theoretically derive a tight relationship between A and Z in Section 3.6.

4.) Early Reshuffles (Line 23): Finally, we perform a maintenance task called
EarlyReshuffle on P(l), the path accessed by ReadPath. This step is crucial in maintaining
blocks randomly shuffled in each bucket, which enables ReadPath to securely read only one
block from each bucket.

We will present details of ReadPath, EvictPath and EarlyReshuffle in the next three sub-
sections. We defer low-level details for helper functions needed in these three subroutines
to Section 3.10. We explain the security for each subroutine in Section 3.5.5. Finally, we
discuss additional optimizations in Section 3.5.6 and recursion in Section 3.5.7.

3.5.2 Read Path Operation

Algorithm 2 ReadPath procedure.

1: function ReadPath(l, a)
2: data ← ⊥
3: for i← 0 to L do
4: offset ← GetBlockOffset(P(l, i), a)
5: data′ ← P(l, i, offset)
6: Invalidate P(l, i, offset)
7: if data′ 6= ⊥ then
8: data ← data′

9: end if
10: P(l, i).count ← P(l, i).count + 1
11: end for

return data
12: end function

The ReadPath operation is shown in Algorithm 2. For each bucket along the current
path, ReadPath selects a single block to read from that bucket. For a given bucket, if the
block of interest lives in that bucket, we read and invalidate the block of interest. Otherwise,
we read and invalidate a randomly-chosen dummy block that is still valid at that point.
The index of the block to read (either real or random) is returned by the GetBlockOffset
function whose detailed description is given in Section 3.10.

Reading a single block per bucket is crucial for our bandwidth improvements. In addition
to reducing online bandwidth by a factor of Z, it allows us to use larger Z and A to decrease
overall bandwidth (Section 3.7). Without this, read bandwidth is proportional to Z, and
the cost of larger Z on reads outweighs the benefits.

Bucket Metadata. Because the position map only tracks the path containing the block
of interest, the client does not know where in each bucket to look for the block of interest.
Thus, for each bucket we must store the permutation in the bucket metadata that maps
each real block in the bucket to one of the Z + S slots (Lines 4, GetBlockOffset) as well

42

as some additional metadata. Once we know the offset into the bucket, Line 5 reads the
block in the slot, and invalidates it. We describe all metadata in Section 3.10, but make
the important point that the metadata is small and independent of the block size.

One important piece of metadata to mention now is a counter which tracks how many
times it has been read since its last eviction (Line 10). If a bucket is read too many (S)
times, it may run out of dummy blocks (i.e., all the dummy blocks have been invalidated).
On future accesses, if additional dummy blocks are requested from this bucket, we cannot re-
read a previously invalidated dummy block: doing so reveals to the adversary that the block
of interest is not in this bucket. Therefore, we need to reshuffle single buckets on-demand
as soon as they are touched more than S times using EarlyReshuffle (Section 3.5.4).

XOR Technique. We further make the following key observation: during our ReadPath
operation, each block returned to the client is a dummy block except for the block of
interest. This means our scheme can also take advantage of the XOR technique in-
troduced in [73] to reduce online bandwidth overhead to O(1). To be more concrete,
on each access ReadPath returns L + 1 blocks in ciphertext, one from each bucket,
Enc(b0, r0),Enc(b2, r2), · · · ,Enc(bL, rL). Enc is a randomized symmetric scheme such as AES
counter mode with nonce ri. With the XOR technique, ReadPath will return a single cipher-
text — the ciphertext of all the blocks XORed together, namely Enc(b0, r0)⊕ Enc(b2, r2)⊕
· · · ⊕ Enc(bL, rL). The client can recover the encrypted block of interest by XORing the
returned ciphertext with the encryptions of all the dummy blocks. To make computing each
dummy block’s encryption easy, the client can set the plaintext of all dummy blocks to a
fixed value of its choosing (e.g., 0).

3.5.3 Evict Path Operation

Algorithm 3 EvictPath procedure.

1: function EvictPath
2: Global/persistent variables G initialized to 0
3: l ← G mod 2L

4: G ← G+ 1
5: for i← 0 to L do
6: Stash ← Stash ∪ ReadBucket(P(l, i))
7: end for
8: for i← L to 0 do
9: WriteBucket(P(l, i), Stash)

10: P(l, i).count ← 0
11: end for
12: end function

The EvictPath routine is shown in Algorithm 3. As mentioned, evictions are scheduled
statically: one eviction operation happens after every A reads. At a high level, an eviction
operation reads all remaining real blocks on a path (in a secure fashion), and tries to
push them down that path as far as possible. The leaf-to-root order in the writeback step
(Lines 8) reflects that we wish to fill the deepest buckets as fully as possible. (For readers
who are familiar with Path ORAM, EvictPath is like a Path ORAM access where no block
is accessed and therefore no block is remapped to a new path.)

43

Time

G = 0 G = 1 G = 2 G = 3

0

0

1

0

0

1

1

1

Figure 3-2: The reverse lexicographical eviction order used by EvictPath. Black buckets
indicate those on each eviction path and G is the eviction count. The eviction paths
corresponding to G = 4 and G = 0 are equal: the exact eviction sequence shown above
cycles forever. We mark the eviction path edges as 0/1 (goto left child = 0, right child =
1) to illustrate that the eviction path equals G in reverse binary representation.

We emphasize two unique features of Ring ORAM eviction operations. First, evictions
in Ring ORAM are performed to paths in a specific order called the reverse-lexicographic
order, first proposed by Gentry et al. [61] and shown in Figure 3-2. The reverse-lexicographic
order eviction aims to minimize the overlap between consecutive eviction paths, because
(intuitively) evictions to the same bucket in consecutive accesses are less useful. This
improves eviction quality and allows us to reduce the frequency of eviction. Evicting using
this static order is also a key component in simplifying our theoretical analysis in Section 3.6.

Second, buckets in Ring ORAM need to be randomly shuffled (Invariant 2), and we
mostly rely on EvictPath operations to keep them shuffled. An EvictPath operation reads
Z blocks from each bucket on a path into the stash, and writes out Z + S blocks (only up
to Z are real blocks) to each bucket, randomly permuted. The details of reading/writing
buckets (ReadBucket and WriteBucket) are deferred to Section 3.10.

3.5.4 Early Reshuffle Operation

Algorithm 4 EarlyReshuffle procedure.

1: function EarlyReshuffle(l)
2: for i← 0 to L do
3: if P(l, i).count ≥ S then
4: Stash ← Stash ∪ ReadBucket(P(l, i))
5: WriteBucket(P(l, i), Stash)
6: P(l, i).count ← 0
7: end if
8: end for
9: end function

Due to randomness, a bucket can be touched > S times by ReadPath operations before
it is reshuffled by the scheduled EvictPath. If this happens, we call EarlyReshuffle on that
bucket to reshuffle it before the bucket is read again (see Section 3.5.2). More precisely, after
each ORAM access EarlyReshuffle goes over all the buckets on the read path, and reshuffles
all the buckets that have been accessed more than S times by performing ReadBucket and
WriteBucket. ReadBucket and WriteBucket are the same as in EvictPath: that is, ReadBucket
reads exactly Z slots in the bucket and WriteBucket re-permutes and writes back Z + S
real/dummy blocks. We note that though S does not affect security (Section 3.5.5), it

44

clearly has an impact on performance (how often we shuffle, the extra cost per reshuffle,
etc.). We discuss how to optimally select S in Section 3.7.

3.5.5 Security Analysis

Claim 1. ReadPath leaks no information.

The path selected for reading will look random to any adversary due to Invariant 1
(leaves are chosen uniformly at random). From Invariant 2, we know that every bucket
is randomly shuffled. Moreover, because we invalidate any block we read, we will never
read the same slot. Thus, any sequence of reads (real or dummy) to a bucket between two
shuffles is indistinguishable. Thus the adversary learns nothing during ReadPath. �

Claim 2. EvictPath leaks no information.

The path selected for eviction is chosen statically, and is public (reverse-lexicographic
order). ReadBucket always reads exactly Z blocks from random slots. WriteBucket similarly
writes Z + S encrypted blocks in a data-independent fashion. �

Claim 3. EarlyShuffle leaks no information.

To which buckets EarlyShuffle operations occur is publicly known: the adversary knows
how many times a bucket has been accessed since the last EvictPath to that bucket.
ReadBucket and WriteBucket are secure as per observations in Claim 2. �

The three subroutines of the Ring ORAM algorithm are the only operations that cause
externally observable behaviors. Claims 1, 2, and 3 show that the subroutines are secure.
We have so far assumed that path remapping and bucket permutation are truly random,
which gives unconditional security. If pseudorandom numbers are used instead, we have
computational security through similar arguments.

3.5.6 Other Optimizations

Minimizing roundtrips. To keep the presentation simple, we wrote the ReadPath
(EvictPath) algorithms to process buckets one by one. In fact, they can be performed
for all buckets on the path in parallel which reduces the number of roundtrips to 2 (one for
metadata and one for data blocks).

Tree-top caching. The idea of tree-top caching [66] is simple: we can reduce the band-
width for ReadPath and EvictPath by storing the top t (a new parameter) levels of the Ring
ORAM tree at the client as an extension of the stash1. For a given t, the stash grows by
approximately 2tZ blocks.

De-amortization. We can de-amortize the expensive EvictPath operation through a pe-
riod of A accesses, simply by reading/writing a small number of blocks on the eviction
path after each access. After de-amortization, worst-case overall bandwidth equals average
overall bandwidth.

1We call this optimization tree-top caching following prior work. But the word cache is a misnomer: the
top t levels of the tree are permanently stored by the client.

45

3.5.7 Recursive Construction

As mentioned in Section 3.1, we follow the standard recursion idea in tree-based ORAMs [46]
to achieve small client storage. We remark that for reasonably block sizes (e.g., 4 KB),
recursion contributes very little to overall bandwidth (e.g., < 5% for a 1 TB ORAM)
because the position map ORAMs use much smaller blocks [4].

3.6 Stash Analysis

In this section we analyze the stash occupancy for a non-recursive Ring ORAM. Following
the notations in Path ORAM [71], by ORAMZ,A

L we denote a non-recursive Ring ORAM
with L + 1 levels, bucket size Z and one eviction per A accesses. The root is at level 0
and the leaves are at level L. We define the stash occupancy st (SZ) to be the number of
real blocks in the stash after a sequence of ORAM sequences (this notation will be further
explained later). We will prove that Pr [st (SZ) > R] decreases exponentially in R for certain
Z and A combinations. As it turns out, the deterministic eviction pattern in Ring ORAM
dramatically simplifies the proof.

We note here that the reshuffling of a bucket does not affect the occupancy of the bucket,
and is thus irrelevant to the proof we present here.

3.6.1 Proof outline

The proof consists of the two steps. The first step is the same as Path ORAM, and needs
Lemma 1 and Lemma 2 in the Path ORAM paper [71], which we restate in Section 3.6.2. We
introduce ∞-ORAM, which has an infinite bucket size and after a post-processing step has
exactly the same distribution of blocks over all buckets and the stash (Lemma 1). Lemma 2
says the stash occupancy of ∞-ORAM after post-processing is greater than R if and only
if there exists a subtree T in ∞-ORAM whose “occupancy” exceeds its “capacity” by more
than R.

The second step (Section 3.6.3) is much simpler than the rest of Path ORAM’s proof,
thanks to Ring ORAM’s static eviction pattern. We simply need to calculate the expected
occupancy of subtrees in ∞-ORAM, and apply a Chernoff-like bound on their actual oc-
cupancy to complete the proof. We do not need the complicated eviction game, negative
association, stochastic dominance, etc., as in the Path ORAM proof [4].

3.6.2 ∞-ORAM

We first introduce ∞-ORAM, denoted as ORAM∞, AL . Its buckets have infinite capacity. It

receives the same input request sequence as ORAMZ,A
L . We then label buckets linearly such

that the two children of bucket bi are b2i and b2i+1, with the root bucket being b1. We
define the stash to be b0. We refer to bi of ORAM∞, AL as b∞i , and bi of ORAMZ,A

L as bZi . We
further define ORAM state, which consists of the states of all the buckets in the ORAM,
i.e., the blocks contained by each bucket. Let S∞ be the state of ORAM∞, AL and SZ be the

state of ORAMZ,A
L .

We now propose a new greedy post-processing algorithm G (different from the one in
[71]), which by reassigning blocks in buckets makes each bucket b∞i in ∞-ORAM contain
the same set of blocks as bZi . Formally, G takes as input S∞ and SZ after the same
access sequence with the same randomness. For i from 2L+1 − 1 down to 1 (note that

46

the decreasing order ensures that a parent is always processed later than its children), G
processes the blocks in bucket b∞i in the following way:

1. For those blocks that are also in bZi , keep them in b∞i .

2. For those blocks that are not in bZi but in some ancestors of bZi , move them from b∞i
to b∞i/2 (the parent of b∞i , and note that the division includes flooring). If such blocks
exist and the number of blocks remaining in b∞i is less than Z, raise an error.

3. If there exists a block in b∞i that is in neither bZi nor any ancestor of bZi , raise an error.

We say GSZ (S∞) = SZ , if no error occurs during G and b∞i after G contains the same
set of blocks as bZi for i = 0, 1, · · · 2L+1.

Lemma 1. GSZ (S∞) = SZ after the same ORAM access sequence with the same random-
ness.

Next, we investigate what state S∞ will lead to the stash occupancy of more than R
blocks in a post-processed ∞-ORAM. We say a subtree T is a rooted subtree, denoted as
T ∈ ORAM∞,AL if T contains the root of ORAM∞, AL . This means that if a node in ORAM∞, AL

is in T , then so are all its ancestors. We define n(T) to be the total number of nodes in
T . We define c(T) (the capacity of T) to be the maximum number of blocks T can hold;
for Ring ORAM c(T) = n(T) · Z. Lastly, we define X(T) (the occupancy of T) to be the
actual number of real blocks that are stored in T . The following lemma characterizes the
stash size of a post-processed ∞-ORAM:

Lemma 2. st (GSZ (S∞)) > R if and only if ∃T ∈ ORAM∞,AL s.t. X(T) > c(T) +R before
post-processing.

By Lemma 1 and Lemma 2, we have

Pr [st (SZ) > R] = Pr [st (GSZ (S∞)) > R]

≤
∑

T∈ORAM∞,A
L

Pr [X(T) > c(T) +R]

<
∑
n≥1

4n max
T :n(T)=n

Pr [X(T) > c(T) +R] (3.1)

The above inequalities used a union bound and a bound on Catalan sequences.

3.6.3 Bounding the Stash Size

We first give a bound on the expected bucket load:

Lemma 3. For any rooted subtree T in ORAM∞, AL , if the number of distinct blocks in the
ORAM N ≤ A · 2L−1, the expected load of T has the following upper bound:

∀T ∈ ORAM∞,AL , E[X(T)] ≤ n(T) ·A/2.

Let X(T) =
∑

iXi(T), where each Xi(T) ∈ {0, 1} and indicates whether the i-th block
(can be either real or stale) is in T . Let pi = Pr [Xi(T) = 1]. Xi(T) is completely determined
by its time stamp i and the leaf label assigned to block i, so they are independent from

47

each other (refer to the proof of Lemma 4). Thus, we can apply a Chernoff-like bound to
get an exponentially decreasing bound on the tail distribution. To do so, we first establish
a bound on E

[
etX(T)

]
where t > 0,

E
[
etX(T)

]
= E

[
et

∑
iXi(T)

]
= E

[
Πie

tXi(T)
]

= ΠiE
[
etXi(T)

]
(by independence)

= Πi

(
pi(e

t − 1) + 1
)

≤ Πi

(
epi(e

t−1)
)

= e(et−1)Σipi

= e(et−1)E[X(T)] (3.2)

For simplicity, we write n = n(T) and a = A/2. By Lemma 4, E[X(T)] ≤ n · a. By the
Markov Inequality, we have for all t > 0,

Pr [X(T) > c(T) +R] = Pr
[
etX(T) > et(nZ+R)

]
≤ E

[
etX(T)

]
· e−t(nZ+R)

≤ e(et−1)an · e−t(nZ+R)

= e−tR · e−n[tZ−a(et−1)]

Let t = ln(Z/a),

Pr [X(T) > c(T) +R] ≤ (a/Z)R · e−n[Z ln(Z/a)+a−Z] (3.3)

Now we will choose Z and A such that Z > a and q = Z ln(Z/a) + a− Z − ln 4 > 0. If
these two conditions hold, from Equation (3.1) we have t = ln(Z/a) > 0 and that the stash
overflow probability decreases exponentially in the stash size R:

Pr [st (SZ) > R] ≤
∑
n≥1

(a/Z)R · e−qn < (a/Z)R

1− e−q
.

3.6.4 Stash Size in Practice

Now that we have established that Z ln(2Z/A)+A/2−Z− ln 4 > 0 ensures an exponentially
decreasing stash overflow probability, we would like to know how tight this requirement is
and what the stash size should be in practice.

We simulate Ring ORAM with L = 20 for over 1 billion accesses in a random access
pattern, and measure the maximum stash occupancy T (excluding the transient storage of
a path). For several Z values, we look for the maximum A that results in an exponentially
decreasing stash overflow probability. In Figure 3-3, we plot both the empirical curve based
on simulation and the theoretical curve based on the proof. In all cases, the theoretical curve
indicates an only slightly smaller A than we are able to achieve in simulation, indicating
that our analysis is tight.

To determine required stash size in practice, Table 3.3 shows the extrapolated required
stash size for a stash overflow probability of 2−λ for several realistic λ. We show Z = 16,
A = 23 for completeness: this is an aggressive setting that works for Z = 16 according

48

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600

A

Z

Analytical

Empirical

0

10

20

30

40

50

60

0 10 20 30 40

Zoomed in:

Figure 3-3: For each Z, determine analytically and empirically the maximum A that results
in an exponentially decreasing stash failure probability.

Table 3.3: Maximum stash occupancy for realistic security parameters (stash overflow prob-
ability 2−λ) and several choices of A and Z. A = 23 is the maximum achievable A for Z = 16
according to simulation.

Z,A Parameters
4,3 8,8 16,20 32,46 16,23

Max Stash Size T

λ
80 32 41 65 113 197
128 51 62 93 155 302
256 103 120 171 272 595

to simulation but does not satisfy the theoretical analysis; observe that this point requires
roughly 3× the stash occupancy for a given λ.

3.7 Bandwidth Analysis

In this section, we answer an important question: how do Z (the maximum number of real
blocks per bucket), A (the eviction rate) and S (the number of extra dummies per bucket)
impact Ring ORAM’s performance (bandwidth)? By the end of the section, we will have
a theoretically-backed analytic model that, given Z, selects optimal A and S to minimize
bandwidth.

We first state an intuitive trade-off: for a given Z, increasing A causes stash occupancy
to increase and bandwidth overhead to decrease. Let us first ignore early reshuffles and
the XOR technique. Then, the overall bandwidth of Ring ORAM consists of ReadPath and
EvictPath. ReadPath transfers L+ 1 blocks, one from each bucket. EvictPath reads Z blocks
per bucket and writes Z+S blocks per bucket, (2Z+S)(L+1) blocks in total, but happens
every A accesses. From the requirement of Lemma 4, we have L = log(2N/A), so the ideal
amortized overall bandwidth of Ring ORAM is (1 + (2Z + S)/A) log(4N/A). Clearly, a
larger A improves bandwidth for a given Z as it reduces both eviction frequency and tree
depth L. So we simply choose the largest A that satisfies the requirement from the stash
analysis in Section 3.6.3.

Now we consider the extra overhead from early reshuffles. We have the following trade-off

49

3

4

5

6

7

8

9

0 10 20 30 40 50
S − A

Z=4, A=3

Z=8, A=8

Z=16, A=20

Z=32, A=46

C
o

n
st

an
t

fo
r
𝑂
(l
o
g
2
𝑁
𝐵
)

b
an

d
w

id
th

Figure 3-4: For different Z, and the corresponding optimal A, vary S and plot bandwidth
overhead. We only consider S ≥ A.

Table 3.4: Analytic model for choosing parameters, given Z.

Find largest A ≤ 2Z such that
Z ln(2Z/A) +A/2− Z − ln 4 > 0 holds.

Find S ≥ 0 that minimizes
(2Z + S)(1 + Poiss cdf(S,A)).

Ring ORAM offline bandwidth is

(2Z+S)(1+Poiss cdf(S,A))
A · log(4N/A).

in choosing S: as S increases, the early reshuffle rate decreases (since we have more dummies
per bucket) but the cost to read+write buckets during an EvictPath and EarlyReshuffle
increases. This effect is shown in Figure 3-4 through simulation: for S too small, early
shuffle rate is high and bandwidth increases; for S too large, eviction bandwidth dominates.

To analytically choose a good S, we analyze the early reshuffle rate. First, notice a
bucket at level l in the Ring ORAM tree will be processed by EvictPath exactly once for
every 2lA ReadPath operations, due to the reverse-lexicographic order of eviction paths
(Section 3.5.3). Second, each ReadPath operation is to an independent and uniformly ran-
dom path and thus will touch any bucket in level l with equal probability of 2−l. Thus, the
distribution on the expected number of times ReadPath operations touch a given bucket in
level l, between two consecutive EvictPath calls, is given by a binomial distribution of 2lA
trials and success probability 2−l. The probability that a bucket needs to be early reshuf-
fled before an EvictPath is given by a binomial distribution cumulative density function
Binom cdf(S, 2lA, 2−l).2 Based on this analysis, the expected number of times any bucket
is involved in ReadPath operations between consecutive EvictPath operations is A. Thus,
we will only consider S ≥ A as shown in Figure 3-4 (S < A is clearly bad as it needs too
much early reshuffling).

We remark that the binomial distribution quickly converges to a Poisson distribution.
So the amortized overall bandwidth, taking early reshuffles into account, can be accurately
approximated as (L+ 1) + (L+ 1)(2Z+S)/A · (1 + Poiss cdf(S,A)). We should then choose
the S that minimizes the above formula. This method always finds the optimal S and
perfectly matches the overall bandwidth in our simulation in Figure 3-4.

2The possibility that a bucket needs to be early reshuffled twice before an eviction is negligible.

50

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60
Z

Ring ORAM (overall)

Path ORAM (overall)

C
o

n
st

an
t

fo
r
𝑂
(l
o
g
2
𝑁
𝐵
)

b
an

d
w

id
th

Ring ORAM (online)

Path ORAM (online)

Figure 3-5: Overall bandwidth as a function of Z. Kinks are present in the graph because
we always round A to the nearest integer. For Path ORAM, we only study Z = 4 since a
larger Z strictly hurts bandwidth.

0

50

100

150

200

250

0 1000 2000 3000 4000

B
an

d
w

id
th

 m
u

lt
ip

lie
r

Storage (in KBytes)

B = 64 Bytes B = 4 KBytes

2.7X

2X

Ring ORAM

Path ORAM

Figure 3-6: Bandwidth overhead vs. data block storage for 1 TByte ORAM capacities and
ORAM failure probability 2−80.

We recap how to choose A and S for a given Z in Table 3.4. For the rest of the chapter,
we will choose A and S this way unless otherwise stated. Using this method to set A
and S, we show online and overall bandwidth as a function of Z in Figure 3-5. In the
figure, Ring ORAM does not use the XOR technique on reads. For Z = 50, we achieve
∼ 3.5 logN bandwidth; for very large Z, bandwidth approaches 3 logN . Applying the XOR
technique, online bandwidth overhead drops to close to 1 which reduces overall bandwidth
to ∼ 2.5 logN for Z = 50 and 2 logN for very large Z.

3.8 Evaluation

3.8.1 Bandwidth vs. Client Storage

To give a holistic comparison between schemes, Figure 3-6 shows the best achievable band-
width, for different client storage budgets, for Path ORAM and Ring ORAM. For each
scheme in the figure, we apply all known optimizations and tune parameters to minimize
overall bandwidth given a storage budget. For Path ORAM we choose Z = 4 (increasing Z
strictly hurts bandwidth) and tree-top cache to fill remaining space. For Ring ORAM we
adjust Z, A and S, tree-top cache and apply the XOR technique. ORAM capacity is fixed
to 1 TByte.

51

Table 3.5: Breakdown between online and offline bandwidth given a client storage budget
of 1000× the block size for several representative points (Section 3.8.1). Overheads are
relative to an insecure system.

Online, Overall Bandwidth overhead

Block Size (Bytes) Z, A (Ring ORAM only) Ring ORAM Ring ORAM (XOR) Path ORAM

64 10, 11 48×, 144× 24×, 118× 120×, 240×
4096 33, 48 20×, 82× ∼ 1×, 60× 80×, 160×

To simplify the presentation, “client storage” includes all ORAM data structures except
for the position map – which has the same space/bandwidth cost for both Path ORAM
and Ring ORAM. We remark that applying the recursion technique (Section 3.5.7) to get a
small on-chip position map is cheap for reasonably large blocks. For example, recursing the
on-chip position map down to 256 KBytes of space when the data block size is 4 KBytes
increases overall bandwidth for Ring ORAM and Path ORAM by < 3%.

The high order bit is that across different block sizes and client storage budgets, Ring
ORAM consistently reduces overall bandwidth relative to Path ORAM by 2-2.7×. Hidden
in Figure 3-6 is that when block size is small, online/overall bandwidth for Ring ORAM
increases (see Table 3.5 for two representative points). The reason is that with small blocks,
the cost to read bucket metadata cannot be ignored, forcing Ring ORAM to use smaller Z.

3.9 Ring ORAM with Large Client Storage

If given a large client storage budget, we can first choose very large A and Z for Ring
ORAM, which means bandwidth approaches 2 logN (Section 3.7).3 Then, remaining client
storage can be used to tree-top cache (Section 3.5.6). For example, tree-top caching t = L/2
levels requires O(

√
N) storage and bandwidth drops by a factor of 2 to 1 · logN—which

roughly matches the SSS construction [56].

Burst ORAM [73] extends the SSS construction to handle millions of accesses in a short
period, followed by a relatively long idle time where there are few requests. The idea to
adapt Ring ORAM to handle bursts is to delay multiple (potentially millions of) EvictPath
operations until after the burst of requests. Unfortunately, this strategy means we will
experience a much higher early reshuffle rate in levels towards the root. The solution is to
coordinate tree-top caching with delayed evictions: For a given tree-top size t, we allow at
most 2t delayed EvictPath operations. This ensures that for levels ≥ t, the early reshuffle
rate matches our analysis in Section 3.7. We experimentally compared this methodology
to the dataset used by Burst ORAM and verified that it gives comparable performance to
that work.

3.10 Bucket Structure (Reference)

Table 3.6 lists all the fields in a Ring ORAM bucket and their size. We would like to make
two remarks. First, only the data fields are permuted and that permutation is stored in
ptrs. Other bucket fields do not need to be permuted because when they are needed, they
will be read in their entirety. Second, count and valids are stored in plaintext. There is no

3We assume the XOR technique because large client storage implies a file server setting.

52

Table 3.6: Ring ORAM bucket format. All logs are taken to their ceiling.

Notation Size (bits) Meaning

count log(S)
of times the bucket has been touched by ReadPath since

it was last shuffled
valids (Z + S) ∗ 1 Indicates whether each of the Z + S blocks is valid
addrs Z ∗ log(N) Address for each of the Z (potentially) real blocks
leaves Z ∗ L Leaf/path label for each of the Z (potentially) real blocks
ptrs Z ∗ log(Z + S) Offset in the bucket for each of the Z (potentially) real blocks

data (Z + S) ∗B Data field for each of the Z + S blocks, permuted
according to ptrs

IV λ (security parameter)
Encryption seed for the bucket; count and valids are stored

in the clear

need to encrypt them since the server can see which bucket is accessed (deducing count for
each bucket), and which slot is accessed in each bucket (deducing valids for each bucket).
In fact, if the server can do computation and is trusted to follow the protocol faithfully,
the client can let the server update count and valids. All the other structures should be
probabilistically encrypted.

Having defined the bucket structure, we can be more specific about some of the
operations in earlier sections. For example, in Algorithm 2 Line 5 means reading
P(l, i).data[offset], and Line 6 means setting P(l, i).valids[offset] to 0.

Now, we describe the helper functions in detail. GetBlockOffset reads in the valids, addrs,
ptrs fields, and looks for the block of interest. If it finds the block of interest, meaning that
the address of a still valid block matches the block of interest, it returns the permuted
location of that block (stored in ptrs). If it does not find the block of interest, it returns
the permuted location of a random valid dummy block.

ReadBucket reads all of the remaining real blocks in a bucket into the stash. For security
reasons, ReadBucket always reads exactly Z blocks from that bucket. If the bucket contains
less than Z valid real blocks, the remaining blocks read out are random valid dummy
blocks. Importantly, since we allow at most S reads to each bucket before reshuffling it, it
is guaranteed that there are at least Z valid (real + dummy) blocks left that have not been
touched since the last reshuffle.

WriteBucket evicts as many blocks as possible (up to Z) from the stash to a certain
bucket. If there are z′ ≤ Z real blocks to be evicted to that bucket, Z + S − z′ dummy
blocks are added. The Z + S blocks are then randomly shuffled based on either a truly
random permutation or a Pseudo Random Permutation (PRP). The permutation is stored
in the bucket field ptrs. Then, the function resets count to 0 and all valid bits to 1, since
this bucket has just been reshuffled and no blocks have been touched. Finally, the permuted
data field along with its metadata are encrypted (except count and valids) and written out
to the bucket.

53

Algorithm 5 Helper functions.

count, valids, addrs, leaves, ptrs, data are fields of the input bucket in each of the following
three functions

1: function GetBlockOffset(bucket, a)
2: read in valids, addrs, ptrs
3: decrypt addrs, ptrs
4: for j ← 0 to Z − 1 do
5: if a = addrs[j] and valids[ptrs[j]] then
6: return ptrs[j] . block of interest
7: end if
8: end forreturn a pointer to a random valid dummy
9: end function

1: function ReadBucket(bucket)
2: read in valids, addrs, leaves, ptrs
3: decrypt addrs, leaves, ptrs
4: z ← 0 . track # of remaining real blocks
5: for j ← 0 to Z − 1 do
6: if valids[ptrs[j]] then
7: data′ ← read and decrypt data[ptrs[j]]
8: z ← z + 1
9: if addrs[j] 6= ⊥ then

10: block ← (addr[j], leaf[j], data′)
11: Stash ← Stash ∪ block
12: end if
13: end if
14: end for
15: for j ← z to Z − 1 do
16: read a random valid dummy
17: end for
18: end function

1: function WriteBucket(bucket,Stash)
2: find up to Z blocks from Stash that can reside
3: in this bucket, to form addrs, leaves, data′

4: ptrs ← PRP(0, Z + S) . or truly random
5: for j ← 0 to Z − 1 do
6: data[ptrs[j]] ← data′[j]
7: end for
8: valids ← {1}Z+S

9: count ← 0
10: encrypt addrs, leaves, ptrs, data
11: write out count, valids, addrs, leaves, ptrs, data
12: end function

Chapter 4

Onion ORAM:

A Constant Bandwidth Blowup ORAM

This chapter presents Onion ORAM, the first ORAM with constant worst-case bandwidth
blowup under standard cryptographic assumptions. Onion ORAM leverages poly-logarithmic
server computation to circumvent the logarithmic lower bound on ORAM bandwidth blowup.
Unlike prior work, Onion ORAM does not require fully homomorphic encryption, but re-
quires only certain additively homomorphic encryption schemes. At the core of the con-
struction is an ORAM scheme that has “shallow circuit depth” over the entire history of
ORAM accesses (which we also refer to as “bounded feedback”). Onion ORAM utilizes novel
techniques to achieve security against a malicious server, without resorting to expensive and
non-standard techniques such as SNARKs.

Starting with the work of Goldreich and Ostrovsky [9, 10, 13], the ORAM literature
has implicitly assumed that the server acts as a simple storage device that allows the client
to read and write data to it, but does not perform any computation otherwise. However,
in many scenarios investigated by subsequent works [58, 70, 73, 79] (e.g., the setting of
remote oblivious file servers), the untrusted server has significant computational power,
possibly even much greater than that of the client. Therefore, it is natural to extend the
ORAM model to allow for server computation, and to distinguish between the amount of
computation performed by the server and the amount of communication with the client.

Indeed, many recent ORAM schemes have implicitly or explicitly leveraged some amount
of server computation to either reduce bandwidth cost [56, 64, 84, 81, 79, 61, 3, 72] (also,
see Chapter 3), or reduce the number of online roundtrips [57]. We remark that some
prior works [79, 72] call themselves oblivious storage (or oblivious outsourced storage) to
distinguish from the standard ORAM model where there is no server computation. We will
simply apply the term ORAM to both models, and refer to ORAM with/without server
computation to distinguish between the two.

At first, many works implicitly used server computation in ORAM constructions [56,
81, 79, 61, 3, 57], without making a clear definitional distinction from standard ORAM.
Apon et al. were the first to observe that such a distinction is warranted [72], not only for
the extra rigor, but also because the definition renders the important Goldreich-Ostrovsky
ORAM lower bound [13] inapplicable to the server computation setting — as we discuss
below.

55

4.1 Attempts to “Break” the Goldreich-Ostrovsky Bound

Traditionally, ORAM constructions are evaluated by their bandwidth, client storage and
server storage. Bandwidth is the amount of communication (in bits) between client/server
to serve a client request, including the communication in the background to maintain the
ORAM (i.e., ORAM evictions). We also define bandwidth blowup to be bandwidth mea-
sured in the number of blocks (i.e., blowup compared to a normal RAM). Client storage
is the amount of trusted local memory required at the client side to manage the ORAM
protocol and server storage is the amount of storage needed at the server to store all data
blocks.

In their seminal work [13], Goldreich and Ostrovsky showed that an ORAM of N blocks
must incur a O(logN) lower bound in bandwidth blowup, under O(1) blocks of client
storage. If we allow the server to perform computation, however, the Goldreich-Ostrovsky
lower bound no longer applies with respect to client-server bandwidth [72]. The reason is
that the Goldreich-Ostrovsky bound is in terms of the number of operations that must be
performed. With server computation, though the number of operations is still subject to
the bound, most operations can be performed on the server-side without client intervention,
making it possible to break the bound in terms of bandwidth between client and server.
Since historically bandwidth has been the most important metric and the bottleneck for
ORAM, breaking the bound in terms of bandwidth constitutes a significant advance.

However, it turns out that this is not easy. Indeed, two prior works [79, 72] have made
endeavors towards this direction using homomorphic encryption. Path-PIR [79] leverages
additively homomorphic encryption (AHE) to improve ORAM online bandwidth, but its
overall bandwidth blowup is still poly-logarithmic. On the other hand, Apon et al. [72]
showed that using a fully homomorphic encryption (FHE) scheme with constant ciphertext
expansion, one can construct an ORAM scheme with constant bandwidth blowup. The
main idea is that, instead of having the client move data around on the server “manually”
by reading and writing to the server, the client can instruct the server to perform ORAM
request and eviction operations under an FHE scheme without revealing any data and its
movement. While this is a very promising direction, it suffers from the following drawbacks:

• First, ORAM keeps access patterns private by continuously shuffling memory as data
is accessed. This means the ORAM circuit depth that has to be evaluated under FHE
depends on the number of ORAM accesses made and can grow unbounded (which
we say to mean any polynomial amount in N). Therefore, Apon et al. [72] needs
FHE bootstrapping, which not only requires circular security but also incurs a large
performance penalty in practice.1

• Second, with the server performing homomorphic operations on encrypted data,
achieving malicious security is difficult. Consequently, most existing works either only
guarantee semi-honest security [79, 81], or leveraged powerful tools such as SNARKs
to ensure malicious security [72]. However, SNARKs not only require non-standard
assumptions [41], but also incur prohibitive cost in practice.

1While bootstrapping performance has been made asymptotically efficient by recent works [51], the
cost in practice is still substantial, on the order of tens of seconds to minutes (amortized), whereas other
homomorphic operations are on the order of milliseconds to seconds [88].

56

4.2 Contributions

With the above observation, the goal of this work is to construct constant bandwidth blowup
ORAM schemes from standard assumptions that have practical efficiency and verifiability in
the malicious setting. Specifically, we give proofs by construction for the following theorems.
Let B be the block size in bits and N the number of blocks in the ORAM.

Theorem 1 (Semi-honest security construction). Under the Decisional Composite Resid-
uosity assumption (DCR) or Learning With Errors (LWE) assumption, there exists an
ORAM scheme with semi-honest security, O(B) bandwidth, O(BN) server storage and
O(B) client storage. To achieve negligible in N probability of ORAM failure and success
from best known attacks, our schemes require poly-logarithmic in N block size and server
computation.

We use negligible in N security following prior ORAM work but will also give asymptotics
needed for exact exponential security in Section 4.7.3 and Table 4.2.

Looking at the big picture, our DCR-based scheme is the first demonstration of a con-
stant bandwidth blowup ORAM using any additively homomorphic encryption scheme
(AHE), as opposed to FHE. Our LWE-based scheme is the first time ORAM has been
combined with SWHE/FHE in a way that does not require Gentry’s bootstrapping proce-
dure.

Our next goal is to extend our semi-honest constructions to the malicious setting. In
Section 4.6, we will introduce the concept of “abstract server computation ORAM” which
both of our constructions satisfy. Then, we can achieve malicious security due to the
following theorem:

Theorem 2 (Malicious security construction). With the additional assumption of collision-
resistant hash functions, any “abstract server computation ORAM” scheme with semi-
honest security can be compiled into a “verified server computation ORAM” scheme which
has malicious security.

We stress that these are the only required assumptions. We do not need the circular
security common in FHE schemes and do not rely on SNARKs for malicious security.

Main ideas. The key technical contributions enabling the above results are:

• (Section 4.4) An ORAM that, when combined with server computation, has shallow
circuit depth, i.e., O(logN) over the entire history of all ORAM accesses. This is a
necessity for our constructions based on AHE or SWHE, and removes the need for
FHE (Gentry’s bootstrapping operations). We view this technique as an important
step towards practical constant bandwidth blowup ORAM schemes.

• (Section 4.6) A novel technique that combines a cut and choose-like idea with an
error-correcting code to amplify soundness.

Table 4.1 summarizes our contributions and compares our schemes with some of the
state-of-the-art ORAM constructions.

57

Table 4.1: Our contribution. N is the number of blocks. The optimal block size is the data
block size needed to achieve the stated bandwidth, and is measured in bits. All schemes have O(B)
client storage and O(BN) server storage (both asymptotically optimal) and negligible failure prob-
ability in N . Computation measures the number of two-input plaintext gates evaluated per ORAM
access. “M” stands for malicious security, and “SH” stands for semi-honest. We set parameters
for AHE/SWHE (the Damg̊ard-Jurik and Ring-LWE cryptosystems [21, 40], respectively) to get
super-poly in N defense to best known attacks [28, 44]. At the end of the chapter, we show another
version of the table (Table 4.2) where there is no assumed relation between parameters.

Scheme
Optimal

Bandwidth
Server Client

Security
Block size B Computation Computation

Circuit ORAM [5] Ω(log2N) ω(B logN) N/A N/A M

Path-PIR [79] ω(log5N) O(B logN) ω̃(B log5N) Õ(B log4N) SH

AHE Onion ORAM
Ω̃(log5N) O(B) ω̃(B log4N) Õ(B log4N) SH

ω̃(log6N) O(B) ω̃(B log4N) Õ(B log4N) M

SWHE Onion ORAM
ω̃(log2N) O(B) ω̃(B log2N) ω̃(B) SH

ω̃(log4N) O(B) ω̃(B log2N) ω̃(B + log2N) M

Practical efficiency. To show how our results translate to practice, Section 4.7.4
compares our semi-honest AHE-based construction against Path PIR [79] and Circuit
ORAM [5]—the best prior schemes with and without server computation that match our
scheme in client/server storage. The top order bit is that as block size increases, our con-
struction’s bandwidth approaches 2B. When all three schemes use an 8 MB block size
(a proxy for modern image file size), Onion ORAM improves over Circuit ORAM and
Path-PIR’s bandwidth (in bits) by 35× and 22×, respectively. For larger block sizes, our
improvement increases. We note that in many cases, block size is an application constraint:
for applications asking for a large block size (e.g., image sharing), all ORAM schemes will
use that block size.

4.3 Overview of Techniques

In our schemes, the client “guides” the server to perform ORAM accesses and evictions
homomorphically by sending the server some “helper values”. With these helper values,
the server’s main job will be to run a sub-routine called the “homomorphic select” opera-
tion (select operation for short), which can be implemented using either AHE or SWHE –
resulting in the two different constructions in Section 4.5 and Section 4.9. We can achieve
constant bandwidth blowup because helper value size is independent of data block size:
when the block size sufficiently large, sending helper values does not affect the asymptotic
bandwidth blowup. We now explain these ideas along with pitfalls and solutions in more
detail. For the rest of the section, we focus on the AHE-based scheme but note that the
story with SWHE is very similar.

Building block: homomorphic select operation. The select operation, which resem-
bles techniques from private information retrieval (PIR) [28], takes as input m plaintext
data blocks pt1, . . . , ptm and encrypted helper values which represent a user-chosen index
i∗. The output is an encryption of block pti∗ . Obviously, the helper values should not reveal
i∗.

58

Our ORAM protocol will need select operations to be performed over the outputs of
prior select operations. For this, we require a sequence of AHE schemes E` with plaintext
space L` and ciphertext space L`+1 where L`+1 is again in the plaintext space of E`+1. Each
scheme E` is additively homomorphic meaning E`(x) ⊕ E`(y) = E`(x + y). We denote an
`-layer onion encryption of a message x by E`(x) := E`(E`−1(. . . E1(x))).

Suppose the inputs to a select operation are encrypted with ` layers of onion encryption,
i.e., cti = E`(pti). To select block i∗, the client sends an encrypted select vector (select
vector for short), E`+1(b1), . . . , E`+1(bm) where bi∗ = 1 and bi = 0 for all other i 6= i∗.
Using this select vector, the server can homomorphically compute ct∗ =

⊕
i E`+1 (bi) · cti =

E`+1 (
∑

i bi · cti) = E`+1(cti∗) = E`+1(pti∗). The result is the selected data block pti∗ , with
`+ 1 layers of onion encryption. Notice that the result has one more layer than the input.

All ORAM operations can be implemented using homomorphic select opera-
tions. In our schemes, for each ORAM operation, the client read/writes per-block meta-
data and creates a select vector(s) based on that metadata. The client then sends the
encrypted select vector(s) to the server, who does the heavy work of performing actual
computation over block contents.

Specifically, we will build on top of tree-based ORAMs [46, 71], a standard type of
ORAM without server computation. Metadata for each block includes its logical address
and the path it is mapped to. To request a data block, the client first reads the logic
addresses of all blocks along the read path. After this step, the client knows which block
to select and can run the homomorphic select protocol with the server. ORAM eviction
operations require that the client sends encrypted select vectors to indicate how blocks
should percolate down the ORAM tree. As explained above, each select operation adds an
encryption layer to the selected block.

Achieving constant bandwidth blowup. To get constant bandwidth blowup, we must
ensure that select vector bandwidth is smaller than the data block size. For this, we need
several techniques. First, we will split each plaintext data block into C chunks pti =
(pti[1], . . . , pti[C]), where each chunk is encrypted separately, i.e., cti = (cti[1], . . . , cti[C])
where cti[j] is an encryption of pti[j]. Crucially, each select vector can be reused for all the
C chunks. By increasing C, we can increase the data block size to decrease the relative
bandwidth of select vectors.

Second, we require that each encryption layer adds a small additive ciphertext expansion
(even a constant multiplicative expansion would be too large). Fortunately, we do have
well established additively homomorphic encryption schemes that meet this requirement,
such as the Damg̊ard-Jurik cryptosystem [21]. Third, the “depth” of the homomorphic
select operations has to be bounded and shallow. This requirement is the most technically
challenging to satisfy, and we will now discuss it in more detail.

Bounding the select operation depth. We address this issue by constructing a new
tree-based ORAM, which we call a “bounded feedback ORAM ”. By “feedback”, we refer
to the situation where during an eviction some block a gets stuck in its current bucket
b. When this happens, an eviction into b needs select operations that take both incoming
blocks and block a as input, resulting in an extra layer on bucket b (on top of the layers
bucket b already has). The result is that buckets will accumulate layers (with AHE) or
ciphertext noise (with SWHE) on each eviction, which grows unbounded over time.

59

Our bounded feedback ORAM breaks the feedback loop by guaranteeing that bucket
b will be empty at public times, which allows upstream blocks to move into b without
feedback from blocks already in b. It turns out that breaking this feedback is not trivial:
in all existing tree-based ORAM schemes [46, 71, 5], blocks can get stuck in buckets during
evictions which means there is no guarantee on when buckets are empty.2 We remark that
cutting feedback is equivalent to our claim of shallow circuit depth in Section 4.2: Without
cutting feedback, the depth of the ORAM circuit keeps growing with the number of ORAM
accesses.

Techniques for malicious security. We are also interested in achieving malicious se-
curity, i.e., enforcing honest behaviors of the server, while avoiding SNARKs. Our idea is
to rely on probabilistic checking, and to leverage an error-correcting code to amplify the
probability of detection. As mentioned before, each block is divided into C chunks. We
will have the client randomly sample security parameter λ� C chunks per block (the same
random choice for all blocks), referred to as verification chunks, and use standard memory
checking to ensure their authenticity and freshness. On each step, the server will perform
homomorphic select operations on all C chunks in a block, and the client will perform the
same homomorphic select operations on the λ verification chunks. In this way, whenever
the server returns the client some encrypted block, the client can check whether the λ
corresponding chunks match the verification chunks.

Unfortunately, the above scheme does not guarantee negligible failure of detection. For
example, the server can simply tamper with a random chunk and hope that it’s not one of
the verification chunks. Clearly, the server succeeds with non-negligible probability. The
fix is to leverage an error-correcting code to encode the original C chunks of each block
into C ′ = 2C chunks, and ensure that as long as 3

4C
′ chunks are correct, the block can be

correctly decoded. Therefore, the server knows a priori that it will have to tamper with at
least 1

4C
′ chunks to cause any damage at all, in which case it will get caught except with

negligible probability.

4.4 Bounded Feedback ORAM Protocol

We now present the bounded feedback ORAM, a traditional ORAM scheme without server
computation, to illustrate its important features.

4.4.1 The Basics

Like Ring ORAM, the bounded feedback ORAM organizes server storage as a binary tree
of nodes [46]. The binary tree has L + 1 levels, where the root is at level 0 and the leaves
are at level L. Each node in the binary tree is called a bucket and can contain up to Z data
blocks. The leaves are numbered 0, 1, . . . , 2L − 1 in the natural manner. Pseudo-code for
our algorithm is given in Figure 4-1 and described below.

Note that many parts of our algorithm refer to paths down the tree where a path is
a contiguous sequence of buckets from the root to a leaf. For a leaf bucket l, we refer to
the path to l as path l or P(l). P(l, k) denotes the bucket at level k ∈ [0..L] on P(l).
Specifically, P(l, 0) denotes the root, and P(l, L) denotes the leaf bucket on P(l).

2We remark that some hierarchical ORAM schemes (e.g., [13]) also have bounded feedback, but achieve
worse results in different respects relative our construction (e.g., worse server storage, deeper select circuits),
when combined with server computation.

60

Main invariant. Like all tree-based ORAMs, each block is associated with a random
path and we say that each block can only live in a bucket along that path at any time. In
a local position map, the client stores the path associated to each block.

Recursion. To avoid incurring a large amount of client storage, the position map should
be recursively stored in other smaller ORAMs [46]. When the data block size is Ω(log2N)
for an N element ORAM—which will be the case for all of our final parameterizations—
the asymptotic costs of recursion (in terms of server storage or bandwidth blowup) are
insignificant relative to the main ORAM [4]. Thus, for the remainder of the chapter, we no
longer consider the bandwidth cost of recursion.

Metadata. To enable all ORAM operations, each block of data in the ORAM tree is
stored alongside its address and leaf label (the path the block is mapped to). This metadata
is encrypted using a semantically secure encryption scheme.

ORAM Request. Requesting a block with address a (ReadPath in Figure 4-1) is similar
to most tree-based ORAMs: look up the position map to obtain the path block a is currently
mapped to, read all blocks on that path to find block a, invalidate block a, remap it to
a new random path and add it to the root bucket. This involves decrypting the address
metadata of every block on the path (Line 16) and setting one address to ⊥ (Line 18). All
addresses must be then re-encrypted to hide which block was invalidated.

ORAM Eviction. The goal of eviction is to percolate blocks towards the leaves to
avoid bucket overflows and it is this procedure where we differ from existing tree-based
ORAMs [46, 61, 71, 5, 91]. We now describe our eviction procedure in detail.

4.4.2 New Triplet Eviction Procedure

We combine techniques from [46], [61] and Ring ORAM (Chapter 3) to design a novel
eviction procedure (Evict in Figure 4-1) that enables us to break select operation feedback.

Triplet eviction on a path. Similar to other Tree ORAMs, eviction is performed along
a path. To perform an eviction: For every bucket P(le, k) (k from 0 to L, i.e., from root to
leaf), we move blocks from P(le, k) to its two children. Specifically, each block in P(le, k)
moves to either the left or right child bucket depending on which move keeps the block on
the path to its leaf (this can be determined by comparing the block’s leaf label to le). We
call this process a bucket-triplet eviction.

In each of these bucket-triplet evictions, we call P(le, k) the source bucket, the child
bucket also on P(le) the destination bucket, and the other child the sibling bucket. A crucial
change that we make to the eviction procedure of the original binary-tree ORAM [46] is
that we move all the blocks in the source bucket to its two children.

Eviction frequency and order. For every A (a parameter proposed in Chapter 3, which
we will set later) ORAM requests, we select the next path to evict based on the reverse
lexicographical order of paths (Chapter 3). As we will see, the reverse lexicographical order
eviction is crucial for our construction because it evenly and deterministically spreads out
the eviction on all paths in the tree. Specifically, a bucket at level k will get evicted exactly
every A · 2k ORAM requests.

61

1: function Access(a, op, data′)

2: l′ ← UniformRandom(0, 2L − 1)
3: l ← PositionMap[a]
4: PositionMap[a] ← l′

5: data ← ReadPath(l, a)
6: if op = read then
7: return data to client
8: end if
9: if op = write then

10: data ← data′

11: end if
12: P(l, 0, cnt) ← (a, l′, data)

13: Evict()
14: end function

15: function ReadPath(l, a)
16: Read all blocks on path P(l)
17: Select and return the block with address a
18: Invalidate the block with address a
19: end function

20: function Evict()
21: Persistent variables cnt and G, initialized to 0
22: cnt ← cnt + 1 mod A

23: if cnt
?
= 0 then

24: le ← bitreverse(G)
25: EvictAlongPath(le)
26: G ← G+ 1 mod 2L

27: end if
28: end function

29: function EvictAlongPath(le)
30: for k ← 0 to L− 1 do
31: Read all blocks in P(le, k) and its two children
32: Move all blocks in P(le, k) to its two children
33: . P(le, k) is empty at this point (Observation 1)
34: end for
35: end function

Figure 4-1: Bounded Feedback ORAM (no server computation). Note that our construction
differs from the original tree ORAM [46] only in the Evict procedure. We split Evict into
EvictAlongPath to simplify the presentation later.

Setting parameters for bounded feedback. As mentioned, we require that during
a bucket-triplet eviction, all blocks in the source bucket move to the two child buckets.
The last step to achieve bounded feedback is to show that child buckets will have enough
room to receive the incoming blocks, i.e., no child bucket should ever overflow except with
negligible probability. (If any bucket overflows, we have experienced ORAM failure.) We
guarantee this property by setting the bucket size Z and the eviction frequency A properly.
According to the following lemma, if we simply set Z = A = Θ(λ), the probability that a
bucket overflows is 2−Θ(λ), exponentially small.

Lemma 4 (No bucket overflows). If Z ≥ A and N ≤ A · 2L−1, the probability that a bucket

overflows after an eviction operation is bounded by e−
(2Z−A)2

6A .

The proof of Lemma 4 relies on a careful analysis of the stochastic process stipulated
by the reverse lexicographic ordering of eviction, and boils down to a Chernoff bound. We
defer the full proof to Section 4.8.1. Now, Lemma 4 with Z = A = Θ(λ) immediately
implies the following key observation.

Observation 1 (Empty source bucket). After a bucket-triplet eviction, the source bucket
is empty.

Furthermore, straightforwardly from the definition of reverse lexicographical order, we
have,

62

Time

= bucket is guaranteed to be empty = bucket may contain some real blocks

sibling

sibling sibling

sibling sibling

sibling sibling

sibling

Lower tree levels not shown

Time = 0, only root bucket
contains blocks

Full à Empty

transition

Figure 4-2: ORAM tree state immediately after each of a sequence of four evictions. After an
eviction, the buckets on the eviction path (excluding the leaves) are guaranteed to be empty.
Further, at the start of each eviction, each sibling bucket for that eviction is guaranteed to
be empty. Notations: Assume the ORAM tree has more levels (not shown for simplicity).
The eviction path is marked with black arrows. The dotted boxes indicate bucket triplets
during each eviction. Thick red arrows indicate causality in the second tree level: if the
arrow source is full at the end of eviction i, the bounded feedback ORAM guarantees it will
be empty at the end of eviction i+ 1. These arrows, at each level, will look symmetric over
time.

Observation 2. In reverse-lexicographic order eviction, each bucket rotates between the
following roles in the following order: source, sibling, and destination.

These observations together guarantee that buckets are empty at public and pre-
determined times, as illustrated in Figure 4-2.

Towards bounded feedback. The above two observations are the keys to achieving
bounded feedback. An empty source bucket b will be a sibling bucket the next time it
is involved in a triplet eviction. So select operations that move blocks into b do not get
feedback from b itself. Thus, the number of encryption layers (with AHE) or ciphertext
noise (SWHE) becomes a function of previous levels in the tree only, which we can tightly
bound later in Lemma 5 in Section 4.5.3.

Constant server storage blowup. We note that under our parameter setting N ≤ A ·
2L−1 and Z = A, our bounded feedback ORAM’s server storage is O(2L+1 ·Z ·B) = O(BN),
a constant blowup.

4.5 Onion ORAM (Additively Homomorphic Encryption)

In this section, we describe how to leverage an AHE scheme with additive ciphertext expan-
sion to transform our bounded feedback ORAM into our semi-honest secure Onion ORAM
scheme. First, we detail the homomorphic select operation that we introduced in Section 4.3.

63

4.5.1 Additively Homomorphic Select Sub-protocol

Suppose the client wishes to select the i∗-th block from m blocks denoted ct1, . . . , ctm, each
with `1, . . . , `m layers of encryption respectively. The sub-protocol works as follows:

1. Let ` := max(`1, . . . , `m). The client creates and sends to the server the following
encrypted select vector 〈E`+1(b1), E`+1(b2), . . . E`+1(bm)〉, where bi∗ = 1 and bi = 0 for
i 6= i∗.

2. The server “lifts” each block to `-layer ciphertexts, simply by continually re-encrypting
a block until it has ` layers ct′i[j] = E`(E`−1(. . . E`i(cti[j]))).

3. The server evaluates the homomorphic select operation on the lifted blocks: ctout[j] :=⊕
i (E`+1(bi)⊗ ct′i[j]) = E`+1(ct′i∗). The outcome is the selected block cti∗ with ` + 1

layers of encryption.

As mentioned in Section 4.3, we divide each block into C chunks. Each chunk is en-
crypted separately. All C chunks share the same select vector—therefore, encrypting each
element in the select vector only incurs the chunk size (instead of the block size).

We stress again that every time a homomorphic select operation is performed, the output
block gains an extra layer of encryption, on top of ` = max(`1, . . . , `m) onion layers. This
poses the challenge of bounding onion encryption layers, which we address in Section 4.5.3.

4.5.2 Detailed Protocol

We now describe the detailed protocol. Recall that each block is tagged with the following
metadata: the block’s logical address and the leaf it is mapped to, and that the size of the
metadata is independent of the block size.

Initialization. The client runs a key generation routine for all layers of encryption, and
gives all public keys to the server.

Read path. ReadPath(l, a) from Section 4.4.1 can be done with the following steps:

1. Client downloads and decrypts the addresses of all blocks on path l, locates the block
of interest a, and creates a corresponding select vector ~b ∈ {0, 1}Z(L+1).

2. Client and server run the homomorphic select sub-protocol with client’s input being
encryptions of each element in ~b and server’s input being all encrypted blocks on path
l. The outcome of the sub-protocol—block a—is sent to the client.

3. Client re-encrypts and writes back the addresses of all blocks on path l, with block a
now invalidated. This removes block a from the path without revealing its location.
Then, the client re-encrypts block a (possibly modified) under 1 layer, and appends
it to the root bucket.

Eviction. To perform EvictAlongPath(le), do the following for each level k from 0 to L−1:

1. Client downloads all the metadata (addresses and leaf labels) of the bucket triplet.
Based on the metadata, the client determines each block’s location after the bucket-
triplet eviction.

64

2. For each slot to be written in the two child buckets:

• Client creates a corresponding select vector ~b ∈ {0, 1}2Z .

• Client and server run the homomorphic select sub-protocol with the client’s input
being encryptions of each element in ~b, and the server’s input being the child
bucket (being written to) and its parent bucket. Note that if the child bucket
is empty due to Observation 1 (which is public information to the server), it
conceptually has zero encryption layers.

• Server overwrites the slot with the outcome of the homomorphic select sub-
protocol.

4.5.3 Bounding Layers

Given the above protocol, we bound layers with the following lemma:

Lemma 5. Any block at level k ∈ [0..L] has at most 2k + 1 encryption layers.

The proof of Lemma 5 is deferred to Section 4.8.2. The key intuition for the proof is that
due to the reverse-lexicographic eviction order, each bucket will be written to exactly twice
(i.e., be a destination or sibling bucket) before being emptied (as a source bucket). Also in
Section 4.8.2, we introduce a further optimization called the “copy-to-sibling” optimization,
which yields a tighter bound: blocks at level k ∈ [0..L] will have only k + 1 layers.

Eviction post-processing—peel off layers in leaf. The proof only applies to non-leaf
buckets: blocks can stay inside a leaf bucket for an unbounded amount of time. Therefore,
we need the following post-processing step for leaf nodes. After EvictAlongPath(le), the
client downloads all blocks from the leaf node, peels off the encryption layers, and writes
them back to the leaves as layer-Θ(L) re-encrypted ciphertexts (meeting the same layer
bound as other levels). Since the client performs an eviction every A ORAM requests, and
each leaf bucket has size Z = A, this incurs only O(1) amortized bandwidth blowup.

4.5.4 Remarks on Cryptosystem Requirements

Let L′ be the layer bound (derived in Section 4.5.3). To get constant bandwidth blowup,
we require the output of an arbitrary select operation performed during an ORAM request
(note that ` = L′ in this case) to be a constant times larger than the block size B. Since
L′ = ω(1), this implies we need additive blowup per encryption layer, independent of L′ (any
multiplicative blowup is too large). One cryptosystem that satisfies the above requirement,
for appropriate parameters, is the Damg̊ard-Jurik cryptosystem (Section 4.7.2). We use
this scheme to derive final parameters for the AHE construction in Section 4.7.3.

4.6 Security Against A Fully Malicious Server

So far, we have seen an ORAM scheme that achieves security against an honest-but-curious
server who follows the protocol correctly. We now show how to extend this to get a scheme
that is secure against a fully malicious server who can deviate arbitrarily from the protocol.

65

4.6.1 Abstract Server Computation ORAM

We start by describing several abstract properties of the Onion ORAM scheme from the
previous section. We will call any server computation ORAM scheme satisfying these prop-
erties an abstract server computation ORAM.

Data blocks and metadata. The server storage consists of two types of data: data blocks
and metadata. The server performs computation on data blocks, but never on metadata.
The client reads and writes the metadata directly, so the metadata can be encrypted under
any semantically secure encryption scheme.

Operations on data blocks. Following the notations in Section 4.3, each plaintext
data block is divided into C chunks, and each chunk is separately encrypted cti =
(cti[1], . . . , cti[C]). The client operates on the data blocks either by: (1) directly read-
ing/writing an encrypted data block, or (2) instructing the server to apply a function f to
form a new data block cti, where cti[j] only depends on the j-th chunk of other data blocks,
i.e., cti[j] = f(ct1[j], . . . , ctm[j]) for all j ∈ [1..C].

It is easy to check that the two Onion ORAM schemes are instances of the above
abstraction. The metadata consists of the encrypted addresses and leaf labels of each data
block, as well as additional space needed to implement ORAM recursion. The data blocks
are encrypted under either a layered AHE scheme or a SWHE scheme. Function f is a
“homomorphic select operation”, and is applied to each chunk.

4.6.2 Semi-Honest to Malicious Compiler

We now describe a generic compiler that takes any “abstract server computation ORAM”
that satisfies honest-but-curious security and compiles it into a “verified server computation
ORAM” which is secure in the fully malicious setting.

Verifying metadata. We can use standard “memory checking” [11] schemes based on
Merkle trees [7] to ensure that the client always gets the correct metadata, or aborts if the
malicious server ever sends an incorrect value. A generic use of a Merkle tree would add an
O(logN) multiplicative overhead to the process of accessing metadata [64], which is good
enough for us. This O(logN) overhead can also be avoided by aligning the Merkle tree
with the ORAM tree [68], or using generic authenticated data structures [80]. In any case,
verifying metadata is basically free in Onion ORAM.

Challenge of verifying data blocks. Unfortunately, we cannot rely on standard mem-
ory checking to protect the encrypted data blocks when the client doesn’t read/write them
directly but rather instructs the server to compute on them. The problem is that a mali-
cious server that learns some information about the client’s access pattern based on whether
the client aborts or not.

Consider Onion ORAM for example. The malicious server wants to learn if, during the
homomorphic select operation of a ORAM request, the location being selected is i. The
server can perform the operation correctly except that it would replace the ciphertext at
position i with some incorrect value. In this case, if the location being selected was indeed
i then the client will abort since the data it receives will be incorrect, but otherwise the
client will accept. This violates ORAM’s privacy requirement.

66

A more general way to see the problem is to notice that the client’s abort decision
above depends on the decrypted value, which depends on the secret key of the homomor-
phic encryption scheme. Therefore, we can no longer rely on the semantic security of the
encryption scheme if the abort decision is revealed to the server. To fix this problem, we
need to ensure that the client’s abort decision only depends on ciphertext and not on the
plaintext data.

Verifying data blocks. For our solution, the client selects a random subset V consisting
of λ chunk positions. This set V is kept secret from the server. The subset of chunks in
positions {j : j ∈ V} of every encrypted data block are treated as additional metadata,
which we call the “verification chunks”. Verification chunks are encrypted and memory
checked in the same way as the other metadata. Whenever the client instructs the server
to update an encrypted data block, the client performs the same operation himself on the
verification chunks. Then, when the client reads an encrypted data block from the server,
he can check the chunks in V against the ciphertexts of verification chunks. This check
ensures that the server cannot modify too many chunks without getting caught. To ensure
that this check is sufficient, we apply an error-correcting code which guarantees that the
server has to modify a large fraction of chunks to affect the plaintext. In more detail:

• Every plaintext data block pt = (pt[1], . . . , pt[C]) is first encoded via an error-
correcting code into a codeword block pt ecc = ECC(pt) = (pt ecc[1], . . . , pt ecc[C ′]).
The error-correcting code ECC has a rate C/C ′ = α < 1 and can efficiently recover
the plaintext block if at most a δ-fraction of the codeword chunks are erroneous. For
concreteness, we can use a Reed-Solomon code, and set α = 1

2 , δ = (1−α)/2 = 1
4 . The

client then uses the “abstract server computation ORAM” over the codeword blocks
pt ecc (instead of pt).

• During initialization, the client selects a secret random set V = {v1, . . . , vλ} ⊆
[C ′]. Each ciphertext data block cti has verification chunks verChi =
(verChi[1], . . . , verChi[λ]). We ensure the invariant that, during an honest execution,
verChi[j] = cti[sj] for j ∈ [1..λ].

• The client uses a memory checking scheme to ensure the authenticity and freshness
of the metadata including the verification chunks. If the client detects a violation in
metadata at any point, the client aborts (we call this abort0).

• Whenever the client directly updates or instructs the server to apply the aforemen-
tioned function f on an encrypted data block cti, it also updates or applies the same
function f on the corresponding verification chunks verChi[j] for j ∈ [1..λ], which
possibly involves reading other verification chunks that are input to f .

• When the client reads an encrypted data block cti, it also reads verChi and checks
that verChi[j] = cti[sj] for each j ∈ [1..λ] and aborts if this is not the case (we call this
abort1). Otherwise the client decrypts cti to get pt ecci and performs error-correction
to recover pti. If the error-correction fails, the client aborts (we call this abort2).

If the client ever aborts during any operation with abort0, abort1 or abort2, it refuses to
perform any future operations. This completes the compiler which gives us Theorem 2.

67

Security Intuition. Notice that in the above scheme, the decision whether abort1 occurs
does not depend on any secret state of the abstract server computation ORAM scheme,
and therefore can be revealed to the server without sacrificing privacy. We will argue that,
if abort1 does not occur, then the client retrieves the correct data (so abort2 will not occur)
with overwhelming probability. Intuitively, the only way that a malicious server can cause
the client to either retrieve the incorrect data or trigger abort2 without triggering abort1 is
to modify at least a δ (by default, δ = 1/4) fraction of the chunks in an encrypted data
block, but avoid modifying any of the λ chunks corresponding to the secret set V. This
happens with probability at most (1− δ)λ over the random choice of V, which is negligible.
The complete proof is given in Section 4.8.3.

4.7 Optimizations and Analysis

In this section we present two optimizations, an asymptotic analysis and a concrete (with
constants) analysis for our AHE-based protocol.

4.7.1 Optimizations

Hierarchical Select Operation and Sorting Networks. For simplicity, we have dis-
cussed select operations as inner products between the data vector and the coefficient vector.
As an optimization, we may use the Lipmaa construction [28] to implement select hierar-
chically as a tree of d-to-1 select operations for a constant d (say d = 2). In that case, for
a given 1 out of Z selection, ~bhier ∈ {0, 1}logZ . Eviction along a path requires O(logN)
bucket-triplet operations, each of which is a Z-to-Z permutation. To implement an arbi-
trary Z-to-Z permutation, we can use the Beneš sorting network, which consists of a total
of O(Z logZ) 2-to-1 select operations per triplet.

At the same time, both the hierarchical select and the Beneš network add Θ(logZ)
layers to the output as opposed to a single layer. Clearly, this makes the layer bound from
Lemma 5 increase to Θ(logZ logN). However, we can set related parameters larger to
compensate.

Permuted Buckets. Observe that on a request operation, the client and the server need
to run a homomorphic select protocol among O(λ logN) blocks. We can reduce this number
to O(logN) blocks during the online phase of the request, and O(λ) blocks per request
overall, using the permuted bucket technique from Ring ORAM (similar ideas were used in
hierarchical ORAMs [13]).

Instead of reading all slots along the tree path during each read, we can randomly
permute blocks in each bucket and only read/remove a block at a random looking slot (out
of Z = Θ(λ) slots) per bucket. Each random-looking location will either contain the block
of interest or a dummy block. We must ensure that no bucket runs out of dummies before
the next eviction refills that bucket’s dummies. Given our reverse-lexicographic eviction
order, a simple Chernoff bound shows that adding Θ(A) = Θ(λ) dummies, which increases
bucket size by a constant factor, is sufficient to ensure that dummies do not run out except
with probability 2−Θ(λ).

Additional care is needed to keep the root permuted. Each requested block now has to
be written to a random (and unread) slot in the root bucket, as opposed to simply being
appended as in Step 3 of ReadPath in Section 4.5.2. This requires a “PIR write” operation

68

from [79], which requires the client to send O(Z) encrypted coefficients and the server to
evaluate an operation similar to O(Z) 2-to-1 homomorphic select operations (see [79] for
details). We make two remarks. First, this operation occurs offline — after the client
receives the block. Second, the download phase in the protocol from [79] is not needed since
unread slots can be set to encryptions of 0 by the server after each eviction.

4.7.2 Damg̊ard-Jurik Cryptosystem

We will implement our AHE-based protocol over the Damg̊ard-Jurik cryptosystem [21],
a generalization of Paillier’s cryptosystem [17]. Both schemes are based on the hardness
of the decisional composite residuosity assumption. In this system, the public key pk =
n = pq is an RSA modulus (p and q are two large, random primes) and the secret key
sk = lcm(p − 1, q − 1). In the terminology from our onion encryptions, ski, pki = Gi() for
i ≥ 0.

We denote the integers mod n as Zn. The plaintext space for the i-th layer of the
Damg̊ard-Jurik cryptosystem encryption, Li, is Zns0+i for some user specified choice of s0.
The ciphertext space for this layer is Zns0+i+1 . Thus, we clearly have the property that
ciphertexts are valid plaintexts in the next layer. Let γ be the number of bits in n, i.e.,
γ = |n|. After i layers of Damg̊ard-Jurik onion encryption, a message of length γs0 bits
is encrypted to a ciphertext of length γ(s0 + i + 1) bits. An interesting property that
immediately follows is that if s0 = Θ(i), then |Li|/|L0| is a constant. In other words, by
setting s0 appropriately the ciphertext blowup after i layers of encryption is a constant.

We further have that ⊕ (the primitive for homomorphic addition) is integer multipli-
cation and ⊗ (for scalar multiplication) is modular exponentiation. If these operations are
performed on ciphertexts in Li, operations are mod Zns0+i .

4.7.3 Asymptotic Analysis

We first perform the asymptotic analysis for exact exponential security, using the Damg̊ard-
Jurik Cryptosystem, and summarize the results in Table 4.2. The results for negligible in
N security in Table 4.1 are derived by setting λ = ω(logN) and γ = Θ(log3N) according
to best known attacks [28].

Semi-Honest Case

Chunk size. Using a Beneš network, each ciphertext chunk accumulates O(log λ logN)
layers of encryption at the maximum. Suppose the plaintext chunk size is Bc := γs0, then
at the maximum onion layer, the ciphertext size would be γ(s0 +O(log λ logN)). Therefore,
to ensure constant ciphertext expansion at all layers, it suffices to set s0 := Ω(log λ logN)
and chunk size Bc := Ω(γ log λ logN). This means ciphertext chunks and homomorphic
select vectors are also Ω(γ log λ logN) bits.

Size of select vectors. Each read requires O(log λ) encrypted coefficients of O(Bc) bits
each. Eviction along a path requires O(logN) Beneš networks (one for each bucket-triplet),
a total of O(λ log λ logN) encrypted coefficients. Also recall that one eviction happens
per A = Θ(λ) accesses. Therefore, the select vector size per ORAM access (amortized) is
dominated by evictions, and is Θ(Bc log λ logN) bits.

69

Setting the block size. We want our block size to be asymptotically larger than the
select vectors at each step of our protocol (other metadata are much smaller). Clearly, if
we set the block size to be B := Ω(Bc log λ logN), the cost of homomorphic select vectors
could be asymptotically absorbed, thereby achieving constant bandwidth blowup. Since the
chunk size Bc = Ω(γ log λ logN), we have B = Ω(γ log2 λ log2N) bits.

Server computation The bottleneck of server computation is to homomorphically mul-
tiply a block with a encrypted select coefficient. In Damg̊ard-Jurik, this is a modular
exponentiation operation, which has Õ(γ2) computational complexity for γ-bit ciphertexts.
This means the per-bit computational overhead is Õ(γ). The server needs to perform
this operation on O(λ) blocks of size B, and therefore has a computational overhead of
Õ(γ)O(Bλ).

Client computation Client needs to decrypt O(log λ logN) layers to get the plaintext
block, and therefore has a computational overhead of Õ(γ)O(B log λ logN).

Malicious Case

Setting the block size. The main difference from the semi-honest case is that on a read,
the client must additionally download Θ(λ) verification chunks from each of the Θ(λ) blocks
(assuming permuted buckets). Select vector size stays the same, and the error-correcting
code increases block size by only a constant factor. Thus, the block size we need to achieve
constant bandwidth over the entire protocol is B = Ω(Bcλ

2) = Ω(γλ2 log λ logN).

Client computation. Another difference is that the client now needs to emulate the
server’s homomorphic select operation on the verification chunks. But a simple analysis
will show that the bottleneck of client computation is still onion decryption, and therefore
remains the same asymptotically.

4.7.4 Concrete Analysis (Semi-honest case only)

Figure 4-3 shows bandwidth as a function of block size for our optimized semi-honest con-
struction, taking into account all constant factors (including the extra bandwidth cost to
recursively look up the position map). Other scheme variants in this chapter have the same
general trend. We compare to Path PIR and Circuit ORAM, the most bandwidth-efficient
constructions with/without server computation that match our server/client storage asymp-
totics.

Takeaway. The high order bit is that as block size increases, Onion ORAM’s bandwidth
approaches 2B. Note that 2B is the inherent lower bound in bandwidth since every ORAM
access must at least read the block of interest from the server and send it back after possibly
modifying it. Given an 8 MB block size, which is approximately the size of an image file, we
improve in bandwidth over Circuit ORAM by 35× and improve over Path PIR by 22×. For
very large block sizes, our improvement continues to increase but Circuit ORAM and Path
PIR improve less dramatically because their asymptotic bandwidth blowup has a logN
factor. Note that for sufficiently small block sizes, both Path PIR and Circuit ORAM beat
our bandwidth because our select vector bandwidth dominates. Yet, this crossover point is
around 128 KB, which is reasonable in many settings.

70

1

10

100

1000

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

B
an

d
w

id
th

 m
u

lt
ip

lie
r

log B (in bits)

Path PIR
Onion ORAM
Circuit ORAM

Figure 4-3: Plots the bandwidth multiplier (i.e., the hidden constant for O(B)) for semi-
honest Onion ORAM and two prior proposals. We fix the ORAM capacity to NB = 250

and give each scheme the same block size across different block sizes (hence as B increases,
N decreases).

Constant factor optimization: Less frequent leaf post-processing. In the above
evaluation, we apply an additional constant factor optimization. Since Z = A = Θ(λ), we
must send and receive one additional data block (amortized) per ORAM request to post-
process leaf buckets during evictions (Section 4.5.3). To save bandwidth, we can perform
this post-processing on a particular leaf bucket every p evictions to that leaf (p is a free
variable). The consequence is that the number of layers that accumulate on leaf buckets
increases by p which makes each ORAM read path more expensive by the corresponding
amount. In practice, p ≥ 8 yields the best bandwidth.

Parameterization details. For both schemes, we set acceptable ORAM failure proba-
bility to 2−80 which results in Z = A ≈ 300 for Onion ORAM, Z = 120 for Path PIR [46]
and a stash size (stored on the server) of 50 blocks for Circuit ORAM [5]. For Onion ORAM
and Path PIR we set γ = 2048 bits. For Circuit ORAM, we use the reverse lexicographic
eviction order as described in that work, which gives 2 evictions per access and Z = 2. For
Path PIR, we set the eviction frequency v = 2 [46].

4.7.5 Other Optimizations

De-Amortization. We remark that it is easy to de-amortize the above algorithm so
that the worst-case bandwidth equals amortized bandwidth and overall bandwidth doesn’t
increase. First, it is trivial to de-amortize the leaf bucket post-processing (Section 4.5.3)
over the A read path operations because A = Z and post-processing doesn’t change the
underlying plaintext contents of that bucket. Second, the standard de-amortization trick
of Williams et al. [58] can be applied directly to our EvictAlongPath operation. We remark
that it is easy to de-amortize evictions over the next A read operations because moving
blocks from buckets (possibly on the eviction path) to the root bucket does not impact our
eviction algorithm.

Online Roundtrips. The standard recursion technique [4] uses a small block size for
position map ORAMs (to save bandwidth) and requires O(logN) roundtrips. In Onion

71

ORAM, the block in the main ORAM is large B = Ω(λ logN). We can use Onion ORAM
with the same large block size for position map ORAMs. This achieves a constant number
of recursive levels if N is polynomial in λ, and therefore maintains the constant bandwidth
blowup.

4.8 Proofs

4.8.1 Bounded Feedback ORAM: Bounding Overflows

We now give formal proofs to show that buckets do not overflow in bounded feedback ORAM
except with negligible probability.

Proof: (of Lemma 4). First of all, notice that when Z ≥ A, the root bucket will never
overflow. So we will only consider non-root buckets. Let b be a non-root bucket, and Y (b)
be the number of blocks in it after an eviction operation. We will first assume all buckets
have infinite capacity and show that E[Y (b)] ≤ A/2, i.e., the expected number of blocks in
a non-root bucket after an eviction operation is no more than A/2 at any time. Then, we
bound the overflow probability given a finite capacity.

If b is a leaf bucket, each of the N blocks in the system has a probability of 2−L to be
mapped to b independently. Thus E[Y (b)] ≤ N · 2−L ≤ A/2.

If b is a non-leaf (and non-root) bucket, we define two variables m1 and m2: the last
EvictAlongPath operation where b is on the eviction path is the m1-th EvictAlongPath
operation, and the EvictAlongPath operation where b is a sibling bucket is the m2-th
EvictAlongPath operation. If m1 > m2, then Y (b) = 0, because b becomes empty when
it is the source bucket in the m1-th EvictAlongPath operation. (Recall that buckets have
infinite capacity so this outcome is guaranteed.) If m1 < m2, there will be some blocks in
b and we now analyze what blocks will end up in b. We time-stamp the blocks as follows.
When a block is accessed and remapped, it gets time stamp m∗, which is the number of
EvictAlongPath operations that have happened. Blocks with m∗ ≤ m1 will not be in b as
they will go to either the left child or the right child of b. Blocks with m∗ > m2 will not
be in b as the last eviction operation that touches b (m2-th) has already passed. Therefore,
only blocks with time stamp m1 < m∗ ≤ m2 can be in b. There are at most d = A|m1−m2|
such blocks. Such a block goes to b if and only if it is mapped to a path containing b.
Thus, each block goes to b independently with a probability of 2−i, where i is the level of
b. The deterministic order of EvictAlongPath makes it easy to see3 that |m1 −m2| = 2i−1.
Therefore, E[Y (b)] ≤ d · 2−i = A/2 for any non-leaf bucket as well.

Now that we have independence and the bound on expectation, a simple Chernoff bound
completes the proof.

4.8.2 Onion ORAM: Bounding Layers of Encryption

To bound the layers of onion encryption, we consider the following abstraction. Suppose
all buckets in the tree have a layer associated with it.

• The root bucket contains layer-1 ciphertexts.

• For a bucket known to be empty, we define bucket.layer := 0.

3One way to see this is that a bucket b at level i will be on the evicted path every 2i EvictAlongPath
operations, and its sibling will be on the evicted path halfway in that period.

72

• Each bucket-triplet operation moves data from parent to child buckets. After the
operation, child.layer := max{parent.layer, child.layer}+ 1.

Recall that we use the following terminology. The bucket being evicted from is called
the source, its child bucket on the eviction path is called the destination, and its other child
forking off the path is called the sibling.

Proof: (of Lemma 5). We prove by induction.
Base case. The lemma holds obviously for the root bucket.
Inductive step. Suppose that this holds for all levels ` < k. We now show that this
holds for level k. Let bucket denote a bucket at level k. We focus on this particular
bucket, and examine bucket.layer after each bucket-triplet operation that involves bucket. It
suffices to show that after each bucket-triplet operation involving bucket, it must be that
bucket.layer ≤ 2k + 1. If a bucket-triplet operation involves bucket as a source, we call it
a source operation (from the perspective of bucket). Similarly, if a bucket-triplet operation
involves bucket as a destination or sibling, we call it a destination operation or a sibling
operation respectively.

Based on Observation 1,

bucket.layer = 0 (after each source operation)

Since a sibling operation must be preceded by a source operation (if there is any preceding
operation), bucket must be empty at the beginning of each sibling operation. By induction
hypothesis, after each sibling operation, it must be that

bucket.layer ≤ 2(k − 1) + 1 + 1 = 2k (after each sibling operation)

Since a destination operation must be preceded by a sibling operation (if there is any pre-
ceding operation), from the above we know that at the beginning of a destination operation
bucket.layer must be bounded by 2k. Now, by induction hypothesis, it holds that

bucket.layer ≤ 2k + 1 (after each destination operation)

Finally, our post-processing on leaves where the client peels off the onion layers extends
this lemma to all levels including leaves.

Copy-to-sibling optimization and a tighter layer bound An immediate implication
of Observation 1 plus Observation 2 is that whenever a source evicts into a sibling, the sibling
bucket is empty to start with because it was a source bucket in the last operation it was
involved in. This motivates the following optimization: the server can simply copy blocks
from the source bucket into the sibling. The client would read the metadata corresponding
to blocks in the source bucket, invalidate blocks that do not belong to the sibling, before
writing the (re-encrypted) metadata to the sibling.

This copy-to-sibling optimization avoids accumulating an extra onion layer upon writes
into a sibling bucket. With this optimization and using a similar inductive proof, it is not
hard to show a bucket at level k in the tree has at most k + 1 layers.

4.8.3 Malicious Security Proof

We now prove the security of our malicious construction matches Definition 2. See Sec-
tions 2.1 and 2.2 for simulator notations.

73

The Simulator. To simulate the setup protocol with some data of size N , the simulator
chooses a dummy database D′ of size N consisting of all 0s. It then follows the honest setup
procedure on behalf of the client with database D′. To simulate each access operation, the
simulator follows the honest protocol for reading a dummy index, say, ind′ = 0, on behalf
of the client.

During each operation, if the client protocol that’s being executed by the simulator
aborts then the simulator sends abort to F and stops responding to future commands on
behalf of the client, else it gives ok to F .

Sequence of Hybrids. We now follow a sequence of hybrid games to show that the real
world and the simulation are indistinguishable:

|Pr [RealΠF ,A,Z(λ) = 1]− Pr [IdealF ,S,Z(λ) = 1]| ≤ negl(λ)

Game 0. Let this be the real game RealΠF ,A,Z with an adversarial server A and an
environment Z.

Game 1. In this game, the client also keeps a local copy of the correct metadata and
data-blocks (in plaintext) that should be stored on the server. Whenever the client
reads any (encrypted) metadata from the server during any operation, if the memory
checking does not abort, then instead of decrypting the read metadata, the client
simply uses the locally stored plaintext copy.

The only difference between Game 0 and Game 1 occurs if in Game 0 the memory
checking does not abort, but the client retrieves the incorrect encrypted metadata,
which happens with negligible probability by the security of memory checking. There-
fore Game 0 and Game 1 are indistinguishable.

Game 2. In this game the client doesn’t store the correct values of verChi with the en-
crypted metadata on the server, but instead replaces these with dummy values. The
client still stores the correct values of verChi in the plaintext metadata stored locally,
which it uses to do all of the actual computations.

Game 1 and Game 2 are indistinguishable by the CPA security of the symmetric-key
encryption scheme used to encrypt metadata. We only need CPA security since, in
Games 1 and 2, the client never decrypts any of the metadata ciphertexts.

Game 3. In this game, whenever the client reads an encrypted data block cti from the
server, if abort1 does not occur, instead of decrypting and decoding the encrypted
data-block, the client simply uses local copy of the plaintext data-block.

The only difference between Game 2 and Game 3 occurs if at some point in time
the client reads an encrypted data block cti from the server such that at least a δ
fraction of the ciphertext chunks {cti[j]} in the block have been modified (so that
decoding either fails with abort2 or returns an incorrect value) but none of the chunks
in locations i ∈ V have been modified (so that abort1 does not occur).

We claim that Game 2 and Game 3 are statistically indistinguishable, with statistical
distance at most q(1−δ)λ, where q is the total number of operations performed by the
client. To see this, note that in both games the set V is initially completely random
and unknown to the adversarial server. In each operation i that the client reads an
encrypted data-block, the server can choose some set V ′i ⊆ [C ′] of positions in which

74

the ciphertext chunks are modified, and if V ′i∩V = ∅ the server learns this information
about the set V and the game continues, else the client aborts and the game stops.
The server never gets any other information about V throughout the game. The games
2 and 3 only diverge if at some point the adversarial server guesses a set V ′i of size
|V ′i| ≥ δC ′ such that V ∩V ′i = ∅. We call this the “bad event”. Notice that the sets V ′i
can be thought of as being chosen non-adaptively at the beginning of the game prior
to the adversary learning any knowledge about V (this is because we know in advance
that the server will learn V ′i ∩ V = ∅ for all i prior to the game ending). Therefore,
the probability that the bad event happens in the j’th operation is

Pr
V

[V ′j ∩ V = ∅] ≤
(

(1− δ)C ′

λ

)/(C ′
λ

)
≤ (1− δ)λ

where V ⊆ [C ′] is a random subset of size |V| = λ. By the union bound, the probability
that the bad event happens during some operation j ∈ {1, . . . , q} is at most q(1− δ)λ.

Game’ 3. In this game, the client runs the setup procedure using the dummy database
D′ (as in the simulation) instead of the one given by the environment. Furthermore,
for each access operation, the client just runs a dummy operation consisting of a read
with the index ind′ = 0 instead of the operation chosen by the environment. (We also
introduce an ideal functionality F in this world which is given the correct database D
at setup and the correct access operations as chosen by the environment. Whenever
the client doesn’t abort, it forwards the outputs of F to the environment.)

Games 3 and Game’ 3 are indistinguishable due to the semi-honest Onion ORAM
scheme. In particular, in both games whenever the client doesn’t abort, the client
reads the correct metadata and data blocks as when interacting with an honest server,
and therefore follows the same protocols as when interacting with an honest server.
Furthermore, the decision whether or not the client aborts in these games (with abort0

or abort1; there is no more abort2) only depends on the secret set V and the internal
state of the memory checking scheme, but is independent of any of the secret state or
decryption keys of the underlying semi-honest Onion ORAM scheme. Therefore, the
view of the adversarial server in these games can be simulated given the view of the
honest server.

Game’ 2,1,0. We define Game’ i for i = 0, 1, 2 the same way as Game i except that the
client uses the dummy database D′ and the dummy operations (reads with index
idx′ = 0) instead of those specified by the environment.

The arguments that Game’ i + 1 and Game’ i are indistinguishable as the same as
those for Game i + 1 and Game i. Finally, we notice that Game 0 is the ideal game
IdealF ,S,Z with the simulator S.

Putting everything together, we see that the real and ideal games RealΠF ,A,Z and
IdealF ,S,Z are indistinguishable as we wanted to show.

4.9 Onion ORAM (Somewhat Homomorphic Encryption)

As discussed in Section 4.3, our bounded feedback ORAM can be viewed as an ORAM
protocol with very shallow circuit depth. Shallow circuit depth is interesting beyond onion

75

AHE: it also gives us a way to construct efficient constant bandwidth blowup ORAM using
SWHE.

As an extension, we will describe how to efficiently map our bounded feedback ORAM
to a BGV SWHE scheme [47].4 Our construction based on BGV SWHE has the following
attractive features over the construction that uses AHE:

1. No layers. SWHE select (multiplication) operations do not add encryption layers.
Thus, the client only needs to decrypt once to retrieve the underlying plaintext.

2. Coefficient packing to achieve small blocks. One downside of AHE Onion
ORAM is that block size is at least as large as the number of encrypted coefficients
needed to manage reads and evictions. Using plaintext packing techniques developed
for SWHE/FHE schemes [47, 50], we can pack many select bits into a single ciphertext
and achieve a much smaller block size.

4.9.1 BGV-Style Somewhat Homomorphic Cryptosystems

BGV-style cryptosystems [47] are a framework for constructing efficient FHE or SWHE
schemes. For concreteness, we assume the underlying cryptosystem is Ring Learning with
Errors (RLWE) as in [47], although in practice, we can switch to the LTV variant of
NTRU [55] which achieves better parameters by constant factors. Let A(x) mod (Φm(x),
p), denoted Rp for short, denote the ring of polynomials A(x) modulo the m-th cyclotomic
polynomial (of degree n = φ(m) where φ is the totient function) and coefficients modulo
p. Plaintexts are polynomials in Rt for some t of the user’s choice. If the circuit we are
evaluating has depth d, a ciphertext encoding the plaintext polynomial x ∈ Rt at the `-th
level ` ∈ [0..d] is an element in R2

q`
where q`/q`+1 = qL/t = poly(n) (RLWE ciphertexts

consist of 2 polynomials).

The scheme is additively and multiplicatively homomorphic; that is, given x, y ∈
Rt and ERLWE

` (x), ERLWE
` (y) ∈ R2

q`
, we have efficient operations � and � such that

ERLWE
` (x)�ERLWE

` (y) = ERLWE
` (x+y) ∈ R2

q`
and ERLWE

` (x)�ERLWE
` (y) = ERLWE

`+1 (x·y) ∈ R2
q`+1

.
Implicit in the � operator, there is a Refresh operation performed after each homomorphic
multiplication operation. There is also a Scale procedure that promotes a level-i ciphertext
into a level-j (j > i) ciphertext encrypting the same plaintext.

Connection to encryption layers. The chain of moduli used by BGV is analogous to
encryption layers in our AHE construction. That is, a BGV ciphertext living in R2

q`
is

analogous to a ciphertext that has accumulated `+ 1 AHE encryption layers in Section 4.5,
and our layer bound in Section 4.5.3 applies directly through this isomorphism. To get a
similar abstraction, we write R2

q`
as L` just as in the AHE construction. However, unlike the

AHE construction, here L0 has the biggest ciphertext size (to leave room for noise that will
be added by future homomorphic operations). This will change several design decisions.

The other differences in the protocols are minor, which we explain below.

4.9.2 Somewhat Homomorphic Select Sub-protocol

We now describe a single homomorphic select, using the same notation as in Section 4.5.1:

4We will refer to BGV without bootstrapping as a SWHE scheme as opposed to as a “leveled FHE
scheme”.

76

1. Let ` := max(`1, . . . , `m). The client first creates and sends to the server the following
homomorphic select vector 〈ERLWE

` (b1), ERLWE
` (b2), . . . ERLWE

` (bm)〉.

2. The server “lifts” each ciphertext chunk (C chunks per block) to L`, by performing
Scale on each chunk.

3. Then, the server evaluates the following homomorphic select operation on all chunks
j ∈ [1..C] (of the lifted blocks):

ctout[j] :=�
i

(
ERLWE
` (bi) � ct′i[j]

)
= ERLWE

` (ct′i∗)

Delay Refresh. There is a subtle optimization that is worth mentioning. The Refresh
procedure is typically performed after each homomorphic multiplication and is typically an
expensive part of the BGV construction (costing poly-logarithmic factors of computation
more than a regular homomorphic multiplication). However, we can perform Refresh only
once per select operation, after the results of the select are added together. In this way, we
can amortize its cost when the select operation’s fan-in is Ω(λ).

4.9.3 Onion ORAM Protocol over BGV

We can plug in the BGV select sub-protocol from the previous section directly into the
complete Onion ORAM protocol from Section 4.5.2. The only difference between AHE and
SWHE is how we initialize the system, which we now detail:

Initialization and ORAM tree setup. To start, the user and server use the layer
bound from Section 4.5.3 to compute L′ = 2L+ 1, the BGV circuit depth, from the ORAM
tree height L. The user and server then agree on t and qi for i ∈ [0..L′] which satisfy
t = Ω(poly(n)) and qi/qi+1 = q′L/t = Ω(poly(n)). Finally, the user shares public and
evaluation keys for each modulus with the server.

We remark that in Step 3 of ReadPath (Section 4.5.2), the client must re-encrypt blocks
using a symmetric encryption scheme. Sending a “layer 1” ciphertext, which lives in L0, is
no longer an option, because in BGV, L0 is R2

q0 where q0 = poly(n)L
′
, which implies that

sending back a L0 ciphertext immediately makes the ORAM bandwidth blowup increase to
log q0/ log t = L′ = Θ(logN)!

4.9.4 Optimizations

We now present two optimizations specific to the SWHE construction.

CRT Packing to Reduce Coefficient Size

As with the AHE scheme from Section 4.5, the above scheme described thus far has to
send a lot of encrypted coefficients to the server, which are large because each encrypted
coefficient will live in L0. We can reduce block size substantially by using FHE CRT packing
techniques, described in [47, 50]. At a high level, the client can pack multiple coefficients
into a single L0 ciphertext. The server will then unpack each coefficient and post-process
it into a form that can be used in the protocol (e.g., by using the full replication procedure
from [77]) from Section 4.9.3.

77

All data blocks must also be encoded using the CRT representation. This will be done by
the server since the client just sends symmetric-encrypted blocks. With suitable parameters,
we can pack Θ(λ) coefficients per ciphertext, reducing the encrypted coefficient size by a
factor of Θ(λ).

Packing parameters. Encoding blocks in CRT form and packing coefficients places sev-
eral additional constraints on how we choose parameters. To maximize the number of coeffi-
cients that can be packed into a single ciphertext, we desire that t ≡ 1 mod m (the scheme
is over the m-th cyclotomic polynomial) which is simple to achieve since t = Ω(poly(n)). To
implement the full replication procedure from [77], we require the largest cyclic subgroup

of Z∗m to be as large as possible with respect to m. For example, using Φm(x) = x2h + 1
(the most common setting in FHE literature), 1/4-th of available slots will be usable for
rotations which would mean that for that choice of Φm(x), the ORAM scheme’s bandwidth
blowup has a hidden constant 4. If the cyclotomic polynomial is of prime degree, the hidden
constant is 1.

Impact on circuit depth. The full replication procedure can be accomplished in depth
O(log n), which contributes additively to the depth of the entire SWHE scheme. As we will
see later, n = Θ(λ) therefore the overall depth does not increase asymptotically.

Permuted Buckets to Remove Online Select Operations

By combining our SWHE-based scheme with the permuted bucket optimization from Sec-
tion 4.7.1, we no longer need to send any encrypted coefficients or perform any homomorphic
select operations online. This may greatly improve the latency of the scheme.

With permuted buckets, the blocks read along the tree path are guaranteed to be dummy
blocks (encryptions of zero) except for the block of interest. Let L′ denote the total ORAM
circuit depth. Once the server knows the physical offset of each block bi for each bucket i, it
can first compute ERLWE

L′ (bi) using Scale5 and then compute the encrypted block of interest
as �i ERLWE

L′ (bi). The client now only sends physical offsets to determine each bi, which
has negligible cost. The PIR write operation from Section 4.7.1 still requires sending O(Z)
encrypted coefficients, but importantly it happens offline, i.e., after the client receives the
block of interest.

4.9.5 Asymptotic Analysis

The SWHE construction we will analyze below uses permuted buckets in Section 4.7.1, but
not the Beneš sorting network optimization, as sorting networks will result in non-constant
server storage blowup (see below). We do note that the Beneš network does reduce server
computation and can be applied if server storage is cheap.

Semi-Honest Case

Chunk size. With BGV SWHE, all ciphertexts returned to the user will be polynomials
whose coefficients are in qL′ where qL′/t = Θ(poly(n)). Therefore, to achieve constant
bandwidth we require t = Ω(poly(n)). We note that n = Θ(λ) [40] and that the circuit

5In the AHE scheme, dummy blocks are encryptions of 0 but at different layers. There is no operation
to make them encryptions of 0 at the same layer.

78

depth of the entire protocol is O(logN) = O(log λ). Thus, each coefficient (or set of packed
coefficients, if CRT packing is used) is B′c = 2n log n = Ω(λ log λ) bits.

Size of select vectors With CRT packing, the user needs O(logN) ciphertexts to pack
the O(λ logN) coefficients (without the Beneš network).

Setting the block size. To absorb the above select vectors, block size is B′ :=
Ω(B′c logN) = Ω(λ log2 λ).

Server computation In BGV SWHE, multiplying a block with a encrypted coefficient is
a polynomial multiplication operation, which has Õ(n log n log q) computational complexity
for n log q-bit ciphertexts. This means the per-bit computational overhead is Õ(log n) =
Õ(log λ), which is much cheaper than that in AHE Onion ORAM. When the block size
is small, unpacking will actually become the bottleneck, and its cost is still polylog(λ).
Therefore, server computation is polylog(λ)O(Bλ logN) = polylog(λ)O(Bλ).

Client computation Client only needs to decrypt once (no more layers) and therefore
has a computational overhead of polylog(λ)O(B).

Malicious Case

Setting the block size. The client needs to download and perform computation on Θ(λ)
chunks for each of the O(λ logN) blocks per ORAM access (amortized). Thus, block size
becomes B′ := Ω(B′cλ

2 logN) = Ω(λ3 log2 λ).

Client computation Besides decryption, the client has to emulate server computation
on the λ verification chunks for O(λ logN) blocks, costing O(λ2 logN)polylog(λ) = Õ(λ2).

Server Storage

The alert reader will have noticed that our scheme over BGV will potentially have a non-
constant server storage blowup since log q0/ log t = ω(1). We now show that server storage
blowup is still constant. The intuition is that few buckets (towards the root) has large
blowup, and most buckets (towards the leaves) has small or constant blowup. Specifically,
server storage blowup is given by:∑L

i=0 2 · n · log qi · 2i∑L
i=0 n · log t · 2i

= 2 ·
L∑
i=0

2(L− i+ 1) · 2i

2L+1
= 4

L∑
i=0

(L− i+ 1)

2L−i+1
= 4

L+1∑
i=1

i

2i
≈ 8

which is a constant blowup as desired. In the first equation, the factor of 2 outside the sum
is because RLWE ciphertexts are in R2

qi for each i. The factor of 2 in 2(L− i+ 1) is due to
the bound on qi at level i of the ORAM tree being approximately q2i.

If we were to use a Beneš network, there will be an extra logN storage blowup at each
level of the tree, and the overall server storage blowup is no longer a constant.

79

4.10 Asymptotic Results for Exponential Security

For reference, we present precise results for exponential security, making no assumptions on
parameters, in Table 4.2. The results for negligible in N security in Table 4.1 are derived by
setting λ = ω(logN), γ = Θ(log3N) and n = Θ(λ) according to best known attacks [28, 44].

Table 4.2: Detailed asymptotics. N is the number of blocks. The optimal block size is the data
block size needed to achieve the stated bandwidth, and is measured in bits. All schemes achieve O(B)
client storage and O(BN) server storage (asymptotically optimal) and have 2−λ failure probability
(λ = 80 is a reasonable value). Computation measures the number of two-input plaintext gates
evaluated per ORAM access. “M” stands for malicious security, and “SH” stands for semi-honest.
For Path-PIR and AHE Onion ORAM, γ denotes the length of the modulus of the Damg̊ard-Jurik
cryptosystem [21]. For SWHE Onion ORAM, n is the degree of the polynomial in the Ring-LWE
cryptosystem [40].

Scheme
Optimal

Bandwidth
Server Client

Security
Block size B Computation Computation

Circuit ORAM [5] Ω(log2N) O(Bλ) N/A N/A M

Path-PIR [79] Ω(γλ logN) O(B logN) Õ(γ)O(Bλ logN) Õ(γ)O(B logN) SH

AHE Onion ORAM
Ω(γ log2 λ log2N) O(B) Õ(γ)O(Bλ) Õ(γ)O(B log λ logN) SH

Ω(γλ2 log λ logN) O(B) Õ(γ)O(Bλ) Õ(γ)O(B log λ logN) M

SWHE Onion ORAM
Ω(n logn logN) O(B) polylog(λ)O(Bλ logN) Õ(log λ)O(B) SH

Ω(nλ2 logn logN) O(B) polylog(λ)O(Bλ logN) Õ(log λ)O(B) + Õ(λ2) M

80

Chapter 5

Tiny ORAM:

A Hardware ORAM Memory Controller

This chapter presents Tiny ORAM, the first hardware ORAM taped-out and validated
in silicon. Tiny ORAM is the first hardware ORAM with small client storage, integrity
verification, or encryption units. With these attributes, Tiny ORAM can be used by a
single-chip secure processor to obfuscate its execution to an adversary watching the chip’s
I/O pins. As a proof of concept, we evaluate our design as the on-chip memory controller
of a 25 core processor. Tiny ORAM design takes up 1/72-th the area (.51 mm2 of silicon
in 32 nm technology) of the chip, which is less than the area of a single core, and consumes
299 mW of power at a 857 MHz clock frequency. With a 128 bits/cycle channel to main
memory (roughly equivalent to 2 DRAM channels), Tiny ORAM can complete a 1 GByte
non-recursive ORAM lookup for a 512 bit block in ∼ 1275 processor cycles. (An insecure
DRAM access for a 512 bit block takes an average 58 processor cycles.)

Up to this point, we have focused primarily on the outsourced storage setting. In the
secure processor setting, the only implementation-level treatment of ORAM is a system
called Phantom, by Maas et al. [66]. In this chapter, we will address the challenges left
open by the Phantom design. By the end, we will present a complete silicon tape-out of our
design – the first for any type of ORAM – and integrate it with general purpose processor
cores to create the first single-chip secure processor able to hide its access pattern to main
memory.

What content is covered. This chapter covers a subset of schemes proposed in [69, 86,
87]. Focus is given to techniques that were actually implemented in hardware, or weren’t
implemented but are particularly relevant to the final hardware design. We will mention
when the techniques make a theoretic contribution, but defer the details to the relevant
publication.

5.1 Design Challenges for Hardware ORAM

In building Tiny ORAM, we discovered two major challenges areas where new ideas were
needed ensure design efficiency and compactness.

81

5.1.1 Challenge #1: Position Map Management

The first challenge for hardware ORAM controllers is that they need to store and manage
the Position Map (PosMap for short). Recall from prior chapters: the PosMap is a key-value
store that maps data blocks to random locations in external memory. Hence, the PosMap’s
size is proportional to the number of data blocks (e.g., cache lines) in main memory and can
be hundreds of MegaBytes in size. This is too large to fit in a processor’s on-chip memory.

PosMap size has been an issue for all prior hardware ORAM proposals. For instance,
the Phantom design stores the whole PosMap on-chip. As a result, to scale beyond 1 GByte
ORAM capacities, Phantom requires the use of multiple FPGAs just to store the PosMap,
and thus is not suitable for integration with a single-chip secure processor. On the other
hand, Ren et al. [69] (prior collaborative work done by the author) evaluate the Recursive
ORAM technique (Chapter 2.6.1, [46]) in the secure hardware setting. Recall, the idea is
to store the PosMap in additional ORAMs to reduce the on-chip storage requirement. The
cost of Recursive ORAM is performance. One must access all the ORAMs in the recursion
on each ORAM access. Even after architectural optimizations [69], a Recursive ORAM can
spend a majority of its time looking up PosMap ORAMs (see Section 5.4 for a detailed
analysis).

We believe that to be practical and scalable to large ORAM capacities, Recursive ORAM
is necessary in secure hardware. To that end, one focus in this chapter is to explore novel
ways to dramatically reduce the performance overhead of Recursive ORAM.

We then take a new direction and show how our optimized PosMap construction can also,
for very little additional cost, be used to perform extremely efficient integrity verification
for ORAM. Obviously, integrity verification is an important consideration for any secure
storage system where data can be tampered with. Yet, prior ORAM integrity schemes
based on Merkle trees [68] require large hash unit bandwidth to rate match memory. We
show how clever use of our optimized PosMap simplifies this problem dramatically.

5.1.2 Challenge #2: Throughput with Large Memory Bandwidths

The second challenge in designing hardware ORAM is how to maximize data throughput
for a given memory (e.g., DRAM) bandwidth. For a given memory bandwidth, the factor
limiting data throughput should be the memory. Yet, as shown by the Phantom design,
this may not be the case because of other factors, described below.

The first bottleneck in Phantom occurs when the application block size is small. Phan-
tom was parameterized for 4 KByte blocks and will incur large pipeline stalls with small
blocks (Section 5.6.2). Further, the minimum block size Phantom can support without
penalty grows with processor memory bandwidth. While benefiting applications with good
data locality, a large block size (like 4 KBytes in Phantom) severely hurts performance
for applications with erratic data locality (see Section 5.7.5 for a detailed analysis).1 We
will develop schemes that flexibly support any block size (e.g., we evaluate 64-Byte blocks)
without incurring performance loss.

The second bottleneck is that to keep up with an FPGA’s large memory bandwidth,
an ORAM controller requires many encryption units, imposing large area overheads. This
is because in prior art ORAM algorithms, all blocks transferred must be decrypted/re-
encrypted, so encryption bandwidth must scale with memory bandwidth. To illustrate
the issue, Phantom projects that encryption units alone would take ∼ 50% of the logic of a

1Most modern processors have a 64-Byte cache block size for this reason.

82

state-of-the-art FPGA device. (Although we note that the Phantom design did not actually
implement encryption or integrity verification.) We will develop new ORAM schemes that
reduce the required encryption bandwidth, and to carefully engineer the system to save
hardware area.

5.2 Contributions

To more efficiently manage the PosMap (Challenge #1), we contribute the following mech-
anisms (Section 5.5):

1. We propose the PosMap Lookaside Buffer, or PLB for short, a mechanism that
significantly reduces the memory bandwidth overhead of Recursive ORAMs depending
on underlying program address locality.

2. We propose a way to compress the PosMap, which reduces the cost of recursion
and improves the PLB’s effectiveness.

3. We then show how to further use PosMap compression to create an ORAM integrity
scheme, called PosMap MAC or PMMAC for short, which is extremely efficient in
practice and is asymptotically optimal.

With the PLB and PosMap compression, we reduce PosMap-related memory bandwidth
overhead by 95%, reduce overall ORAM bandwidth overhead by 37% and improve SPEC
performance by 1.27×. As a standalone scheme, PMMAC reduces the amount of hashing
needed for integrity checking by ≥ 68× relative to prior schemes. Using PosMap compres-
sion and PMMAC as a combined scheme, we demonstrate an integrity checking mechanism
for ORAM that increases performance overhead by only 7%.

To improve design throughput for high memory bandwidths (Challenge #2), we con-
tribute the following mechanisms (Section 5.6):

1. We propose a subtree layout scheme to improve memory bandwidth of tree ORAMs
implemented over DRAM.

2. We propose a bit-based stash management scheme to enable small block sizes.
When implemented in hardware, our scheme removes the block size bottleneck in the
Phantom design.

3. We propose a new ORAM scheme called RAW ORAM, derived from Ring ORAM
in Chapter 3, to reduce the required encryption engine bandwidth.

The subtree layout scheme ensures that over 90% of available DRAM bandwidth is
actually used by Tiny ORAM. The stash management scheme prevents a performance
bottleneck in Phantom when the block size is small, and allows Tiny ORAM to support any
reasonable block size (e.g., from 64-4096 Bytes). In particular: with a 64 Byte block size,
Tiny ORAM improves access latency by ≥ 40× in the best case compared to Phantom.
On the other hand, RAW ORAM reduces the number of encryption units by ∼ 3× while
maintaining comparable bandwidth to the original design.

83

5.3 Design Prototypes and Availability

In addition to evaluating our proposals using software simulation, we prototype a complete
ORAM design with the above mechanisms in FPGA and ASIC (Section 5.8 to end of
chapter). Our design is open source and available at http://kwonalbert.github.io/oram.

FPGA results. On the FPGA side, we evaluate the design for performance and area on a
Virtex-7 VC707 FPGA board. With the VC707 board’s 12.8 GByte/s DRAM bandwidth,2

Tiny ORAM can complete an access for a 64 Byte block in 1.4µs (also measured on live
hardware). This design (with encryption units) requires 5% of the XC7VX485T FPGA’s
logic and 13% of its on-chip memory.

ASIC results. On the ASIC side, we have taped-out our hardware ORAM in real silicon
where it serves as the on-chip memory controller for a 25 core Ascend processor (the author’s
prior collaborative work [49]). During chip bring-up (January 2016 - February 2017), the
chip passed functionality tests, running at 857 MHz and consuming 299 mW of power.
These measurements were taken on live hardware post tape-out. The entire
ORAM controller (parameterized for 2 DRAM channels) requires .51 mm2, whereas the
chip’s overall area is 36 mm2. This prototype proves the feasibility of a single-chip secure
processor capable of preventing software IP or data theft through the access pattern to
main memory (as described in Section 1).

5.4 Path ORAM Overview (Detailed)

Partly due to its simplicity, our hardware ORAM will be mainly based on the Path ORAM
algorithm [71]. Thus, we will now describe that scheme in detail. Path ORAM in hardware
is made up of two components: a (trusted) client and (untrusted) external memory or
server.

As with other schemes in this thesis, Path ORAM’s [46] server storage is logically struc-
tured as a binary tree, as shown in Figure 5-1. The ORAM tree’s levels range from 0 (the
root) to L (the leaves). Each node in the tree is called a bucket and has a fixed number
of slots (denoted Z) which can store B-bit data blocks. Bucket slots may be empty at any
point, and are filled with dummy blocks. Non-empty slots contain real blocks. All blocks
in the tree including dummy blocks are encrypted with a probabilistic encryption scheme
(more details given below). Thus, any two blocks (dummy or real) are indistinguishable
after encryption. As before, a path is a contiguous sequence of buckets from the root to
some leaf l and is referred to as P(l). P(l) is uniquely labeled by l.

The client is made up of the position map, the stash and control logic. The position
map, PosMap for short, is a lookup table that associates each data block with a random
path in the ORAM tree (see below). If N is the maximum number of real data blocks in
the ORAM, the PosMap capacity is N ∗ L bits: one mapping per block. The stash is a
memory that temporarily stores up to a small number of data blocks.

Tree ORAM invariant and operation. At any time, each data block in Path ORAM is
mapped to a random path via the PosMap. Path ORAM maintains the following invariant:
If a block is mapped to P(l), then it must be either in some bucket on P(l) or in the stash.

2Given the FPGA’s slower clock frequency, this is roughly equivalent to 8 DRAM channels on an ASIC.

84

http://kwonalbert.github.io/oram

Blocks are stored in the stash or ORAM tree along with labels indicating their path and
block address.

Backend

ORAM tree: external memory (untrusted)

Return block
to LLC

From LLC: Req for addr a

3Stash

4

Frontend PosMap1

a, Leaf 1ORAM Controller (trusted)

Address logic

Chip pins

0 1 2 3 4 5 6 7

DRAM addrs
for Leaf 15

2

Figure 5-1: A Path ORAM of L = 3 levels and Z = 4 slots per bucket. Suppose block a,
shaded black, is mapped to P(1). At any time, block a can be located in any of the shaded
structures (i.e., on path 1 or in the stash).

To make a request for a block with address a (block a for short), the client calls the
function accessORAM(a, op, d′), where op is either read or write and d′ is the new data when
op = write (the steps are also shown in Figure 5-1):

1. Look up PosMap with a, yielding the corresponding path label l. Randomly generate
a new leaf l′ and update the PosMap for a with l′.

2. Read and decrypt all the blocks along path l. Add all the real blocks to the stash
(dummies are discarded). Due to the Path ORAM invariant, block a must be in the
stash at this point.

3. Update block a in the stash to have leaf l′.

4. If op = read, return block a to the client. If op = write, replace the contents of block
a with data d′.

5. Evict and encrypt as many blocks as possible from the stash to P(l) in the ORAM
tree (to keep the stash occupancy low) while keeping the invariant. Fill any remaining
space on the path with encrypted dummy blocks.

We refer to Step 1 (the PosMap lookup) as the Frontend(a), or Frontend, and Steps 2-5
as the Backend(a, l, l′, op, d′), or Backend.

Bucket encryption. By default, we encrypt each bucket using a scheme from the author’s
prior work [69]. For purposes of encryption, we append a counter/initialization vector to

85

each bucket (referred to as IV). Let AESK(in) denote AES encryption with key K and
input in. (We will use AES for the rest of the chapter although any private key scheme
with semantic security is sufficient.) To encrypt a bucket:

1. IV← IV + 1.3

2. Break up the plaintext bits that make up the bucket into 128-bit chunks. To encrypt
chunki, apply the following OTP: AESK(BucketID||IV||i)⊕chunki, where BucketID
is a unique identifier for each bucket in the ORAM tree.

The encrypted bucket is the concatenation of each chunk along with the IV value in the
clear.

Bucket contents. With the encryption scheme above, each bucket is BucketSize =
Z(L + O(L) + B) + |IV| bits in size. Here, L bits denote the path each block is assigned
to, O(L) denotes the (encrypted) logical address addr (a for short) for each block, and
|IV| refers to the IV bit length. For practical deployments, we assume |IV| = 64 to avoid
overflow. In practice O(L) = L+ 2 bits for Z = 4, which means 50% of the DRAM can be
used to store real blocks. Conceptually, we can reserve a unique logical address ⊥ to mark
a bucket slot as containing a dummy block.4

ORAM initialization. One may initialize ORAM simply by zeroing-out main memory.
In that case, AES units performing bucket decryption should treat the bucket as fully
empty when the IV equals 0. Our actual implementation uses this method. The downside
of this scheme is that it requires O(N) work upfront, for every program execution. A ‘lazy
initialization’ scheme which gradually initializes each bit of memory as it is accessed the
first time is described in [69].

Security. The intuition for Path ORAM’s security is that every PosMap lookup (Step 1)
will yield a fresh random leaf to access the ORAM tree for that access. This makes the
sequence of ORAM tree paths accessed independent of the actual program address trace.
Probabilistic encryption hides which block is accessed on the path. Further, stash overflow
probability is negligible if Z ≥ 4 (proven for Z ≥ 5 [71] and shown experimentally for Z = 4
[66]).

Security in the presence of caches. Basic Path ORAM (augmented with a Merkle
Tree for integrity verification [69]) satisfies Definition 2. We don’t consider it problematic
that hardware ORAM is only invoked on LLC misses. For example, the environment Z
may be the program. In that case, the LLC “filters out” a Z-dependent subset of accesses
to ORAM, which breaks Definition 2. To fix the issue, we take Z to be the program plus the
LLC. In both cases, a function of the program’s behavior is revealed through the ORAM
access count, which leaks a logarithmic number of bits in time.

3Note that since the counter always increments by one, it is important for the ORAM controller to use
a different user session key K during each run, to avoid a replay attack.

4Our actual marks dummies with Z extra ‘valid’ bits per bucket.

86

1 0 0 1 0 0 1

PosMap
Block a2

On-chip PosMap
(i.e., root page table)

Access ORAM2 for (a2, l2)
(i.e., page table lookup)

Access ORAM1 for (a1, l1)
(i.e., page table lookup)

a0:

l2

a2

a1

l1

l2
l1

PosMap
Block a1

l0 is used to lookup
Data ORAM (ORAM0)

l0

Figure 5-2: Recursive ORAM with PosMap block sizes X = 4, making an access to the
data block with program address a0 = 10010012. Recursion shrinks the PosMap capacity
from N = 128 to 8 entries.

5.4.1 Recursive ORAM

As mentioned in previous sections, the number of entries in the PosMap scales linearly with
the number of data blocks in the ORAM. In the secure processor setting, this results in a
significant amount of on-chip storage (hundreds of KiloBytes to hundreds of MegaBytes). To
address this issue, Shi et al. [46] (Section 2.6.1) proposed a scheme called Recursive ORAM,
which has been studied in simulation for trusted hardware proposals in the author’s prior
work [69]. The basic idea is to store the PosMap in a separate ORAM, and store the new
ORAM’s (smaller) PosMap on-chip. We make an important observation that the mechanics
of Recursive ORAM are remarkably similar to multi-level page tables in traditional virtual
memory systems. We use this observation to help explain ideas and derive optimizations.

We explain Recursive ORAM through the example in Figure 5-2, which uses two levels
of recursion. The system now contains 3 separate ORAM trees: the Data ORAM, denoted
as ORam0, and two PosMap ORAMs, denoted ORam1 and ORam2. Blocks in the PosMap
ORAMs are akin to page tables. We say that PosMap blocks in ORami store X leaf labels
which refer to X blocks in ORami−1. This is akin to having X pointers to the next level
page table and X is a parameter.5

Suppose the LLC requests block a0, stored in ORam0. The leaf label l0 for block a0 is
stored in PosMap block a1 = a0/X of ORam1 (all division is floored). Like a page table,
block a1 stores leaves for neighboring data blocks (i.e., {a0, a0 + 1, . . . , a0 + X − 1} in the
case where a0 is a multiple of X). The leaf l1 for block a1 is stored in the block a2 = a0/X

2

stored in ORam2. Finally, leaf l2 for PosMap block a2 is stored in the on-chip PosMap. The
on-chip PosMap is now akin to the root page table, e.g., register CR3 on X86 systems.

To make a Data ORAM access, we must first lookup the on-chip PosMap, ORam2 and
ORam1 in that order. Thus, a Recursive ORAM access is akin to a full page table walk.
Additional PosMap ORAMs (ORam3,ORam4, . . . ,ORamH−1) may be added as needed to
shrink the on-chip PosMap further. H denotes the total number of ORAMs including the
Data ORAM in the recursion and H = log(N/p)/ logX + 1 if p is the number of entries in
the on-chip PosMap.

5Generally, each PosMap level can have a different X. We assume the same X for all PosMaps for
simplicity.

87

30 32 34 36 38 40
log2(Data ORAM capacity in Bytes)

25
30
35
40
45
50
55
60
65
70

%
 a

cc
es

s
fro

m
 P

os
M

ap

b64_pm8
b128_pm8

b64_pm256
b128_pm256

Figure 5-3: The percentage of Bytes read from PosMap ORAMs in a full Recursive ORAM
access for X = 8 (following [69]) and Z = 4. All bucket sizes are padded to 512 bits to
estimate the effect in DDR3 DRAM. The notation b64 pm8 means the ORAM block size is
64 Bytes and the on-chip PosMap is at most 8 KB.

5.4.2 Overhead of Recursion

It should now be clear that Recursive ORAM increases total ORAM access latency.
Counter-intuitively, with small block sizes, PosMap ORAMs can contribute to more than
half of the total ORAM latency as shown in Figure 5-3. For a 4 GB Data ORAM capacity,
39% and 56% of bandwidth is spent on looking up PosMap ORAMs (depending on block
size), and increasing the on-chip PosMap only slightly dampens the effect. Abrupt kinks in
the graph indicate when another PosMap ORAM is added (i.e., when H increases).

We now explain this overhead from an asymptotic perspective. We know a single Path
ORAM (without recursion) with a block size of B bits transfers O(B logN) bits per access.
In Recursive ORAM, the best strategy to minimize bandwidth is to set X to be constant,
resulting in a PosMap ORAM block size of Bp = Θ(logN). Then, the number of PosMap
ORAMs needed is Θ(logN), and the resulting bandwidth overhead becomes

O

(
logN +

HBp logN

B

)
= O

(
logN +

log3N

B

)
The first term is for Data ORAM and the second term accounts for all PosMap ORAMs
combined. In realistic processor settings, logN ≈ 25 and data block size B ≈ log2N (512
or 1024 in Figure 5-3). Thus, it is natural that PosMap ORAMs account for roughly half
of the bandwidth overhead.

In the next section, we show how insights from traditional virtual memory systems,
coupled with security mechanisms, can dramatically reduce this PosMap ORAM overhead
(Section 5.5).

5.5 Frontend

We now present several mechanisms to optimize the PosMap. The techniques in this section
only impact the Frontend (Section 5.4) and can be applied to any Position-based ORAM
Backend (such as [46, 56, 61]).

88

5.5.1 PosMap Lookaside Buffer

Given our understanding of Recursive ORAM as a multi-level page table for ORAM (Sec-
tion 5.4.1), a natural optimization is to cache PosMap blocks (i.e., page tables) so that
LLC accesses exhibiting program address locality require less PosMap ORAM accesses on
average. This idea is the essence of the PosMap Lookaside Buffer, or PLB, whose name
obviously originates from the Translation Lookaside Buffer (TLB) in conventional systems.
Unfortunately, unless care is taken, this idea totally breaks the security of ORAM. This
section develops the scheme and fixes the security holes.

High-level Idea and Ingredients

PLB Caches. The key point from Section 5.4.1 is that blocks in PosMap ORAMs contain
a set of leaf labels for consecutive blocks in the next ORAM. Given this fact, we can eliminate
some PosMap ORAM lookups by adding a hardware cache to the ORAM Frontend called
the PLB. Suppose the LLC requests block a0 at some point. Recall from Section 5.4.1
that the PosMap block needed from ORami for a0 has address ai = a0/X

i. If this PosMap
block is in the PLB when block a0 is requested, the ORAM controller has the leaf needed
to lookup ORami−1, and can skip ORami and all the smaller PosMap ORAMs. Otherwise,
block ai is retrieved from ORami and added to the PLB. When block ai is added to the
PLB, another block may have to be evicted in which case it is appended to the stash of the
corresponding ORAM.

A minor but important detail is that ai may be a valid address for blocks in multiple
PosMap ORAMs; to disambiguate blocks in the PLB, block ai is stored with the tag i||ai
where || denotes bit concatenation.

PLB (In)security. Unfortunately, since each PosMap ORAM is stored in a different
physical ORAM tree and PLB hits/misses correlate directly to a program’s access pattern,
the PosMap ORAM access sequence leaks the program’s access pattern. To show how
this breaks security, consider two example programs in a system with one PosMap ORAM
ORam1 (whose blocks store X = 4 leaves) and a Data ORAM ORam0. Program A unit
strides through memory (e.g., touches a, a+ 1, a+ 2, . . .). Program B scans memory with a
stride of X (e.g., touches a, a+X, a+2X, . . .). For simplicity, both programs make the same
number of memory accesses. Without the PLB, both programs generate the same access
sequence, namely: 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . . where 0 denotes an access to ORam0, and
1 denotes an access to ORam1. However, with the PLB, the adversary sees the following
access sequences (0 denotes an access to ORam0 on a PLB hit):

Program A : 1, 0,0,0,0, 1, 0,0,0,0, 1, 0, . . .

Program B : 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, . . .

Program B constantly misses in the PLB and needs to access ORam1 on every access.
Clearly, the adversary can tell program A apart from program B in the PLB-enabled system.

Security Fix: Unified ORAM Tree. To hide PosMap access sequence, we will change
Recursive ORAM such that all PosMap ORAMs and the Data ORAM store blocks in the
same physical tree which we denote ORamU. Organizationally, the PLB and on-chip PosMap
become the new Path ORAM Frontend, which interacts with a single ORAM Backend (Sec-

89

tion 5.4). Security-wise, both programs from the previous section access only ORamU with
the PLB and the adversary cannot tell them apart (see the end of this sub-section for more
discussion on security).

TLB vs. PLB. We remark that while a traditional TLB caches single address trans-
lations, the PLB caches entire PosMap blocks (akin to whole page tables). The address
locality exploited by both structures, however, is the same.

Detailed Construction

Blocks Stored in ORamU. Data blocks and the PosMap blocks originally from the
PosMap ORAMs (i.e., ORam1,. . . ,ORamH−1) are now stored in a single ORAM tree
(ORamU) and all accesses are made to this one ORAM tree. Both data and PosMap blocks
now have the same size. Since the number of blocks that used to be stored in some ORami

(i > 0) is X times smaller than the number of blocks stored in ORami−1, storing PosMap
blocks alongside data blocks adds at most one level to ORamU.

Each set of PosMap blocks must occupy a disjoint address space so that they can be
disambiguated. For this purpose we apply the following addressing scheme: Given data
block a0, the address for the PosMap block originally stored in ORami for block a0 is given
by i||ai, where ai = a0/X

i. This address i||ai is used to fetch the PosMap block from the
ORamU and to lookup the PosMap block in the PLB. To simplify the notation, we don’t
show the concatenated address i||ai in future sections and just call this block ai.

ORAM readrmv and append Operations. We use two new flavors of ORAM access to
support PLB refills/evictions (i.e., op in Section 5.4): read-remove and append. The idea
of these two type of accesses appeared in [69] but we describe them in more detail below.
Read-remove (readrmv) is the same as read except that it physically deletes the block in
the stash after it is forwarded to the ORAM Frontend. Append (append) adds a block to
the stash without performing an ORAM tree access. ORamU must not contain duplicate
blocks: only blocks that are currently not in the ORAM (possibly read-removed previously)
can be appended. Further, when a block is appended, the current leaf it is mapped to in
ORamU must be known so that the block can be written back to the ORAM tree during
later ORAM accesses.

PLB Architecture. The PLB is a conventional hardware cache that stores PosMap
blocks. Each PosMap block is tagged with its block address ai. On a hit, one of the
X leaves in the block is read out and remapped. PosMap blocks are read-removed and
appended from/to ORamU. Thus, each block is stored in the PLB alongside its current leaf.
The PLB itself has normal cache parameters (size, associativity), and we explore how this
space impacts performance in Section 5.7.3.

ORAM Access Algorithm

The steps to read/write a data block with address a0 are given below (shown pictorially in
Figure 5-4):

1. (PLB lookup) For i = 0, . . . ,H−2, look up the PLB for the leaf of block ai (contained
in block ai+1). If one access hits, save i and go to Step 2; else, continue. If no access

90

(Unmodified) Backend for ORamU

On-chip PosMap

leafaddr PosMap block leaves

For i=0,…,H-2: Hit for
leaf of block ai?

liai+1

PLB

PLB
hit?

1

ah-1,…,a12
For i...1:

PLB refills

From LLC: Req for addr a0

AddrGen:
Derive
a1,...aH-1
from a0

PLB lookup
loop

Figure 5-4: PLB-enabled ORAM Frontend with X = 4. Accessing the actual data block a0

(Step 3 in Section 5.5.1) is not shown.

hits for i = 0, . . . ,H − 2, look up the on-chip PosMap for the leaf of block aH−1 and
save i = H − 1.

2. (PosMap block accesses) While i ≥ 1, perform a readrmv operation to ORamU for
block ai and add that block to the PLB. If this evicts another PosMap block from the
PLB, append that block to the stash. Decrement i. (This loop will not be entered if
i = 0.)

3. (Data block access) Perform an ordinary read or write access to ORamU for block
a0.

Importantly, aside from adding support for readrmv and append, the above algorithm re-
quires no change to the ORAM Backend.

5.5.2 PosMap Compression

We now show how to compress the PosMap using pseudorandom functions (PRFs, intro-
duced below). The high level goal is to store more leaves per PosMap block, thereby reducing
the number of Recursive PosMaps.

This scheme by itself does not dramatically improve performance (nor did we implement
it in hardware). We include it for completeness, and because it improves the PLB scheme
from Section 5.5.1, and helps motivate the integrity scheme presented in Section 5.5.3.

Background: PRFs

A pseudorandom Function, or PRF, family y = PRFK(x) is a collection of efficiently-
computable functions, where K is a random secret key. A PRF guarantees that anyone
who does not know K (even given x) cannot distinguish y from a truly random bit-string
in polynomial time with non-negligible probability [8]. For the rest of the chapter, we
implement PRFK() using AES-128.

91

Construction

Main Idea. Following previous notation, suppose each PosMap block contains X leaf
labels for the next ORAM. For example, some PosMap block contains leaf labels for the
blocks with addresses {a, a+ 1, · · · , a+X − 1}. With the compressed PosMap scheme,
the PosMap block’s contents are replaced with an α-bit group counter (GC) and X β-bit
individual counters (IC):

GC || IC0 || IC1 || IC2 || · · · || ICX−1

With this format, we can then compute the current leaf label for block a + j through
PRFK(a + j||GC||ICj) mod 2L. Note that with this technique, the on-chip PosMap is
unchanged and still stores an uncompressed leaf per entry.

Block Remap. For PRFK() to generate a uniform random sequence of leaves, we must
ensure that each GC||ICj strictly increases (i.e., the PRFK() must never see the same input
twice). This is achieved by the following modified remapping operation:

When remapping block a+j, the ORAM controller first increments its individual counter
ICj . If the individual counter rolls over (becomes zero again), the ORAM controller will
increment the group counter GC. This changes the leaf label for all the blocks in the group,
so we have to read each block through the Backend, reset its individual counter and remap
it to the updated path given by PRFK(a+j||GC+1||0) mod 2L. In the worst-case where the
program always requests the same block in a group, we need to reset X individual counters
in the group every 2β accesses.

We remark that this reset operation is very expensive for baseline Recursive ORAM
(Section 5.4.1). In that case, the ORAM controller must make X full Recursive ORAM
accesses to reset the individual counters in a certain PosMap ORAM block. Otherwise,
it reveals that individual counters have overflown in that certain ORAM, which is related
to the access pattern. On the other hand, using a single Unified ORAM tree as we do to
support the PLB (Section 5.5.1) reduces this to X accesses to ORamU.

System Impact and the PLB. The compressed PosMap format can be used with or
without a PLB and, like the PLB, does not require changes to the Backend. That is, PosMap
blocks are stored in their compressed format inside the PLB and ORAM tree/Backend.
Uncompressed leaves are generated using the PRF on-demand by the Frontend. Each block
stored in the Backend or ORAM tree is still stored alongside its uncompressed leaf label (a
one time cost per block), to facilitate ORAM evictions.

Benefit of Compressed Format

Our scheme compresses the PosMap block by setting α, β and X such that α/X + β < L,
implying that the (amortized) bits needed to store each leaf has decreased. A largerX means
a fewer number of PosMap ORAMs are needed as discussed in Section 5.4.1. Further, this
scheme improves the PLB’s hit rate (Section 5.5.1) since more blocks are associated with a
given PosMap block.

For concreteness, suppose the ORAM block size in bits is B = 512. The compressed
PosMap scheme enables X ′ = 32 by setting α = 64 and β = 14, regardless of ORAM tree

92

depth L.6 In this configuration, the worst case block remap overhead is X ′/2β = .2%. By
comparison, the original PosMap representation (up to Section 5.5.1) only achieves X = 16
for ORAM tree depths of L = 17 to L = 32.

Theoretic improvement. The compressed PosMap also improves recursive Path ORAM
(and Ring ORAM) bandwidth asymptotically by a log logN factor for certain block sizes.
Details can be found in [86], Section 5.4.

5.5.3 PosMap MAC

We now describe a novel and simple integrity verification scheme for ORAM called PosMap
MAC, or PMMAC, that is facilitated by our PosMap compression technique from the pre-
vious section. PMMAC achieves asymptotic improvements in hash bandwidth over prior
schemes and is easy to implement in hardware.

Background: MACs

Suppose two parties Alice and Bob share a secret K and Alice wishes to send messages
to Bob over an insecure channel where data packets di (i = 0, . . .) can be tampered by
some adversary Eve. To guarantee message authenticity, Alice can send Bob tuples (hi, di)
where hi = MACK(di) and MACK() is a Message Authentication Code (e.g., a keyed hash
function [12]). For the rest of the chapter, we implement MACK() using SHA3-224.

The MAC scheme guarantees that Eve can only produce a message forgery (h?, d?)
with negligible probability, where h? = MACK(d?) and d? was not transmitted previously
by Alice. In other words, without knowing K, Eve cannot come up with a forgery for a
message whose MAC it has never seen.

Importantly, Eve can still perform a replay attack, violating freshness, by replacing
some (hi, di) with a previous legitimate message (hj , dj). A common fix for this problem is
to embed a non-repeating counter in each MAC [32]. Suppose Alice and Bob have shared
access to an oracle that, when queried, returns the number of messages sent by Alice but not
yet checked by Bob. Then, for message i, Alice transmits (h′i, di) where h′i = MACK(i||di).
Eve can no longer replay an old packet (h′j , dj) because MACK(i||dj) 6= MACK(j||dj) with
overwhelming probability. The challenge in implementing these schemes is that Alice and
Bob must have access to a shared, tamper-proof counter.

Main Idea and Non-Recursive PMMAC

Clearly, any memory system including ORAM that requires integrity verification can im-
plement the replay-resistant MAC scheme from the previous section by storing per-block
counters in a tamper-proof memory. Unfortunately, the size of this memory is even larger
than the original ORAM PosMap making the scheme untenable. We make a key observa-
tion that if PosMap entries are represented as non-repeating counters, as is the case with the
compressed PosMap (Section 5.5.2), we can implement the replay-resistant MAC scheme
without additional counter storage.

We first describe PMMAC without recursion and with simple/flat counters per-block
to illustrate ideas. Suppose block a which has data d has access count c. Then, the
on-chip PosMap entry for block a is c and we generate the leaf l for block a through

6We restrict X ′ to be a power of two to simplify the PosMap block address translation from Section 5.4.1.

93

l = PRFK(a||c) mod 2L (i.e., same idea as Section 5.5.2). Block a is written to the Backend
as the tuple (h, d) where

h = MACK(c || a || d)

When block a is read, the Backend returns (h?, d?) and PMMAC performs the following
check to verify authenticity/freshness:

assert h? == MACK(c || a || d?)

where ? denotes values that may have been tampered with. After the assertion is checked,
c is incremented for the returned block.

Security follows if it is infeasible to tamper with block counters and no counter value for
a given block is ever repeated. The first condition is clearly satisfied because the counters
are stored on-chip. We can satisfy the second condition by making each counter is wide
enough to not overflow (e.g., 64 bits wide).

As with our previous mechanisms, PMMAC requires no change to the ORAM Backend
because the MAC is treated as extra bits appended to the original data block.7 As with
PosMap compression, the leaf currently associated with each block in the stash/ORAM tree
is stored in its original (uncompressed) format.

Adding Recursion and PosMap Compression

To support recursion, PosMap blocks (including on-chip PosMap entries) may contain ei-
ther a flat (64 bits) or compressed counter (Section 5.5.2) per next-level PosMap or Data
ORAM block. As in the non-Recursive ORAM case, all leaves are generated via a PRF. The
intuition for security is that the tamper-proof counters in the on-chip PosMap form the root
of trust and then recursively, the PosMap blocks become the root of trust for the next level
PosMap or Data ORAM blocks. Note that in the compressed scheme, the α and β compo-
nents of each counter are already sized so that each block’s count never repeats/overflows.
We give a formal analysis for security with Recursive ORAM in Section 5.5.4.2.

For realistic parameters, the scheme that uses flat counters in PosMap blocks incurs
additional levels of recursion. For example, using B = 512 and 64 bit counters we have
X = B/64 = 8. Importantly, with the compressed PosMap scheme we can derive each block
counter from GC and ICj (Section 5.5.2) without adding levels of recursion or extra counter
storage.

Key Advantage: Hash Bandwidth and Parallelism

Combined with PosMap compression, the overheads for PMMAC are the bits added to each
block to store MACs and the cost to perform cryptographic hashes on blocks. The extra
bits per block are relatively low-overhead — the ORAM block size is usually 64-128 Bytes
and each MAC may be 80-128 bits depending on the security parameter.

To perform a non-Recursive ORAM access (i.e., read/write a single path), Path ORAM
reads/writes O(logN) blocks from external memory. Merkle tree constructions [68, 72] need
to integrity verify all the blocks on the path to check/update the root hash. Crucially, our
PMMAC construction only needs to integrity verify (check and update) 1 block — namely
the block of interest — per access, achieving an asympotic reduction in hash bandwidth.

7That is, the MAC is encrypted along with the block when it is written to the ORAM tree.

94

To give some concrete numbers, assume Z = 4 block slots per ORAM tree bucket
following [71, 66]. Then, there are Z ∗ (L + 1) blocks per path in ORAM tree, and our
construction reduces hash bandwidth by 68× for L = 16 and by 132× for L = 32. We did
not include the cost of reading sibling hashes for the Merkle tree for simplicity.

Integrity verifying only a single block also prevents a serialization bottleneck present
in Merkle tree schemes. Consider the scheme from [68], a scheme optimized for Path
ORAM. Each hash in the Merkle tree node must be recomputed based on the contents of
the corresponding ORAM tree bucket and its child hashes, and is therefore fundamentally
sequential. If this process cannot keep up with memory bandwidth, it will be the system’s
performance bottleneck.

Adding Encryption: Subtle Attacks and Defenses

Up to this point we have discussed PMMAC in the context of providing integrity only.
ORAM must also apply a probabilistic encryption scheme (we assume AES counter mode
as done in [69]) to all data stored in the ORAM tree. In this section we first show how
the encryption scheme of [69] breaks under active adversaries because the adversary is able
to replay the one-time pads used for encryption. ([69] presented an integrity verification
scheme based on Merkle trees to prevent such attacks.) We show how PMMAC doesn’t
prevent this attack by default and then provide a fix that applies to PMMAC.

We first show the scheme used by [69] for reference: Each bucket in the ORAM tree
contains, in addition to Z encrypted blocks, a seed used for encryption (the BucketSeed)
that is stored in plaintext. (BucketSeed is synonymous to the “counter” in AES counter
mode.) If the Backend reads some bucket (Step 2 in Section 5.4) whose seed is BucketSeed,
the bucket will be re-encrypted and written back to the ORAM tree using the one-time pad
(OTP) AESK(BucketID||BucketSeed + 1||i), where i is the current chunk of the bucket
being encrypted.

The above encryption scheme breaks privacy under PMMAC because PMMAC doesn’t
integrity verify BucketSeed. For a bucket currently encrypted with the pad P =
AESK(BucketID||BucketSeed||i), suppose the adversary replaces the plaintext bucket seed
to BucketSeed− 1. This modification will cause the contents of that bucket to decrypt to
garbage, but won’t trigger an integrity violation under PMMAC unless bucket BucketID
contains the block of interest for the current access. If an integrity violation is not trig-
gered, due to the replay of BucketSeed, that bucket will next be encrypted using the same
one-time pad P again.

Replaying one-time pads obviously causes security problems. If a bucket re-encrypted
with the same pad P contains plaintext data D at some point and D′ at another point, the
adversary learns D⊕D′. If D is known to the adversary, the adversary immediately learns
D′ (i.e., the plaintext contents of the bucket).

The fix for this problem is relatively simple: To encrypt chunk i of a bucket about to
be written to DRAM, we will use the pad AESK(GlobalSeed||i), where GlobalSeed is now
a single monotonically increasing counter stored in the ORAM controller in a dedicated
register (this is similar to the global counter scheme in [34]). When a bucket is encrypted,
the current GlobalSeed is written out alongside the bucket as before and GlobalSeed (in
the ORAM controller) is incremented. Now it’s easy to see that each bucket will always be
encrypted with a fresh OTP which defeats the above attack.

95

5.5.4 Security Analysis

We now give a security analysis for the PLB and PMMAC schemes.

5.5.4.1 PosMap Lookaside Buffer

We now give a proof sketch that our PLB+Unified ORAM tree construction achieves satisfies
Definition 2. To do this, we use the fact that the PLB interacts with a normal Path ORAM
Backend. We make the following observations, which we will use to argue security:

Observation 3. If all leaf labels li used in {read, write, readrmv} calls to Backend are
random and independent of other lj for i 6= j, the Backend achieves the security of the
original Path ORAM (Section 5.4).

Observation 4. If an append is always preceded by a readrmv, stash overflow probability
does not increase (since the net stash occupancy is unchanged after both operations).

Theorem 3. The PLB+Unified ORAM tree scheme reduces to the security of the ORAM
Backend.

Proof: The PLB+Unified ORAM Frontend calls Backend in two cases: First, if there
is a PLB hit the Backend request is for a PosMap or Data block. In this case, the leaf l
sent to Backend was in a PosMap block stored in the PLB. Second, if all PLB lookups miss,
the leaf l comes from the on-chip PosMap. In both cases, leaf l was remapped the instant
the block was last accessed. We conclude that all {read, write, readrmv} commands to
Backend are to random/independent leaves and Observation 3 applies. Further, an append
command can only be caused by a PLB refill which is the result of a readrmv operation.
Thus, Observation 4 applies.

Of course, the PLB may further influence the ORAM trace length (the number of calls
to Access for a given Z in Section 2.2) by filtering out some calls to Backend for PosMap
blocks. Now the trace length is determined by, and thus reveals, the sum of LLC misses and
PLB misses. We reiterate that processor cache and the PLB are both on-chip and outside
the ORAM Backend, so adding a PLB is the same (security-wise) to adding more processor
cache: in both cases, only the total number of ORAM accesses leaks. By comparison, using
a PLB without a Unified ORAM tree leaks the set of PosMap ORAMs needed on every
Recursive ORAM access, which makes leakage grow linearly with the trace length.

5.5.4.2 PosMap MAC (Integrity)

We show that breaking our integrity verification scheme is as hard as breaking the underlying
MAC. Thus, the scheme attains the integrity definition from Section 2.3. First, we have the
following observation:

Observation 5. If the first k − 1 address and counter pairs (ai, ci)’s the Frontend receives
have not been tampered with, then the Frontend seeds a MAC using a unique (ak, ck), i.e.,
(ai, ci) 6= (ak, ck) for 1 ≤ i < k. This further implies (ai, ci) 6= (aj , cj) for all 1 ≤ i < j ≤ k.

This property can be seen directly from the algorithm description, with or without
the PLB and/or PosMap compression. For every a, we have a dedicated counter, sourced
from the on-chip PosMap or the PLB, that increments on each access. If we use PosMap
compression, each block counter will either increment (on a normal access) or jump to the

96

next multiple of the group counter in the event of a group remap operation. Thus, each
address and counter pair will be different from previous ones. We now use Observation 5
to prove the security of our integrity scheme.

Theorem 4. Breaking the PMMAC scheme is as hard as breaking the underlying MAC
scheme.

Proof: We proceed via induction on the number of accesses. In the first ORAM access,
the Frontend uses (a1, c1), to call Backend for (h1, d1) where h1 = MACK(c1||a1||d1). (a1, c1)
is unique since there are no previous (ai, ci)

′s. Note that a1 and c1 cannot be tampered with
since they come from the Frontend. Thus, producing a forgery (h′1, d

′
1) where d′1 6= d1 and

h′1 = MACK(c1||a1||d′1) is as hard as breaking the underlying MAC. Suppose no integrity
violation has happened and Theorem 4 holds up to access n − 1. Then, the Frontend sees
fresh and authentic (ai, ci)’s for 1 ≤ i ≤ n − 1. By Observation 5, (an, cn) will be unique
and (ai, ci) 6= (aj , cj) for all 1 ≤ i < j ≤ n. This means the adversary cannot perform
a replay attack (Section 5.5.3) because all (ai, ci)’s are distinct from each other and are
tamper-proof. It is also hard to generate a valid MAC with unauthentic data without the
secret key. Being able to produce a forgery (h′i, d

′
i) where d′i 6= di and h′i = MACK(ci||ai||d′i)

means the adversary can break the underlying MAC.

5.5.4.3 PosMap MAC (Privacy)

The system’s privacy guarantees require certain assumptions under PMMAC because PM-
MAC is an authenticate-then-encrypt scheme [22]. Since the integrity verifier only checks
the block of interest returned to the Frontend, other (tampered) data on the ORAM tree
path will be written to the stash and later be written back to the ORAM tree. For exam-
ple, if the adversary tampers with the block-of-interest’s address bits, the Backend won’t
recognize the block and won’t be able to send any data to the integrity verifier (clearly an
error). The adversary may also coerce a stash overflow by replacing dummy blocks with
real blocks or duplicate blocks along a path.

To address these cases, we have to make certain assumptions about how the Backend
will possibly behave in the presence of tampered data. We require a correct implementation
of the ORAM Backend to have the following property:

Property 1. If the Backend makes an ORAM access, it only reveals to the adversary (a)
the leaf sent by the Frontend for that access and (b) a fixed amount of encrypted data to be
written back to the ORAM tree.

If Property 1 is satisfied, it is straightforward to see that any memory request address
trace generated by the Backend is indistinguishable from other traces of the same length.
That is, the Frontend receives tamper-proof responses (by Theorem 4) and therefore pro-
duces independent and random leaves. Further, the global seed scheme in Section 5.5.3
trivially guarantees that the data written back to memory gets a fresh pad.

If Property 1 is satisfied, the system can still leak the ORAM request trace length;
i.e., when an integrity violation is detected, or when the Backend enters an illegal state.
Conceptually, an integrity violation generates an exception that can be handled by the
processor. When that exception is generated and how it is handled can leak some privacy.
For example, depending on how the adversary tampered with memory, the violation may
be detected immediately or after some period of time depending on whether the tampered
bits were of interest to the Frontend. Quantifying this leakage is outside our scope, but we

97

Level L = 3

Level 2

Level 1

Level 0

Leaf 1 Leaf 2 = 8
L

Figure 5-5: Illustration of subtree locality.

remark that this level of security matches our combined privacy+integrity definition from
Section 2.3.

5.6 Backend

We now present several mechanisms to improve the ORAM Backend’s throughput when
memory bandwidth is high. The techniques in this section only impact the Backend (Sec-
tion 5.4) and can be applied regardless of optimizations from the previous section.

5.6.1 Building Tree ORAMs on DRAM

To start, we propose a simple technique to improve memory throughput for Tree ORAMs,
like Path ORAM, implemented over DRAM. The issue is that to be secure, ORAM accesses
inherently have low spatial locality in memory. Yet, achievable throughput in DRAM
depends on spatial locality: bad spatial locality means more DRAM row buffer misses which
means time delay between consecutive accesses. (We will assume an open page policy on
DRAM for the rest of the thesis.) Indeed, when näıvely storing the Path ORAM tree into
an array, two consecutive buckets along the same path hardly have any locality, and it can
be expected that row buffer hit rate would be low. The following technique can improve
Path ORAM’s performance on DRAM.

We pack each subtree with k levels together, and treat them as the nodes of a new tree,
a 2k-ary tree with

⌈
L+1
k

⌉
levels. Figure 5-5 is an example with k = 2. We adopt the address

mapping scheme in which adjacent addresses first differ in channels, then columns, then
banks, and lastly rows. We set the node size of the new tree to be the row buffer size times
the number of channels, which together with the original bucket size determines k.

Performance impact. With commercial DRAM DIMMs, k = 6 or k = 7 is possible
which allows the ORAM to maintain 90 − 95% of peak possible DRAM bandwidth for
every parameterization we later evaluate. Without the technique, achievable bandwidth
may be < 50% depending on the data block size, recursion scheme used, number of DRAM
channels, and other parameters. We note that Phantom was able to achieve 94% of peak
DRAM bandwidth [66] without the subtree packing technique as there was sufficient spatial
locality given their large 4 KByte block size.

98

F0

C0

E

D1

1

A1

B0

Stash

Leaf 0 (b0) Leaf 1 (b1)

Root (b3)

C

A1

0

E

D1

1

A1

B0

Stash

C

A1

0

E

D1

1

B0

A1

B0

Stash

Assigned
leaf

Block
ID

Initial state Step 1 Step 2

b2

Figure 5-6: Stash eviction example for Z = 2 slots per bucket. Buckets are labeled b0, b1, . . .
etc. We evict along the path to leaf 1, which includes buckets b1, b2 and b3. Each block
is represented as a tuple (path, block ID), where ‘path’ indicates which path the block is
mapped to.

5.6.2 Stash Management

As mentioned in Section 5.1.1, deciding where to evict each block in the stash is a challenge
for Path ORAM hardware designs. Conceptually, this operation tries to push each block in
the stash as deep (towards the leaves) into the ORAM tree as possible while keeping to the
invariant that blocks can only live on the path to their assigned leaf.

Figure 5-6 works out a concrete example for the eviction logic. In Step 1 of Figure 5-6,
block A is mapped to leaf 1 and therefore may be placed in buckets b1, b2, and b3. It gets
placed in bucket b2 because bucket b1 is full and b2 is deeper than b3. In Step 2, block B
could be placed in b2 and b3 and gets placed in b3 because b2 is full (since block A moved
there previously).

To decide where to evict blocks, Phantom constructs an FPGA-optimized heap sort on
the stash [66]. Unfortunately, this approach creates a performance bottleneck because the
initial step of sorting the stash takes multiple cycles per block. For example, in the Phantom
design, adding a block to the heap takes 11 cycles (see Appendix A of [66]). If the ORAM
block size and memory bandwidth is such that writing a block to memory takes less than
11 cycles, system performance is bottlenecked by the heap-sort-based eviction logic and not
by memory bandwidth.8

In this section, we propose a new and simple stash eviction algorithm based on bit-level
hardware tricks that takes a single cycle to evict a block and can be implemented efficiently
in FPGA logic. This eliminates the above performance overhead for any practical block
size and memory bandwidth.

PushToLeaf With Bit Tricks

Our proposal, the PushToLeaf() routine, is shown in Algorithm 6. PushToLeaf(Stash, l) is
run once during each ORAM access and populates an array of pointers occ. Stash can
be thought of as a single-ported RAM that stores data blocks and their metadata. Once
populated, occ[i] points to the block in Stash that will be written back to the i-th position
along P(l). Thus, to complete the ORAM eviction, a hardware state machine sends each
block given by Stash[occ[i]] for i = 0, . . . , (L + 1) ∗ Z − 1 to be encrypted and written to
external memory.

8Given the 1024 bits/cycle memory bandwidth assumed by the Phantom system, the only way for Phan-
tom to avoid this bottleneck is to set the ORAM block size to be ≥ 1408 Bytes.

99

Notations. Suppose l is the current leaf being accessed. We represent leaves as L-bit
words which are read right-to-left: the i-th bit indicates whether path l traverses the i-th
bucket’s left child (0) or right child (1). On Line 3, we initialize each entry of occ to ⊥, to
indicate that the eviction path is initially empty. Occupied is an L+ 1 entry memory that
records the number of real blocks that have been pushed back to each bucket so far.

Algorithm 6 Bit operation-based stash scan. 2C stands for two’s complement arithmetic.

1: Inputs: The current leaf l being accessed
2: function PushToLeaf(Stash, l)
3: occ ← {⊥ for i = 0, . . . , (L+ 1) ∗ Z − 1}
4: Occupied ← {0 for i = 0, . . . , L}
5: for i← 0 to T + L ∗ Z − 1 do
6: (a, li, D) ← Stash[i] . Leaf assigned to i-th block
7: level ← PushBack(l, li,Occupied)
8: if a 6= ⊥ and level > −1 then
9: offset ← level ∗ Z + Occupied[level]

10: occ[offset] ← i
11: Occupied[level] ← Occupied[level] + 1
12: end if
13: end for
14: end function
15: function PushBack(l, l′,Occupied)
16: t1 ← (l ⊕ l′)||0 . Bitwise XOR
17: t2 ← t1 & −t1 . Bitwise AND, 2C negation
18: t3 ← t2 − 1 . 2C subtraction

19: full ← {(Occupied[i]
?
= Z) for i = 0 to L}

20: t4 ← t3 & ∼full . Bitwise AND/negation
21: t5 ← reverse(t4) . Bitwise reverse
22: t6 ← t5 & −t5
23: t7 ← reverse(t6)

24: if t7
?
= 0 then

25: return −1 . Block is stuck in stash
26: end if
27: return log2(t7) . Note: t7 must be one-hot
28: end function

Details for PushBack(). The core operation in our proposal is the PushBack() subroutine,
which takes as input the path l we are evicting to, the path l′ a block in the stash is mapped
to, and outputs which level on path l that block should get written back to. In Line 16, t1
represents in which levels the paths P (l) and P (l′) diverge. In Line 17, t2 is a one-hot bus
where the set bit indicates the first level where P (l) and P (l′) diverge. Line 18 converts
t2 to a vector of the form 000 . . . 111, where set bits indicate which levels the block can be
pushed back to. Line 20 further excludes buckets that already contain Z blocks (due to
previous calls to PushBack()). Finally, Lines 21-23 turn all current bits off except for the
left-most set bit, which now indicates the level furthest towards the leaves that the block
can be pushed back to.

Security. We remark that while our stash eviction procedure is highly-optimized for hard-
ware implementation, it is algorithmically equivalent to the original stash eviction procedure

100

described in Path ORAM [71]. Thus, security follows from the original Path ORAM anal-
ysis.

Hardware Implementation and Pipelining

Algorithm 6 runs T + (L+ 1)Z iterations of PushBack() per ORAM access, where T is the
stash size not counting the path length. In hardware, we pipeline Algorithm 6 in three
respects to hide its latency:

First, the PushBack() circuit itself is pipelined to have 1 block / cycle throughput.
PushBack() itself synthesizes to simple combinational logic where the most expensive op-
eration is two’s complement arithmetic of (L+ 1)-bit words (which is still relatively cheap
due to optimized FPGA carry chains). reverse() costs no additional logic in hardware. The
other bit operations (including log2(x) when x is one-hot) synthesize to LUTs. To meet
our FPGA’s clock frequency, we had to add 2 pipeline stages after Lines 17 and 18. An
important subtlety is that we don’t add pipeline stages between when Occupied is read and
updated. Thus, a new iteration of PushBack() can be started every cycle.

Second, as soon as the leaf for the ORAM access is determined (i.e., concurrent with
Step 2 in Section 5.4), blocks already in the stash are sent to the PushBack() circuit “in the
background”. Following the previous paragraph, T + 2 is the number of cycles it takes to
perform the background scan in the worst case.

Third, after cycle T+2, we send each block read on the path to the PushBack() circuit as
soon as it arrives from external memory. Since a new block can be processed by PushBack()
each cycle, eviction logic will not be the system bottleneck.

5.6.3 Reducing Encryption Bandwidth

Another serious problem for ORAM design is the area needed for encryption units. Recall
from Section 5.4 that all data touched by ORAM must get decrypted and re-encrypted to
preserve privacy. Encryption bandwidth hence scales with memory bandwidth and quickly
becomes the area bottleneck. To address this problem we now propose a new ORAM design,
which we call RAW ORAM, optimized to minimize encryption bandwidth at the algorithmic
and engineering level.

RAW ORAM Algorithm

RAW ORAM is based on Ring ORAM and splits ORAM Backend operations into two fla-
vors: ReadPath and EvictPath accesses. ReadPath operations perform the minimal amount
of work needed to service a client processor’s read/write requests (i.e., last level cache
misses/writebacks) and EvictPath accesses perform evictions (to empty the stash) in the
background. To reduce the number of encryption units needed by ORAM, we optimize
ReadPath accesses to only decrypt the minimal amount of data needed to retrieve the block
of interest, as opposed to the entire path. EvictPath accesses require more encryption/de-
cryption, but occur less frequently. We now describe the protocol in detail:

Parameter A. Like Ring ORAM, RAW ORAM uses the parameter A, set at system
boot time. For a given A, RAW ORAM obeys a strict schedule that the ORAM controller
performs one EvictPath access after every A reads.

101

Block
Addresses

Block
Leaves

IV2

RAW
ORAM

Path
ORAM

Read from memory Read from memory & decrypted

IV1

Encrypted under IV2

RAW ORAM
Bucket Header

Requested
block

Z * L = 160 bits

B = 512 bits

Unused space



Figure 5-7: Data read vs. data decrypted on a RAW ORAM ReadPath (left) and Path
ORAM access (right) with Z = 3. IV1 and IV2 are initialization vectors used for encryption.

Read Path. ReadPath operations read an ORAM tree path (as does Path ORAM) but
only perform the minimal number of on-chip operations (e.g., decryption) needed to decryp-
t/move the requested block into the stash and logically remove that block from the ORAM
tree. This corresponds to Steps 2-4 in Section 5.4 with three important changes. First, we
will only decrypt the minimum amount of information needed to find the requested block
and add it to the stash. Precisely, we decrypt the Z block addresses stored in each bucket
header (Section 5.4), to identify the requested block, and then decrypt the requested block
itself (if it is found). The amount of data read vs. decrypted is illustrated in Figure 5-7.
Note that unlike Ring ORAM, we read the whole path as opposed to a random block in
each bucket. This was done to keep the design simple.

Second, we add only the requested block to the stash (as opposed to the whole path).
Third, we update the bucket header containing the requested block to indicate a block was
removed (e.g., by changing its program address to ⊥), and re-encrypt/write back to memory
the corresponding state for each bucket. To re-encrypt header state only, we encrypt that
state with a second initialization vector denoted IV2. The rest of the bucket is encrypted
under IV1. A strawman design may store both IV1 and IV2 in the bucket header (as in
Figure 5-7). We describe an optimized design at the end of this section.

Evict Path. EvictPath performs a normal but dummy Path ORAM access to a static
sequence of leaves corresponding to the reverse lexicographic order of paths (as with Ring
ORAM, Chapter 3). By dummy access, we simply mean reading and evicting a path to
push out blocks in the stash that have accumulated over the A ReadPath operations.

Security. The security analysis is very similar (and simpler, even) to that in Ring ORAM.
ReadPath accesses always read paths in the ORAM tree at random, just like Path ORAM.
Further, EvictPath accesses occur at predetermined times and are to predictable/data-
independent paths.

Performance and Area Characteristics

Assume for simplicity that the bucket header is the same size as a data block (which matches
our evaluation). Then, each ReadPath access reads (L + 1)Z blocks on the path, but only
decrypts 1 block; it also reads/writes and decrypts/re-encrypts the L + 1 headers/blocks.
An EvictPath reads/writes and decrypts/re-encrypts all the (L+1)(Z+1) blocks on a path.

102

2 4 6 8 10
Relative encryption overhead

8

10

12

Re
la

tiv
e

m
em

or
y

ov
er

he
ad

Z2A1

Z3A2Z4A3Z5A5

Z6A6
Z7A8

Z4

Figure 5-8: The relative memory and encryption bandwidth overhead of RAW ORAM with
different parameter settings.

Thus, in RAW ORAM the relative memory bandwidth per bucket is Z + 2 + 2(Z+1)
A , and

the relative encryption bandwidth per bucket is roughly 1 + 2(Z+1)
A .

The remaining question for RAW ORAM is: what A and Z combinations result in
a stash that will not overflow, yet at the same time minimize encryption and memory
bandwidth? In Figure 5-8, we visualize the relative memory and encryption bandwidth
of RAW ORAM with different parameter settings that have been shown (in Section 3.6)
to give negligible stash overflow probability. We find Z = 5, A = 5 (Z5A5) to be a good
trade-off as it achieves 6% memory bandwidth improvement and ∼ 3× encryption reduction
over Path ORAM. We will use Z5A5 in the evaluation and remark that this configuration
requires T = 64 for a 2−80 stash overflow probability.

Exploiting Path Eviction Predictability

Despite RAW ORAM’s theoretic area savings for encryption units, careful engineering is
needed to prevent that savings from turning into performance loss. The problem is that
by reducing encryption units (i.e., AES) to provide “just enough” bandwidth for ReadPath
accesses, we are forced to wait during EvictPath accesses for that reduced number of AES
units to finish decrypting/re-encrypting the entire path. Further, since all AES IVs are
stored externally with each bucket, the AES units can’t start working on a new EvictPath
until that access starts.

To remove the above bottleneck while maintaining the AES unit reduction, we make the
following key observation: Since EvictPath operations occur in a predictable, fixed
order, we can determine exactly how many times any bucket along any path
has been written in the past.

Suppose that, as in Section 5.6, G is a counter that tracks the number of EvictPath
accesses made so far. Also as before, we know the next leaf (and its corresponding path)
being evicted is given precisely by G mod 2L. (We allocate a 64-bit counter in the ORAM
controller to store G.) Now, due to load-balancing nature of reverse lexicographic order, if
P(l)[i] has been evicted to gi times in the past, then P(l)[i + 1] has been evicted gi+1 =
b(gi + 1− li)/2c where li is the i-th bit in leaf l. This can be easily computed in hardware
as gi+1 = (gi +∼li)� 1, where � is a right bit-shift and ∼ is bit-wise negation.

Using eviction predictability, we will pre-compute the AES-CTR initialization vector
IV1. Simply put, this means the AES units can do all decryption/encryption work for
EvictPath accesses “in the background” during concurrent ReadPath accesses.

To decrypt the i-th 128-bit ciphertext chunk of the bucket with unique ID BucketID

103

at level j in the tree, we XOR it with the following mask: AESK(gj || BucketID || i) where
gj is the bucket eviction count defined above. Correspondingly, re-encryption of that chunk
is done by generating a new mask where the write count has been incremented by 1. We
note that with this scheme, gj takes the place of IV1 and since gj can be derived internally,
we need not store it externally.

On both ReadPath and EvictPath operations, we must decrypt the program addresses
and valid bits of all blocks in each bucket. For this we may apply the global counter scheme
from Section 5.5.3 or use the mask as in Ren et al. [69], namely AESK(IV2 || BucketID || i),
where IV2 is stored externally as part of each bucket’s header.

At the implementation level, we time-multiplex an AES core between generating masks
for IV1 and IV2. The AES core prioritizes IV2 operations; when the core is not servicing IV2

requests, it generates masks for IV1 in the background and stores them in a FIFO.

5.7 Evaluation (Simulation)

In this section we will thoroughly evaluate our proposals in software simulation.

5.7.1 Methodology

We perform simulations using Graphite [39] with the processor parameters listed in Ta-
ble 5.1. Parameters are chosen to approximate a mid-range system. The core and cache
model remain the same in all experiments; unless otherwise stated, we assume the ORAM
parameters from the table. We use a subset of SPEC06-int benchmarks [31] with reference
inputs. All workloads are warmed up over 1 billion instructions and then run for 3 billion
instructions. Averages reported are geometric means.

We derive AES/SHA3 latency, Frontend and Backend latency directly from our hardware
prototype (Sections 5.8-5.10). Unless otherwise specified, the simulations assume a basic
Path ORAM Backend as opposed to RAW ORAM. Frontend latency is the time to evict
and refill a block from the PLB (Section 5.5.1) and occurs at most once per Backend call.
Backend latency (approximately) accounts for the cycles lost due to hardware effects such
as serializers/buffer latency/etc and is added on top the time it takes to read/write an
ORAM tree path in DRAM, which is given in Section 5.7.2. Both of these delays are small
relative to ORAM access latency, indicating the hardware prototype is mostly bottlenecked
by available memory bandwidth (our intent).

We model DRAM and ORAM accesses on top of commodity DRAM using DRAM-
Sim2 [45] and its default DDR3 micron configuration with 8 banks, 16384 rows and 1024
columns per row. Each DRAM channels runs at 667 MHz DDR with a 64-bit bus width and
provides ∼ 10.67 GB/s peak bandwidth. All ORAM configurations assume 50% DRAM
utilization (meaning a 4 GB ORAM requires 8 GB of DRAM) and use the subtree layout
scheme from [69] to achieve nearly peak DRAM bandwidth.

5.7.2 ORAM Latency and DRAM Channel Scalability

ORAM latency is sensitive to DRAM bandwidth and for this reason we explore how chang-
ing the channel count impacts ORAM access time in Table 5.2. ORAM Tree latency refers
to the time needed for the Backend to read/write a path in the Unified ORAM tree, given
the ORAM parameters in Table 5.1. All latencies are in terms of processor clock cycles, and

104

Table 5.1: Processor configuration for evaluation.

Core, on-chip cache and DRAM

core model in order, single issue, 1.3 GHz
add/sub/mul/div 1/1/3/18 cycles
fadd/fsub/fmul/fdiv 3/3/5/6 cycles
L1 I/D cache 32 KB, 4-way, LRU
L1 data + tag access time 1 + 1 cycles
L2 Cache 1 MB, 16-way, LRU
L2 data + tag access time 8 + 3 cycles
cache line size 64 B

Path ORAM/ORAM controller

ORAM controller clock frequency 1.26 GHz
data block size 64 B
data ORAM capacity 4 GB (N = 226)
block slots per bucket (Z) 4
AES-128 latency 21 cycles (Section 5.8)
SHA3-224 latency (PMMAC) 18 cycles (Section 5.8)
Frontend latency 20 cycles (Section 5.8)
Backend latency 30 cycles (Section 5.8)

Memory controller and DRAM

DRAM channels 2 (∼ 21.3 GB peak bandwidth)
DRAM latency given by DRAMSim2 [45]

Table 5.2: ORAM access latency by DRAM channel count.

DRAM channel count 1 2 4 8

ORAM Tree latency (cycles) 2147 1208 697 463

represent an average over multiple accesses. For reference, a DRAM access for an insecure
system without ORAM takes on average 58 processor cycles.

Generally, ORAM latency decreases with channel count as expected but the effect be-
comes increasingly sub-linear for larger channel counts due to DRAM channel conflicts.
Since 2 channels represent realistic mid-range systems and do not suffer significantly from
this problem, we will use that setting for the rest of the evaluation unless otherwise specified.

5.7.3 PLB Design Space

Figure 5-9 shows how direct-mapped PLB capacity impacts performance. For a majority
of benchmarks, larger PLBs add small benefits (≤ 10% improvements). The exceptions
are bzip2 and mcf, where increasing the PLB capacity from 8 KB to 128 KB provides 67%
and 49% improvement, respectively. We tried increasing PLB associativity and found that,
with a fixed PLB capacity, a fully associative PLB improves performance by ≤ 10% when
compared to direct-mapped. To keep the architecture simple, we therefore assume direct-
mapped PLBs from now on. Going from a 64 KB to 128 KB direct-mapped PLB, average
performance only increases by 2.7%, so we assume a 64 KB direct-mapped PLB for the rest
of the evaluation.

105

astar bzip2 gcc gob h264hmmer libq mcf omnet perl sjeng Avg
0.5
0.6
0.7
0.8
0.9
1.0
1.1

No
rm

al
iz

ed
 ru

nt
im

e 8K 32K 64K 128K

Figure 5-9: PLB design space, sweeping direct-mapped PLB capacity. Runtime is normal-
ized to the 8 KB PLB point.

astar bzip2 gcc gob h264hmmer libq mcf omnet perl sjeng Avg
0
2
4
6
8

10
12
14
16

S
lo

w
d
o
w

n

17.5

R_X8

PC_X32

PIC_X32

Figure 5-10: Performance of PLB, Compressed PosMap and PMMAC. Slowdown is relative
to an insecure system without ORAM.

5.7.4 Scheme Composability

We now present the impact on performance when we compose PLB (Section 5.5.1), PosMap
compression (Section 5.5.2) and PMMAC (Section 5.5.3). To name our schemes in the dis-
cussion, we use the letters P, I and C to indicate the PLB, Integrity verification (PMMAC)
and Compressed PosMap, respectively. For example, PC X32 denotes PLB+Compressed
PosMap with X = 32. PI X8 is the flat-counter PMMAC scheme from Section 5.5.3. For
PC X32 and PIC X32, we apply recursion until the on-chip PosMap is ≤ 128 KB in size,
yielding 4 KB on-chip PosMaps for both points. R X8 is a Recursive ORAM baseline with
X = 8 (32-Byte PosMap ORAM blocks following [69]) and H = 4, giving it a 272 KB
on-chip PosMap.

Despite consuming less on-chip area, PC X32 achieves a 1.43× speedup (30% reduction
in execution time) over R X8 (geomean). To provide integrity, PIC X32 only adds 7%
overhead on top of PC X32, which is due to the extra bandwidth needed to transfer per-
block MACs. This overhead will decrease with larger block sizes.

To give more insight, Figure 5-11 shows the average data movement per ORAM access
(i.e., per LLC miss+eviction). We give the Recursive ORAM R X8 up to a 256 KB on-
chip PosMap. As ORAM capacity increases, the overhead from accessing PosMap ORAMs
grows quickly for R X8. All schemes using a PLB have much better scalability. For the
4 GB ORAM, on average, PC X32 reduces PosMap bandwidth overhead by 82% and overall
ORAM bandwidth overhead by 38% compared with R X8. At the 64 GB capacity, the re-
duction becomes 90% and 57%. Notably the PMMAC scheme without compression (PI X8)
causes nearly half the bandwidth to be PosMap related, due to the large counter width and
small X (Section 5.5.3). The compressed PosMap (PIC X32) solves this problem.

5.7.5 Comparison to Non-Recursive ORAM with Large Blocks ([66])

In Figure 5-12, we compare our proposal to the parameterization used by Phantom [66].
Phantom was evaluated with a large ORAM block size (4 KBytes) so that the on-chip

106

R_X8 P_X16 PC_X32 PI_X8 PIC_X32
0

10

20

30

40

50

D
a
ta

 m
o
v
e
d
 (

in
 K

B
)

 p
e
r

O
R

A
M

 a
cc

e
ss

4GB

16GB

64GB

PosMap

Figure 5-11: Scalability to large ORAM capacities. White shaded regions indicate data
movement from PosMap ORAM lookups. Slowdown is relative to an insecure system with-
out ORAM.

astar bzip2 gcc gob h264hmmer libq mcf omnet perl sjeng Avg
0
5

10
15
20
25
30

S
p
e
e
d
u
p

47.8

Figure 5-12: PC X32 speedup relative to Phantom [66] w/ 4 KB blocks.

PosMap could be contained on several FPGAs without recursion for ORAM capacity. (Of
course, as the working set size increases, the PosMap size will increase proportionally.)

To match Section 5.7.4, we model the Phantom parameters on 2 DRAM channels (which
matches the DRAM bandwidth reported in [66]) and with a 4 GB ORAM (N = 220, L = 19)
Z = 4, 4 KB blocks and no recursion. For these parameters, the on-chip PosMap is∼ 2.5 MB
(which we evaluate for on-chip area in Section 5.9.4). To accurately reproduce Phantom’s
system performance, we implemented the Phantom block buffer (Section 5.7 of that work)
as a 32 KB memory with the CLOCK eviction strategy and assume the Phantom processor’s
cache line size is 128 Bytes (as done in [66]).

On average, PC X32 from Section 5.7.4 achieves 10× speedup over the Phantom config-
uration with 4 KB blocks. The intuition for this result is that Byte movement per ORAM
access for our scheme is roughly (26 ∗ 64)/(19 ∗ 4096) = 2.1% that of Phantom. While
PC X32 needs to access PosMap blocks due to recursion, this effect is outweighed by the
reduction in Data ORAM Byte movement.

5.7.6 Performance Evaluation Using A Ring ORAM Backend

The starting point for our hardware ORAM was Path ORAM due to that design’s conceptual
simplicity. We will now simulate performance as if our starting point was Ring ORAM
(Chapter 3). Since we already know Ring ORAM’s analytic bandwidth relative to Path
ORAM, the purpose of this study is to see how online bandwidth reduction translates to
performance gain.

We use the same processor/cache architecture as previous experiments. To give a more
complete picture, we additionally evaluate two common database workloads tpcc and ycsb.
Due to the small block size, we parameterize Ring ORAM at Z = 5, A = 5, S = 7 to
reduce metadata overhead. To isolate the bandwidth improvement due to Ring ORAM,
all configurations use the optimized ORAM recursion techniques from [69] (i.e., without

107

tpcc ycsb astar bzip2 gcc gob h264 libq mcf omnet perl sjeng Avg
0
2
4
6
8

10
12
14
16
18
20

S
lo

w
d
o
w

n

29.4

Path ORAM

Ring ORAM w/o XOR

Ring ORAM w/ XOR

Figure 5-13: Performance improvement of Ring ORAM vs. Path ORAM.

the PLB): we apply recursion three times with 32-Byte position map block size and get
a 256 KB final position map. We do not use tree-top caching or the mechanisms from
Section 5.5 since it proportionally benefits both Ring ORAM and Path ORAM. Today’s
DRAM DIMMs cannot perform any computation, but it is not hard to imagine having
simple XOR logic either inside memory, or connected to O(logN) parallel DIMMs so as
not to occupy processor-memory bandwidth. Thus, we show results with and without the
XOR technique.

Figure 5-13 shows program slowdown over an insecure DRAM. The high order bit is that
using Ring ORAM with XOR results in a geometric average slowdown of 2.8× relative to
an insecure system. This is a 1.5× improvement over Path ORAM. If XOR is not available,
the slowdown over an insecure system is 3.2×.

For completeness, we have also repeated the experiment with the Unified ORAM and
PLB techniques (Section 5.5.1). The geometric average slowdown over an insecure system
in that case is 2.4× (2.5× without XOR).

5.8 Evaluation (FPGA Prototype)

We now describe our hardware prototype of Tiny ORAM on a Virtex-7 VC707 FPGA
board and analyze its area and performance characteristics. Our main reason for hardware
prototyping is to tape-out in ASIC. With that in mind, the FPGA evaluation has two
primary objectives. First, we wish to compare against Phantom (which was optimized for
FPGA) in as apples-to-apples a comparison as possible. Second, we wish to demonstrate
our design working under ‘high memory bandwidth’ conditions.9

The entire design (as well as the extension to ASIC) is open source at http://

kwonalbert.github.io/oram. For the FPGA and ASIC evaluation sections, Table 5.3
may be used as a guide for which and how optimizations were evaluated.

5.8.1 Metrics and Baselines

The entire design is written in plain Verilog and was synthesized using the Xilinx Vivado
flow (version 2013.4). Performance is measured as the latency (in FPGA cycles or real
time) between when an FPGA user design requests a block and Tiny ORAM returns that
block. Area is calculated in terms of FPGA lookup-tables (LUT), flip-flops (FF) and Block
RAM (BRAM), and is measured post place-and-route (i.e., represents final hardware area
numbers). For the rest of the paper we count BRAM in terms of 36 Kbit BRAM.

9The FPGA fabric’s internal clock frequency is lower than an ASIC’s, yet the memory clock is unchanged,
giving the FPGA design the impression of higher memory bandwidth.

108

http://kwonalbert.github.io/oram
http://kwonalbert.github.io/oram

Table 5.3: Which optimizations were implemented/evaluated in hardware (and are a part
of the open source release)? Which of those were evaluated in the ASIC flow and included
in the final tape-out?

Optimization Section Implemented in hardware Included in tape-out

PLB+Unified ORAM 5.5.1 X X

PosMap Compression 5.5.2

PMMAC 5.5.3 X X

Subtree address layout 5.6.1 X X

Bit-based stash management 5.6.2 X X

RAW ORAM 5.6.3 X

We compare Tiny ORAM with two baselines shown in Table 5.4. The first one is
Phantom [66], which we normalize to our ORAM capacity and the 512 bits/cycle DRAM
bandwidth of our VC707 board. We further disable Phantom’s tree top caching. Phan-
tom’s performance/area numbers are taken/approximated from the figures in their paper,
to our best efforts. The second baseline is a basic Path ORAM with our stash management
technique, to show the area saving of RAW ORAM.

5.8.2 Implementation

Organization. We built the design hierarchically as three main components: the
Frontend, stash (Backend) and AES units used to decrypt/re-encrypt paths (Backend). We
evaluate both Path ORAM and RAW ORAM Backend designs (Section 5.6.3). The Path
ORAM Backend is similar to the Phantom Backend.

Unlike Phantom, our design does not have a DRAM buffer (see [66]). We remark that
if such a structure is needed it should be much smaller than that in Phantom (<10 KBytes
as opposed to hundreds of KBytes) due to our 64 Byte block size.

Parameterization. Both of our designs (Path ORAM and RAW ORAM) use B =
512 bits per block and L = 20 levels. Our choice of B = 512 (64 Bytes) shows that
Tiny ORAM can run even very small block sizes without imposing hardware performance
bottlenecks. We are constrained to set L = 20 because this setting fills the VC707’s 1 GByte
DRAM DIMM.

Using the notation from Section 5.7.4, the Frontend we evaluate is P X16. We do
not evaluate the cost of integrity (PMMAC) in the FPGA prototype as integrity was not
considered by the Phantom design and does not impact memory throughput (Section 5.7.4).
Integrity will be added in the final ASIC evaluation (Sections 5.9-5.10).

Clock regions. The DRAM controller on the VC707 board runs at 200 MHz and transfers
512 bits/cycle. To ensure that DRAM is Tiny ORAM’s bottleneck, we optimized our
design’s timing to run at 200 MHz.

DRAM controller. We interface with DDR3 DRAM through a stock Xilinx on-chip
DRAM controller with 512 bits/cycle throughput.10 From when a read request is presented

10Given the expected ASIC clock frequency from the simulations, this is similar to having 8 DRAM
channels without channel conflicts.

109

to the DRAM controller, it takes ∼ 30 FPGA cycles to return data for that read (i.e.,
without ORAM). The DRAM controller pipelines requests. That is, if two reads are issued
in consecutive cycles, two 512 bit responses arrive in cycle 30 and 31. As mentioned before,
the subtree layout scheme allows us to achieve near-optimal DRAM bandwidth.

Encryption. We use “tiny aes,” a pipelined AES core that is freely downloadable from
Open Cores [1]. Tiny aes has a 21 cycle latency and produces 128 bits of output per cycle.
One tiny aes core costs 2865/3585 FPGA LUT/FF and 86 BRAM. To implement the time-
multiplexing scheme from Section 5.6.3, we simply add state to track whether tiny aes’s
output (during each cycle) corresponds to IV1 or IV2.

Given our DRAM bandwidth, RAW ORAM requires 1.5 (has to be rounded to 2) tiny aes
cores to completely hide mask generation for EvictPath accesses at 200 MHz. To reduce area
further, we optimized our design to run tiny aes and associated control logic at 300 MHz.
Thus, our final design requires only a single tiny aes core. Basic Path ORAM would require
3 tiny aes cores clocked at 300 MHz, which matches our 3× AES saving in the analysis from
Section 5.6.3. We did not optimize the tiny aes clock for basic Path ORAM, and use 4 of
them running at 200 MHz.

5.8.3 Access Latency Comparison

For the rest of the FPGA evaluation, all access latencies are averages when running on a live
hardware prototype. Table 5.4 gives a summary of results. Our RAW ORAM Backend can
finish an access in 276 cycles (1.4µs) on average. This is very close to basic Path ORAM;
we did not get the 6% theoretical performance improvement because of the slightly more
complicated control logic of RAW ORAM.

After normalizing to our DRAM bandwidth and ORAM capacity, Phantom should be
able to fetch a 4 KByte block in ∼ 60µs. This shows the large speedup potential for small
blocks. Suppose the program running has bad data locality (i.e., even though Phantom
fetches 4 KBytes, only 64 Bytes are touched by the program). In this case, Tiny ORAM
using a 64 Byte block size improves ORAM latency by 40× relative to Phantom with a
4 KByte block size. We note that Phantom was run at 150 MHz: if optimized to run at
200 MHz like our design, our improvement is ∼ 32×. Even with perfect locality where
the entire 4 KByte data is needed, using a 64 Byte block size introduces only 1.5 − 2×
slowdown relative to the 4 KByte design.11 More data on the block size trade-off is given
in Section 5.7.5.

5.8.4 Hardware Area Comparison

In Table 5.4, we also see that the RAW ORAM Backend requires only a small percentage
of the FPGA’s total area. The slightly larger control logic in RAW ORAM dampens the
area reduction from AES saving. Despite this, RAW ORAM achieves an ≥ 2× reduction
in BRAM usage relative to Path ORAM. Note that Phantom [66] did not implement en-
cryption: we extrapolate their area by adding 4 tiny aes cores to their design and estimate
a BRAM savings of 4× relative to RAW ORAM.

11This slowdown is due to the Path ORAM algorithm: with a fixed memory size, a larger block size results
in a shorter ORAM tree (i.e., L decreases which improves performance).

110

Table 5.4: Parameters, performance and area summary of different designs. Access latencies
for Phantom are normalized to 200 MHz. All %s are relative to the Xilinx XC7VX485T
FPGA. For Phantom area estimates, “∼ 235 + 344” BRAM means 235 BRAM was reported
in [66], plus 344 for tiny aes.

Design Phantom Path ORAM RAW ORAM

Parameters

Z, A 4, N/A 4, N/A 5, 5

Block size 4 KByte 64 Byte 64 Byte

of tiny aes cores 4 4 1

Performance (cycles)

Access 64 B ∼ 12000 270 276

Access 4 KB ∼ 12000 17280 17664

ORAM Backend Area

LUT (%) ∼ 6000 + 11460 18977 (7%) 14427 (5%)

FF (%) not reported 16442 (3%) 11359 (2%)

BRAM (%) ∼ 172 + 344 357 (34%) 129 (13%)

Total Area (Backend+Frontend)

LUT (%) ∼ 10000 + 11460 22775 (8%) 18381 (6%)

FF (%) not reported 18252 (3%) 13298 (2%)

BRAM (%) ∼ 235 + 344 371 (36%) 146 (14%)

5.8.5 Full System Evaluation

We now evaluate a complete ORAM controller by connecting our RAW ORAM Backend to
the optimized ORAM Frontend from Section 5.5. For completeness, we also implemented
and evaluated a baseline Recursive Path ORAM. (To our knowledge, we are the first to
implement any form of Recursive ORAM in hardware.) We call configurations with our
optimized Frontend “Freecursive” to distinguish them from the baseline Frontend. For our
L = 20, we add 2 PosMap ORAMs, to attain a small on-chip position map (< 8 KB).

Figure 5-14 shows the average memory access latency of several real SPEC06-int bench-
marks. Due to optimizations from Section 5.5, performance depends on program locality.
For this reason, we also evaluate two synthetic traces: scan which has perfect locality and
rand which has no locality. We point out two extreme benchmarks: libq is known to have
good locality, and on average our ORAM controller can access 64 Bytes in 490 cycles. sjeng
has bad (almost zero) locality and fetching a 64 Byte block requires ∼ 950 cycles (4.75 µs
at 200 MHz). Benchmarks like sjeng reinforce the need for small blocks: setting a larger
ORAM block size will strictly decrease system performance since the additional data in
larger blocks won’t be used.

5.9 Evaluation (ASIC Prototype, post Synthesis)

We now evaluate the Tiny ORAM design pushed through Synopsis’ ASIC synthesis tool
Design Compiler. This work is the first to prototype any ORAM through an ASIC hard-
ware flow. The main objective in this section is to show design scalability (through area
consumption), as a function of available DRAM bandwidth. Results post-Place and Route
(via IC Compiler) and post tape-out are given in the next section.

111

scan rand libq bzip2 gcc sjeng
Memory access pattern

0

200

400

600

800

1000

1200

Av
er

ag
e

ac
ce

ss
 la

te
nc

y
(c

yc
le

s)

Baseline DRAM latency = 30 cycles

Recursive Path ORAM
Freecursive Path ORAM

Freecursive RAW ORAM

Figure 5-14: Average number of FPGA clock cycles needed to complete an ORAM access.
We call configurations with our optimized Frontend “Freecursive” to distinguish them from
the baseline Frontend.

Table 5.5: ORAM area breakdown post-synthesis.

DRAM channels (nchannel)
1 2 4

Area (% of total)

Frontend 31.2 30.0 22.5
PosMap 7.3 7.0 5.3
PLB 10.2 9.7 7.3
PMMAC 12.4 11.9 8.8
Misc 1.3 1.4 1.1

Backend 68.8 70.0 77.5
Stash 28.3 28.9 21.9
AES 40.5 41.1 55.6

Total cell area (mm2) .316 .326 .438

5.9.1 Metrics

The design (organization and codebase) is derived from the FPGA implementation (Sec-
tion 5.8). We give area results for different DRAM bandwidths, and say the ORAM
(Backend) has a 64 ∗ nchannel bit/cycle datapath to/from DRAM.

The design was synthesized using a 32 nm commercial standard cell library and memory
(SRAM and register file) generator. For synthesis results, we report total cell area; i.e., the
minimum area required to implement the design. For layout results, we set a bounding box
for each major block that maximized utilization of available space while meeting timing
requirements.

5.9.2 Implementation

Organization. The entire design required 5 SRAM/RF memories (which we manually
placed during layout): the PLB data array, PLB tag array, on-chip PosMap, stash data
array and stash tag array. Numerous other (small) buffers were needed and implemented
in standard cells.

Parameterization. ORAM parameters follow Table 5.1 except that we use an 8 KB
PosMap and 8 KB direct-mapped PLB by default (we discuss a 64 KB PLB design in Sec-
tion 5.9.4). All ASIC Frontend results include the PMMAC integrity verifier (Section 5.5.3).

112

In particular, the Frontend we evaluate is PI X8. For PMMAC, we use flat 64 bit counters
to check freshness. PosMap compression (Section 5.5.2) was not implemented in any form,
but we expect its hardware area to be negligible. Due to the increased technical sophisti-
cation (and therefore validation effort) of the RAW ORAM design post tape-out, we chose
to not evaluate that scheme in ASIC. We remark on its expected efficiency below.

Encryption/Hashing units. To implement cryptographic operations, we used two AES
cores from OpenCores [1]: the 21-cycle pipelined core “tiny aes” to implement the Backend’s
read/write path decryptions/encryptions and a non-pipelined 12 cycle core to implement
PRFK() (Section 5.5.2). We used a SHA3-224 core from OpenCores to implement MACK()
for PMMAC (Section 5.5.3).

5.9.3 Results

Table 5.5 shows ORAM area across several DRAM channel (nchannel) counts. All three
configurations met timing using up to a 1.3 GHz clock with a 100 ps uncertainty. Notice that
the Frontend constitutes a minority of the total area and that this percentage decreases with
nchannel. Area decreases with nchannel because the Frontend performs a very small DRAM
bandwidth-independent amount of work (∼ 50 clock cycles including integrity verification)
per Backend access. The Backend’s bits/cycle throughput (AES, stash read/write, etc), on
the other hand, must rate match DRAM.

We note the following design artifact: since we use AES-128, area increases only slightly
from nchannel = 1 to 2, because both 64-bit and 128-bit datapaths require the same number
of AES units. If RAW ORAM were used in the tape-out, Section 5.8 tells us that AES area
would not increase between nchannel = 1 to nchannel = 8 (inclusive). (When nchannel = 8,
DRAM bandwidth is upper-bounded by 512 bits/cycle, which is equivalent to the FPGA
design’s bandwidth.)

5.9.4 Alternative Designs

To give additional insight, we estimate the area overhead of not supporting recursion (i.e.,
like Phantom) or having a larger PLB with recursion. For a 4 GB ORAM, the PosMap
must contain 226 to 220 entries (for block sizes 64 Bytes to 4 KB). With a 220-entry on-chip
PosMap, without Recursion, the nchannel = 2 design requires ∼ 5 mm2 area — an increase
of over 10× our post-layout result. Doubling the ORAM capacity (roughly) doubles this
cost. Further, for performance reasons, we prefer smaller block sizes which exacerbates the
area problem (Section 5.7.5). On the other hand, we calculate that using Recursion with a
64 KB PLB (to match experiments in Section 5.7) increases the area for the nchannel = 1
configuration by 29% (and is 26% of total area).

5.10 Evaluation (ASIC Prototype, post Layout/Tape-out)

We now evaluate a Tiny ORAM prototype, taped-out and integrated into the Princeton
Piton/Ascend processor [93, 49]. A diagram of the chip and lab setup for bring-up tests is
given in Figure 5-15. Overall, the chip is composed of 25 cache-coherent SPARC T1 cores
and Tiny ORAM serves as a memory controller for when these cores have LLC misses. The
design was taped-out March 2015 in a 32 nm commercial technology, and was successfully
tested in January 2017. The main objective is to validate the prototype’s functionality,

113

performance and power – and to prove that the design is suitable for integration into a
single-chip secure processor.

Parameterization. The taped-out design matches the nchannel = 2 point from the pre-
vious section. Fixed ORAM parameters for the tape-out were B = 512 bits and Z = 4.

5.10.1 Tape-out Area and Performance

For the final chip’s place-and-route and layout (via IC Compiler), we adopted a hierarchical
work flow. We divided Tiny ORAM into three logical modules: Frontend, Backend, and
Encryption (the AES units). We placed and routed the three modules separately. Their
respective dimensions and post-layout areas are given in Table 5.6.

The bounding box for the entire design was set to be 2 mm × 0.5 mm. This is due
to an early design decision to put Tiny ORAM at the top edge of the chip as well as
artificial constraints imposed by SRAM dimensions. Therefore, while the bounding box
occupies ∼1 mm2 area, Tiny ORAM post-layout area is more accurately represented by the
combined post-layout area of the three modules, which sum to ∼0.51 mm2. Each module
met timing at a target clock frequency of 1 GHz.

Remark. Recall that post-synthesis Tiny ORAM had a total area of 0.326 mm2. It is
common for design area to increase post-layout, as module bounding boxes must be set
conservatively to meet timing.

Table 5.6: Dimensions (width × height) and area of the three modules in Tiny ORAM.

Module Frontend Backend Encryption

Dimensions (µm) 636.7 × 218.7 346.6 × 364.5 669.0 × 364.5

Area (mm2) 0.139 0.126 0.244

The nchannel = 2 configuration, above, can complete an ORAM access for 512 bits of
user data (one cache line) in ∼ 1275 cycles (not including the initial round-trip delay to
retrieve the first word of data from external memory). Recall in Section 5.7.2 we reported
a very similar ORAM latency of 1208 cycles per access for nchannel = 2, which leads to an
average slowdown of ∼ 4× on SPEC-Int-2006 benchmarks with a typical cache hierarchy.

5.10.2 Functional Tests and Power Measurements in Silicon

We now test ORAM functionality and measure its power consumption on first silicon.
Functionality was tested over a stride and random client access pattern. Client requests
are delivered to Tiny ORAM, and Tiny ORAM makes requests to external memory over a
UART connected to a host machine (which emulates real main memory). In all tests, the
series of requests made by Tiny ORAM match simulation which proves correct operation.

Table 5.7 shows Tiny ORAM’s dynamic power consumption across a range of voltages
and clock frequencies. Dynamic power includes transistor switching power for Tiny ORAM’s
logic, the SRAMs and the clock. For each test, core voltage (VDD) is set to the values shown
in the table and SRAM voltage is set to 0.05 V higher than VDD. The power numbers do
not include the power consumption from non-ORAM logic on the chip, the I/O pins or the
external memory.

114

Table 5.7: ORAM controller power consumption (mW) under different frequencies and
voltages.

PPPPPPPPPV
MHz

250 500 750 857

0.7 29.5

0.75 32.4

0.8 36.8

0.85 43.2 74.8

0.9 50.7 84.9

0.95 57.6 97.9

1.0 150

1.1 208 299

To measure peak power consumption, we need to keep the ORAM controller busy ser-
vicing memory requests at its highest throughput possible. Therefore, during power tests,
we feed the ORAM controller with a synthetic memory request trace from an on-chip traffic
generator, and use an on-chip buffer mimicking an external memory that has zero latency
and can fully utilize the chip pin bandwidth. Thus, each measurement gives an upper bound
on the chip power consumption in a real deployment.

In each test, we sample the chip current draw 100 times in 16 seconds and compute
the average power. It is worth noting that the ORAM power consumption will gradually
increase with time as the chip temperature increases. At lower voltage (< 1 V), the effect
of temperature increase is not noticeable and we start sampling the current 5 seconds after
power on. At high voltage (≥ 1 V), this effect cannot be ignored, and we wait for the
current draw to stabilize before sampling current.

Generally, running at a higher clock frequency requires a higher voltage to make tran-
sistors toggle faster. For each frequency in Table 5.7, the ORAM logic will stop functioning
(not meet timing) below a certain voltage, at which point we stop measuring power. For
each frequency, the ideal point to run the ORAM controller is the lowest recorded voltage,
which is the point that ORAM functions and consumes the least power. Since increasing
voltage beyond the threshold strictly consumes more power, we omit the 1 V and 1.1 V
measurements for frequencies 250 MHz and 500 MHz.

Our test setup constrained us to test voltages ≤1.1 V. This is why we were only able
to test frequencies up to 857 MHz. If equipped with a more effective cooling solution, the
chip may function beyond 857 MHz with >1.1 V voltage. We repeat the test at 500 MHz
and 0.9 V across three different chips. Dynamic power consumption across chips varies by
about 7%.

We also measure the power consumption from the clock tree. For these tests, the ORAM
controller receives the clock and is ready to service memory requests, but no memory request
is made. For the frequencies and voltages tested in Table 5.7, the clock tree accounts for
around 40% of the total dynamic power.

115

Encryption Backend
Frontend

2 mm

.5
 m

m

AES
(Path decrypt/encrypt)

Control
logic

SHA-3
(PMMAC)

AES (for PRNG)

Stash control logic

Top level (blue = filler cells)

Control
logic

AES (for PRNG)

St
as

h
 d

at
a

St
as

h
 t

ag
s

PLB data

On-chip
PosMap

P
LB

 t
ag

s

Tile 0 Tile 1 Tile 2 Tile 3 Tile 4

Tile 5 Tile 6 Tile 7 Tile 8 Tile 9

Tile
10

Tile
11

Tile
12

Tile
13

Tile
14

Tile
15

Tile
16

Tile
17

Tile
18

Tile
19

Tile
20

Tile
21

Tile
22

Tile
23

Tile
24

ORAM PLL

6 mm

6
 m

m

Figure 5-15: Chip die and package photo (top), whole-chip tape-out diagram (mid left),
Tiny ORAM tape-out diagram broken up into the three logical top modules (mid right),
bring-up lab setup (bottom - chip under heat sink in red).

Chapter 6

Conclusion

This thesis developed new ORAM constructions that only require a small amount of client
storage, and taped-out the first small client storage hardware ORAM controller in 32 nm
silicon. Our first construction, Ring ORAM, achieves constant online bandwidth and out-
performs all prior small client storage schemes, up to constant factors. Due to its perfor-
mance across different client storage regimes, we view this work as a leading candidate for
practical ORAM that can be deployed today. Our second construction, Onion ORAM, is
the first ORAM to achieve constant overall bandwidth without relying on heavy weight
cryptography such as fully homomorphic encryption (FHE). Due to its reliance on cheaper
cryptographic techniques, we view this work as taking an important step towards practical
constant bandwidth blowup ORAMs. Finally, we present the first hardware ORAM that
is implementable in a single processor chip. This work proves the viability of a single-chip
secure processor which can protect the privacy of software IP or user data, as it interacts
with an external memory device.

We will conclude by discussing two challenges left open in the server computation ORAM
line of work (Chapter 4). First, while the block size in Onion ORAM is poly-logarithmic,
the exponent is rather large (especially for our malicious construction). Subsequent to
our work, Moataz et al. [90] combined our bounded feedback ORAM with an optimized
merge procedure for evictions which reduces server computation and block size for the semi-
honest construction. With this development, we argue that semi-honest constant bandwidth
blowup ORAM is (nearly) practical. The extent to which we can tighten up poly-logarithmic
factors for all constructions (especially the malicious construction) is left open.

Second, beyond tightening parameters, we pose the question of whether constant band-
width blowup ORAMs can be constructed from non-homomorphic encryption schemes. In
Onion ORAM, the computational complexity of the Damg̊ard-Jurik cryptosystem (which re-
lies on modular exponentiation for homomorphic operations), or even more efficient SWHE
schemes may be a bottleneck in practice. Can we construct constant bandwidth ORAM
using simple computation such as XOR and any semantically secure encryption scheme with
small ciphertext blowup? A partial result in this direction is discussed in Chapter 3 and
is due to Burst ORAM [73]: simple computation on ciphertexts (mod 2 XOR) enables a
family of schemes to achieve constant online bandwidth blowup. Whether similar ideas can
lead to constant overall bandwidth blowup is unclear.

117

118

Bibliography

[1] Open cores. http://opencores.org/.

[2] Sean Gallagher. Your usb cable, the spy: Inside the nsas catalog of surveillance magic.
Ars Technica.

[3] Craig Gentry, Shai Halevi, Charanjit Jutla, and Mariana Raykova. Private database
access with he-over-oram architecture. Cryptology ePrint Archive, Report 2014/345.

[4] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H. Hubert Chan, Christopher Fletcher,
Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: An extremely simple
Oblivious RAM protocol. Cryptology ePrint Archive, Report 2013/280.

[5] Xiao Shaun Wang, T-H. Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of
the Goldreich-Ostrovsky lower bound. Cryptology ePrint Archive, Report 2014/672.

[6] R. Rivest, L. Adleman, and M.L. Dertouzos. On data banks and privacy homomor-
phisms. Foundations of Secure Computation, 1978.

[7] Ralph C. Merkle. Protocols for public key cryptography. In Oakland, 1980.

[8] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. Journal of the ACM, 1986.

[9] O. Goldreich. Towards a theory of software protection and simulation on Oblivious
RAMs. In STOC, 1987.

[10] R. Ostrovsky. Efficient computation on oblivious rams. In STOC, 1990.

[11] Manuel Blum, William S. Evans, Peter Gemmell, Sampath Kannan, and Moni Naor.
Checking the correctness of memories. In FOCS, 1991.

[12] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. In CRYPTO, 1996.

[13] O. Goldreich and R. Ostrovsky. Software protection and simulation on Oblivious
RAMs. In Journal of the ACM, 1996.

[14] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In FOCS’97, pages 364–373, 1997.

[15] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract).
In STOC, 1997.

119

http://opencores.org/

[16] Markus G. Kuhn. Cipher instruction search attack on the bus-encryption security
microcontroller ds5002fp. IEEE Trans. Comput., 47(10):1153–1157, October 1998.

[17] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In EUROCRYPT, 1999.

[18] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 2000.

[19] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. Architectural Support for Copy and Tamper Re-
sistant Software. In Proceedings of the 9th Int’l Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-IX), pages 168–177,
November 2000.

[20] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, 2001.

[21] Ivan Damgard and Mads Jurik. A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In PKC, 2001.

[22] Hugo Krawczyk. The order of encryption and authentication for protecting communi-
cations (or: How secure is ssl?). In CRYPTO, 2001.

[23] Andrew “bunnie” Huang. Hacking the xbox: An introduction to reverse engineering.
2003.

[24] D. Lie, J. Mitchell, C. Thekkath, and M. Horwitz. Specifying and verifying hardware
for tamper-resistant software. In Proceedings of the IEEE Symposium on Security and
Privacy, 2003.

[25] D. Lie, C. Thekkath, and M. Horowitz. Implementing an untrusted operating system
on trusted hardware. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, pages 178–192, 2003.

[26] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas De-
vadas. aegis: Architecture for Tamper-Evident and Tamper-Resistant Processing.
In Proceedings of the 17th ICS (MIT-CSAIL-CSG-Memo-474 is an updated version),
New-York, June 2003. ACM.

[27] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. Hide: An infrastructure for effi-
ciently protecting information leakage on the address bus. In ASPLOS, 2004.

[28] H. Lipmaa. An Oblivious Transfer protocol with log-squared communication. In ISC,
2005.

[29] G. Edward Suh, Charles W. O’Donnell, Ishan Sachdev, and Srinivas Devadas. Design
and Implementation of the aegis Single-Chip Secure Processor Using Physical Random
Functions. In Proceedings of the 32nd ISCA’05, New-York, June 2005. ACM.

[30] Amazon. Amazon simple storage service developer’s guide. Amazon, 2006.

[31] John L Henning. Spec cpu2006 benchmark descriptions. Computer Architecture News,
2006.

120

[32] Luis F. G. Sarmenta, Marten van Dijk, Charles W. O’Donnell, Jonathan Rhodes, and
Srinivas Devadas. Virtual Monotonic Counters and Count-Limited Objects using a
TPM without a Trusted OS. In STC, 2006.

[33] Alon Itai and Michael Slavkin. Detecting data structures from traces. In Workshop on
Approaches and Applications of Inductive Programming, 2007.

[34] Brian Rogers, Siddhartha Chhabra, Milos Prvulovic, and Yan Solihin. Using address
independent seed encryption and bonsai merkle trees to make secure processors os- and
performance-friendly. In MICRO, 2007.

[35] J. Alex Halderman, Seth D. Schoen, Nadia Heninger, William Clarkson, William Paul,
Joseph A. Calandrino, Ariel J. Feldman, Jacob Appelbaum, and Edward W. Felten.
Lest we remember: Cold-boot attacks on encryption keys. Commun. ACM, 52(5):91–
98, May 2009.

[36] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get
off of my cloud: Exploring information leakage in third-party compute clouds. In CCS,
2009.

[37] Rafal Wojtczuk and Alexander Tereshkin. Attacking intel bios. Blackhat, 2009.

[38] Dan Hubbard and Michael Sutton. Top threats to cloud computing v1. 0. Cloud
Security Alliance, 2010.

[39] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald III, Nathan
Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. Graphite: A
Distributed Parallel Simulator for Multicores. In HPCA, 2010.

[40] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from Ring-LWE
and security for key dependent messages. In CRYPTO’11, 2011.

[41] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In STOC, 2011.

[42] Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of out-
sourced data via oblivious RAM simulation. In ICALP, 2011.

[43] IBM. Ibm 4765 description. Technical report, 2011.

[44] R. Lindner and C. Peikert. Better key sizes (and attacks) for lwe-based encryption. In
Topics in Cryptology - CT-RSA, 2011.

[45] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. Dramsim2: A cycle accurate memory
system simulator. Computer Architecture Letters, 2011.

[46] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O((log n)3)
worst-case cost. In ASIACRYPT, 2011.

[47] Z. Brakerski, G. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryp-
tion without bootstrapping. In ITCS 2012, 2012.

[48] Yu-Yuan Chen, Pramod A. Jamkhedkar, and Ruby B. Lee. A software-hardware ar-
chitecture for self-protecting data. In CCS, 2012.

121

[49] Christopher Fletcher, Marten van Dijk, and Srinivas Devadas. Secure processor archi-
tecture for encrypted computation on untrusted programs. In STC, 2012.

[50] C. Gentry, S. Halevi, and N.P. Smart. Fully homomorphic encryption with polylog
overhead. In EUROCRYPT, 2012.

[51] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better bootstrapping in fully homo-
morphic encryption. In PKC, 2012.

[52] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. pages 513–524, 2012.

[53] Mohammad Islam, Mehmet Kuzu, and Murat Kantarcioglu. Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation. In NDSS, 2012.

[54] Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in) security of hash-based
Oblivious RAM and a new balancing scheme. In SODA, 2012.

[55] Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In STOC, 2012.

[56] E. Stefanov, E. Shi, and D. Song. Towards practical Oblivious RAM. In NDSS, 2012.

[57] Peter Williams and Radu Sion. Single round access privacy on outsourced storage. In
CCS, 2012.

[58] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs: A parallel oblivious file
system. In CCS, 2012.

[59] David Cash, Alptekin Küpçü, and Daniel Wichs. Dynamic proofs of retrievability
via oblivious ram. In Advances in Cryptology–EUROCRYPT 2013, pages 279–295.
Springer, 2013.

[60] Christopher W. Fletcher. Ascend: An architecture for performing secure computation
on encrypted data. In MIT CSAIL CSG Technical Memo 508 (Master’s thesis), April
2013.

[61] Craig Gentry, Kenny A. Goldman, Shai Halevi, Charanjit S. Jutla, Mariana Raykova,
and Daniel Wichs. Optimizing ORAM and using it efficiently for secure computation.
In PETS, 2013.

[62] Intel. Software guard extensions programming reference. Intel, 2013.

[63] Seny Kamara. How to search on encrypted data: Oblivious rams (part 4). Blog post,
2013.

[64] Jacob R. Lorch, Bryan Parno, James W. Mickens, Mariana Raykova, and Joshua Schiff-
man. Shroud: Ensuring private access to large-scale data in the data center. In FAST,
2013.

[65] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In EUROCRYPT,
2013.

122

[66] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Kriste Asanovic,
John Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in a
secure processor. In CCS, 2013.

[67] Ewen Macaskill and Gabriel Dance. The nsa files: Decoded. The Guardian, 2013.

[68] Ling Ren, Christopher Fletcher, Xiangyao Yu, Marten van Dijk, and Srinivas Devadas.
Integrity verification for Path Oblivious-RAM. In HPEC, 2013.

[69] Ling Ren, Xiangyao Yu, Christopher Fletcher, Marten van Dijk, and Srinivas Devadas.
Design space exploration and optimization of Path Oblivious RAM in secure processors.
In ISCA, 2013.

[70] Emil Stefanov and Elaine Shi. Oblivistore: High performance oblivious cloud storage.
In S&P, 2013.

[71] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren, Xiangyao
Yu, and Srinivas Devadas. Path ORAM: An extremely simple Oblivious RAM protocol.
In CCS, 2013.

[72] Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. Verifiable
oblivious storage. In PKC. 2014.

[73] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. Burst ORAM: Minimizing ORAM
response times for bursty access patterns. In USENIX security, 2014.

[74] Christopher Fletcher, Ling Ren, Xiangyao Yu, Marten Van Dijk, Omer Khan, and
Srinivas Devadas. Suppressing the oblivious ram timing channel while making infor-
mation leakage and program efficiency trade-offs. In HPCA, 2014.

[75] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In EUROCRYPT, 2014.

[76] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In FOCS, 2014.

[77] Shai Halevi and Victor Shoup. Algorithms in HElib. Cryptology ePrint Archive, Report
2014/106, 2014.

[78] Martin Maas. Phantom: Practical oblivious computation in a secure processor. In UC
Berkeley EECS Technical Memo 89 (Master’s thesis), May 2014.

[79] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Efficient private file retrieval
by combining ORAM and PIR. In NDSS, 2014.

[80] Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. Authenticated data
structures, generically. In POPL, 2014.

[81] Jinsheng Zhang, Qiumao Ma, Wensheng Zhang, and Daji Qiao. Kt-oram: A
bandwidth-efficient oram built on k-ary tree of pir nodes. Cryptology ePrint Archive,
Report 2014/624, 2014.

123

[82] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew
Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke
Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella-Béguelin, and Paul
Zimmermann. Imperfect forward secrecy: How Diffie-Hellman fails in practice. In CCS,
2015.

[83] Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and Yan
Huang. Practicing oblivious access on cloud storage: The gap, the fallacy, and the new
way forward. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, CCS, 2015.

[84] Jonathan Dautrich and Chinya Ravishankar. Combining ORAM with PIR to minimize
bandwidth costs. In CODASPY, 2015.

[85] Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Stefanov.
Bucket oram: Single online roundtrip, constant bandwidth oblivious ram. Cryptology
ePrint Archive, Report 2015/1065, 2015. http://eprint.iacr.org/.

[86] Christopher Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, and Srinivas Devadas.
Freecursive ORAM: [nearly] free recursion and integrity verification for position-based
Oblivious RAM. In ASPLOS, 2015.

[87] Christopher Fletcher, Ling Ren, Albert Kwon, Marten Van Dijk, Emil Stefanov, Dim-
itrios Serpanos, and Srinivas Devadas. A low-latency, low-area hardware Oblivious
RAM controller. In FCCM, 2015.

[88] Shai Halevi and Victor Shoup. Bootstrapping for HElib. In EUROCRYPT, 2015.

[89] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine
Shi. Ghostrider: A hardware-software system for memory trace oblivious computation.
2015.

[90] Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. Constant communication oram
with small blocksize. 2015.

[91] Ling Ren, Christopher W. Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi,
Marten Van Dijk, and Srinivas Devadas. Constants count: Practical improvements
to Oblivious RAM. In USENIX security, 2015.

[92] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side chan-
nels for untrusted operating systems. In IEEE Symposium on Security and Privacy,
2015.

[93] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Alexey
Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang, Matthew
Matl, and David Wentzlaff. Openpiton: An open source manycore research framework.
In ASPLOS, 2016.

[94] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive,
Report 2016/086, 2016.

124

http://eprint.iacr.org/

[95] Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi,
and Daniel Wichs. Onion oram: A constant bandwidth blowup oblivious ram. TCC,
2016.

[96] Ling Ren, Christopher Fletcher, Albert Kwon, Marten van Dijk, and Srinivas Devadas.
Design and implementation of the ascend secure processor. In TDSC, 2017.

[97] David Grawrock. The Intel Safer Computing Initiative: Building Blocks for Trusted
Computing. Intel Press, 2006.

125

	Introduction
	Challenges In Protecting Access Pattern
	The Case for Oblivious RAM
	Thesis Contributions and Organization

	Preliminaries
	ORAM Definition
	Security Definition (Simulator)
	Security Definition (Termination Channel Leakage)
	Metrics
	Settings
	Related Work
	ORAM History
	State of the Art ORAMs
	ORAM in Specific Settings

	Summary of Notations

	Ring ORAM
	Path ORAM Overview
	Path ORAM Challenges
	Contributions
	Overview of Techniques
	Ring ORAM Protocol
	The Basics
	Read Path Operation
	Evict Path Operation
	Early Reshuffle Operation
	Security Analysis
	Other Optimizations
	Recursive Construction

	Stash Analysis
	Proof outline
	Infinity ORAM
	Bounding the Stash Size
	Stash Size in Practice

	Bandwidth Analysis
	Evaluation
	Bandwidth vs. Client Storage

	Ring ORAM with Large Client Storage
	Bucket Structure (Reference)

	Onion ORAM
	Attempts to ``Break'' the Goldreich-Ostrovsky Bound
	Contributions
	Overview of Techniques
	Bounded Feedback ORAM Protocol
	The Basics
	New Triplet Eviction Procedure

	Onion ORAM (Additively Homomorphic Encryption)
	Additively Homomorphic Select Sub-protocol
	Detailed Protocol
	Bounding Layers
	Remarks on Cryptosystem Requirements

	Security Against A Fully Malicious Server
	Abstract Server Computation ORAM
	Semi-Honest to Malicious Compiler

	Optimizations and Analysis
	Optimizations
	Damgård-Jurik Cryptosystem
	Asymptotic Analysis
	Concrete Analysis (Semi-honest case only)
	Other Optimizations

	Proofs
	Bounded Feedback ORAM: Bounding Overflows
	Onion ORAM: Bounding Layers of Encryption
	Malicious Security Proof

	Onion ORAM (Somewhat Homomorphic Encryption)
	BGV-Style Somewhat Homomorphic Cryptosystems
	Somewhat Homomorphic Select Sub-protocol
	Onion ORAM Protocol over BGV
	Optimizations
	Asymptotic Analysis

	Asymptotic Results for Exponential Security

	Tiny ORAM
	Design Challenges for Hardware ORAM
	Challenge #1: Position Map Management
	Challenge #2: Throughput with Large Memory Bandwidths

	Contributions
	Design Prototypes and Availability
	Path ORAM Overview (Detailed)
	Recursive ORAM
	Overhead of Recursion

	Frontend
	PosMap Lookaside Buffer
	PosMap Compression
	PosMap MAC
	Security Analysis
	PosMap Lookaside Buffer
	PosMap MAC (Integrity)
	PosMap MAC (Privacy)

	Backend
	Building Tree ORAMs on DRAM
	Stash Management
	Reducing Encryption Bandwidth

	Evaluation (Simulation)
	Methodology
	ORAM Latency and DRAM Channel Scalability
	PLB Design Space
	Scheme Composability
	Comparison to Non-Recursive ORAM with Large Blocks
	Performance Evaluation Using A Ring ORAM Backend

	Evaluation (FPGA Prototype)
	Metrics and Baselines
	Implementation
	Access Latency Comparison
	Hardware Area Comparison
	Full System Evaluation

	Evaluation (ASIC Prototype, post Synthesis)
	Metrics
	Implementation
	Results
	Alternative Designs

	Evaluation (ASIC Prototype, post Layout/Tape-out)
	Tape-out Area and Performance
	Functional Tests and Power Measurements in Silicon

	Conclusion

