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Abstract— Hardware speculation offers a major surface for
micro-architectural covert and side channel attacks. Unfortu-
nately, defending against speculative execution attacks is chal-
lenging. The reason is that speculations destined to be squashed
execute incorrect instructions, outside the scope of what pro-
grammers and compilers reason about. Further, any change to
micro-architectural state made by speculative execution can leak
information.

In this paper, we propose InvisiSpec, a novel strategy to
defend against hardware speculation attacks in multiprocessors
by making speculation invisible in the data cache hierarchy.
InvisiSpec blocks micro-architectural covert and side channels
through the multiprocessor data cache hierarchy due to specula-
tive loads. In InvisiSpec, unsafe speculative loads read data into a
speculative buffer, without modifying the cache hierarchy. When
the loads become safe, InvisiSpec makes them visible to the rest of
the system. InvisiSpec identifies loads that might have violated
memory consistency and, at this time, forces them to perform
a validation step. We propose two InvisiSpec designs: one to
defend against Spectre-like attacks and another to defend against
futuristic attacks, where any speculative load may pose a threat.
Our simulations with 23 SPEC and 10 PARSEC workloads show
that InvisiSpec is effective. Under TSO, using fences to defend
against Spectre attacks slows down execution by 74% relative to a
conventional, insecure processor; InvisiSpec reduces the execution
slowdown to only 21%. Using fences to defend against futuristic
attacks slows down execution by 208%; InvisiSpec reduces the
slowdown to 72%.

I. INTRODUCTION

The recent disclosure of Spectre [1] and Meltdown [2] has

opened a new chapter in hardware security pertaining to the

dangers of speculative execution. Hardware speculation can

cause execution to proceed in ways that were not intended

by the programmer or compiler. Until recently, this was not

thought to have security implications, as incorrect speculation

is guaranteed to be squashed by the hardware. However, these

attacks demonstrate that squashing incorrect speculative paths

is insufficient for security.

Spectre and Meltdown monitor the micro-architectural foot-

print left by speculation, such as the state left by wrong-path

speculative loads in the cache. This footprint enables micro-

architectural covert or side channels, where an adversary can

infer the speculative thread’s actions. In Meltdown, a user-level

attacker is able to execute a privileged memory load and leak

the memory contents using a cache-based covert channel, all

before the illegal memory load triggers an exception. In Spectre,

the attacker poisons the branch predictor or branch target buffer

to force the victim’s code to speculate down specific paths of

the attacker’s choosing. Different types of attacks are possible,

such as the victim code reading arbitrary memory locations

by speculating that an array bounds check succeeds—allowing

the attacker to glean information through a cache-based side

channel, as shown in Figure 1. In this case, unlike in Meltdown,

there is no exception-inducing load.

1 // cache line size is 64 bytes
2 // secret value V is 1 byte
3 // victim code begins here :
4 uint8 A[10];
5 uint8 B[256∗64];
6 // B size : possible V values ∗ line size
7 void victim ( size t a) {
8 if (a < 10)
9 junk = B[64 ∗ A[a]];

10 }
11 // attacker code begins here :
12 train () ; // train if condition to be true
13 flush (B); // flush every cache line of B
14 call victim (X − &A);
15 scan(B); // access each cache line of B

Fig. 1: Spectre variant 1 at-
tack example, where the at-
tacker obtains secret value V
stored at address X . If the If
condition is predicted as true,
then the V -th cache line in B
is loaded to the cache even
though the load is eventually
squashed.

It can be argued that Meltdown can be fixed with a relatively

modest implementation change: mark the data loaded by an

exception-triggering load as unreadable. However, defending

against Spectre and other forms of speculative execution attacks

that do not cause exceptions presents a two-fold challenge. First,

potentially any instruction performing speculation can result

in an attack. The reason is that speculations destined to be

squashed inherently execute incorrect instructions (so-called

transient instructions), outside the scope of what programmers

and compilers reason about. Since program behavior is unde-

fined, speculative execution attacks will be able to manifest

in many ways, similar to attacks exploiting lack of memory

safety [3]. Second, speculative code that makes any change to

micro-architectural state—e.g., cache occupancy [4] or cache

coherence [5] state—can create covert or side channels.

Given these issues, it is unsurprising that current defenses

against Spectre suffer from either high performance overheads

or incomplete security. For example, consider Spectre variant 1,

where mis-predictions on direct conditional branches can lead

to attacks such as array bounds check bypassing [1]. There is no

current hardware proposal to block it, except for disabling all

speculation, which is clearly unacceptable. In software, current

mitigations are to place LFENCE instructions after sensitive

branches, replace branches with CMOVs, and mask index bits

before the array look-up [6]. Unfortunately, each of these has

usage and/or performance deficiencies—e.g., fences block good

speculation, and masking only helps prevent bounds-bypass
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attacks. In addition, these techniques only attempt to block

speculation on branches.

In this paper, we propose InvisiSpec, a novel strategy to

defend against hardware speculation attacks in multiprocessors,

by making speculation invisible in the data cache hierarchy.

The goal is to block micro-architectural covert and side

channels through the multiprocessor data cache hierarchy due

to speculative loads—e.g., channels stemming from cache set

occupancy, line replacement information, and cache coherence

state. We wish to protect against not only Spectre-like attacks

based on branch speculation; we also want to protect against

futuristic attacks where any speculative load may pose a threat.

InvisiSpec’s micro-architecture is based on two mechanisms.

First, unsafe speculative loads read data into a new Speculative
Buffer (SB) instead of into the caches, without modifying

the cache hierarchy. Data in the SB do not observe cache

coherence transactions, which may result in missing memory

consistency violations. Our second mechanism addresses this

problem. When a speculative load is finally safe, the InvisiSpec

hardware makes it visible to the rest of the system by reissuing

it to the memory system and loading the data into the caches.

In this process, if InvisiSpec considers that the load could have

violated memory consistency, InvisiSpec validates that the data

that the load first read is correct—squashing the load if the

data is not correct.

To summarize, this paper makes the following contributions:

1) We present a generalization of speculative execution at-

tacks that goes beyond current Spectre attacks, where any

speculative load may pose a threat.

2) We present a micro-architecture that blocks side and covert

channels during speculation in a multiprocessor data cache

hierarchy.

3) We simulate our design on 23 SPEC and 10 PARSEC

workloads. Under TSO, using fences to defend against

Spectre attacks slows down execution by 74% relative to

a conventional, insecure processor; InvisiSpec reduces the

execution slowdown to only 21%. Using fences to defend

against futuristic attacks slows down execution by 208%;

InvisiSpec reduces the slowdown to 72%.

II. BACKGROUND AND TERMINOLOGY

A. Out-of-order and Speculative Execution

Out-of-order execution. Dynamically-scheduled proces-

sors [7] execute data-independent instructions in parallel, out

of program order, and thereby exploit instruction-level paral-

lelism [8] to improve performance. Instructions are issued (enter

the scheduling system) in program order, complete (execute

and produce their results) possibly out of program order, and

finally retire (irrevocably modify the architected system state) in

program order. In-order retirement is implemented by queueing

instructions in program order in a reorder buffer (ROB) [9],

and removing a completed instruction from the ROB only once

it reaches the ROB head, i.e., after all prior instructions have

retired.

Speculative execution. Speculative execution is the execution

of an instruction before its validity can be made certain. If, later,

the instruction turns out to be valid, it is eventually retired, and

its speculative execution has improved performance. Otherwise,

the instruction will be squashed and the processor’s state rolled

back to the state before the instruction. (At the same time, all

of the subsequent instructions in the ROB also get squashed.)

Strictly speaking, an instruction executes speculatively in an

out-of-order processor if it executes before it reaches the head

of the ROB.
There are multiple reasons why a speculatively-executed

instruction may end up being squashed. One reason is that a

preceding branch resolves and turns out to be mispredicted.

Another reason is that, when a store or a load resolves the

address that it will access, the address matches that of a

later load that has already obtained its data from that address.

Another reason is memory consistency violations. Finally, other

reasons include various exceptions and the actual squash of

earlier instructions in the ROB.

B. Memory Consistency & Its Connection to Speculation
A memory consistency model (or memory model) specifies

the order in which memory operations are performed by a

core, and are observed by other cores, in a shared-memory

system [10]. When a store retires, its data is deposited into

the write buffer. From there, when the memory consistency

model allows, the data is merged into the cache. We say that

the store is performed when the data is merged into the cache,

and becomes observable by all the other cores. Loads can read

from memory before they reach the ROB head. We say that the

load is performed when it receives data. Loads can read from

memory and be performed out of order—i.e., before earlier

loads and stores in the ROB are. Out-of-order loads can lead

to memory consistency violations, which the core recovers

from using the squash and rollback mechanism of speculative

execution [11]. The details depend on the memory model; we

describe two common models below, which we assume as the

baseline to which InvisiSpec is added.
Total Store Order (TSO) [12], [13] is the memory model of

the x86 architecture. TSO forbids all observable load and store

reorderings except store→load reordering, which is when a load

bypasses an earlier store to a different address. Implementations

prevent observable load→load reordering by ensuring that the

value a load reads when it is performed remains valid when

the load retires. This guarantee is maintained by squashing a

load that has performed, but not yet retired, if the core receives

a cache invalidation request for (or suffers a cache eviction of)

the line read by the load. Store→store reordering is prevented

by using a FIFO write buffer, ensuring that stores perform

in program order. If desired, store→load reordering can be

prevented by separating the store and the load with a fence

instruction, which does not complete until all prior accesses

are performed. Atomic instructions have fence semantics.
Release Consistency (RC) [14] allows any reordering, except

across synchronization instructions. Loads and stores may not

be reordered with a prior acquire or with a subsequent release.

Therefore, RC implementations squash performed loads upon

receiving an invalidation of their cache line only if there is a

prior non-retired acquire, and have a non-FIFO write buffer.
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III. THREAT MODEL

Speculative execution attacks exploit the side effects of

transient instructions—i.e., speculatively-executed instructions

that are destined to be squashed. Specifically, victim programs

speculatively execute access instructions that can write secrets

into general purpose registers or the store queue (see Section IV

for examples). Before such access instructions are squashed,

further speculative transmit instructions may execute and leak

those secrets to adversarial code, the receiver, over a covert

channel. As the access and transmit instructions are transient,

they would not have executed in a non-speculative execution.

Since predictors are not perfect, dangerous access and

transmit instructions may execute in the normal course of

execution. We make conservative (but realistic [1]) assumptions,

and allow the adversary to run arbitrary code before and during

victim execution to influence the victim program’s speculation—

e.g., by changing branch predictor state. We assume that the

processor hardware and the operating system function correctly.

A. Cache Hierarchy-Based Side Channels

In almost all of the known speculative execution attacks,

the adversary transmits over a cache-based side channel. The

adversary exploits the fact that transient load instructions

modify the cache state, which allows the receiver to learn

information out of the victim’s cache state changes.1 The two

most popular techniques for cache-based side channel attacks

are PRIME+PROBE (where the receiver monitors conflicts in

the cache through its own evictions) and FLUSH+RELOAD

(where the receiver uses instructions such as x86’s clflush
to evict the victim’s cache lines). Cache-based side channels

have been demonstrated within and across cores [16], and on

both inclusive and non-inclusive cache hierarchies [17]. Recent

work has also shown side channels from cache coherence state

changes [5] and data TLB state [18].

B. Channels Protected

InvisiSpec blocks covert and side channels that are con-

structed by monitoring the state of any level of a multiprocessor

data cache hierarchy. This includes cache state such as

occupancy (e.g., what lines live in what sets), replacement

information, and coherence information (e.g., whether a line

is in the Exclusive or Shared state). It also includes data TLB

state (e.g., what entries live in the TLB). Our goal is to provide

a complete defense for the data cache hierarchy,2 as it has

been proven to lead to practical attacks [1], [2]. Note that our

mechanism does not preclude protecting additional channels.

Out of scope. Physical side channels (e.g., power [19] or

EM [20]) are out of scope. We also do not protect micro-

architectural channels other than those listed above. One

such example is monitoring the timing of execution units [1],

1The exception is NetSpectre [15]. It uses a timing channel created by
speculative execution, which powers-up SIMD units and thus speeds-up later
SIMD instructions.

2For simplicity, we do not describe the protection of the instruction cache
or instruction TLB. However, we believe they can be protected with similar
or even simpler structures as those we propose for the data cache hierarchy.

including floating-point units [21] and SIMD units [15]—which

can be mitigated by not scheduling the victim and adversary

in adjacent SMT contexts. Other examples are contention on

the network-on-chip [22] or DRAM [23], which may allow an

adversary to learn coarse-grain information about the victim.

We leave protecting these channels as future work.

C. Settings

We block the side and covert channels described in Sec-

tion III-B in the following settings, which differ in where the

adversarial receiver code runs relative to the victim program.

SameThread. The receiver runs in the same thread as the

victim. This case models scenarios such as JavaScript, where

adversarial code, e.g., a malicious advertisement or tab, may be

JITed into an otherwise honest program. As such, we assume

that malicious and honest code temporally multiplex the core.

They share the private caches and TLBs, and the attacker can

snapshot the state of these resources when it becomes active.

On the other hand, it is not possible for malicious code to

learn fine-grain behavior such as exactly when an execution

unit is used.

CrossCore. The receiver runs on a separate physical core.

This case models a multi-tenant cloud scenario where different

VMs are scheduled to different physical cores on the same

socket. The adversary can monitor the last-level cache and its

directory—e.g., how line coherence state changes over time.

SMT. The receiver runs in an adjacent SMT context of the

same core. The threads may share the private caches and/or the

TLB. We note that while our security objective in Section III-B

is only to protect against the monitoring of cache and TLB state,

SMT presents a broader attack surface: fine-grain structures

at the core such as execution units can also be used as covert

or side channels. We leave blocking such channels as future

work.

IV. UNDERSTANDING SPECULATIVE EXECUTION ATTACKS

We discuss the events that can be the source of transient

instructions leading to a security attack. Table I shows examples

of such attacks and what event creates the transient instructions.

Attack What Creates the Transient Instructions

Meltdown
Virtual memory exception

L1 Terminal Fault
Lazy Floating Point

Exception reading a disabled or privileged registerRogue System
Register Read
Spectre Control-flow misprediction
Speculative

Address alias between a load and an earlier store
Store Bypass

Futuristic

Various events, such as:
• Exceptions
• Control-flow mispredictions
• Address alias between a load and an earlier store
• Address alias between two loads
• Memory consistency model violations
• Interrupts

TABLE I: Understanding speculative execution attacks.

Exceptions. Several attacks exploit speculation past an

exception-raising instruction. The processor squashes the
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execution when the exception-raising instruction reaches the

head of the ROB, but by this time, dependent transmitting

instructions can leak data. The Meltdown [2] and L1 Terminal

Fault (L1TF) [24], [25] attacks exploit virtual memory-related

exceptions. Meltdown reads a kernel address mapped as

inaccessible to user space in the page table. L1TF reads a

virtual address whose page table entry (PTE) marks the physical

page as not present, but the physical address is still loaded.

The Lazy Floating Point (FP) State Restore attack [26] reads

an FP register after the OS has disabled FP operations, thereby

reading the FP state of another process. The Rogue System

Register Read [26] reads privileged system registers.

Control-flow misprediction. Spectre attacks [1] exploit

control-flow speculation to load from an arbitrary memory

address and leak its value. Variant 1 performs an out-of-

bounds array read, exploiting a branch misprediction of the

array bounds check [1]. Other variants direct the control

flow to an instruction sequence that leaks arbitrary memory,

either through indirect branch misprediction [1], return address

misprediction [27], or an out-of-bounds array write that

redirects the control flow (e.g., by overwriting a return address

on the stack) [28].

Memory-dependence speculation. Speculative Store Bypass

(SSB) attacks [29] exploit a speculative load that bypasses an

earlier store whose address is unresolved, but will resolve to

alias the load’s address [30]. Before the load is squashed, it

obtains stale data, which can be leaked through subsequent

dependent instructions. For example, suppose that a JavaScript

runtime or virtual machine zeroes out memory allocated to a

user thread. Then, this attack can be used to peek at the prior

contents of an allocated buffer. We discovered the SSB attack

in the process of performing this work. While our paper was

under review, a security analysis independently conducted by

Microsoft and Google found this vulnerability [29].

A comprehensive model of speculative execution attacks.
Transient instructions can be created by many events. As long

as an instruction can be squashed, it can create transient

instructions, which can be used to mount a speculative

execution attack. Since we focus on cache-based covert and

side channel attacks, we limit ourselves to load instructions.

We define a Futuristic attack as one that can exploit

any speculative load. Table I shows examples of what can

create transient instructions in a Futuristic attack: all types of

exceptions, control-flow mispredictions, address alias between

a load and an earlier store, address alias between two loads,

memory consistency model violations, and even interrupts.

In the rest of the paper, we present two versions of InvisiSpec:

one that defends against Spectre attacks, and one that defends

against Futuristic attacks.

V. INVISISPEC: THWARTING SPECULATION ATTACKS

A. Main Ideas

1) Unsafe Speculative Loads: Strictly speaking, any load

that initiates a read before it reaches the head of the ROB

is a speculative load. In this work, we are interested in the

(large) subset of speculative loads that can create a security

vulnerability due to speculation. We call these loads Unsafe
Speculative Loads (USLs). The set of speculative loads that

are USLs depends on the attack model.

In the Spectre attack model, USLs are the speculative loads

that follow an unresolved control-flow instruction. As soon as

the control-flow instruction resolves, the USLs that follow it in

the correct path of the branch transition to safe loads—although

they remain speculative.

In our Futuristic attack model, USLs are all the speculative
loads that can be squashed by an earlier instruction. A

USL transitions to a safe load as soon as it becomes either

(i) non-speculative because it reaches the head of the ROB

or (ii) speculative non-squashable by any earlier instruction

(or speculative non-squashable for short). Speculative non-
squashable loads are loads that both (i) are not at the head of the

ROB and (ii) are preceded in the ROB only by instructions that

cannot be squashed by any of the squashing events in Table I for

Futuristic. Note that in the table, one of the squashing events

is interrupts. Hence, making a load safe includes delaying

interrupts until the load reaches the head of the ROB.

To understand why these two conditions allow a USL to

transition to a safe load consider the following. A load at the

ROB head cannot itself be transient; it can be squashed (e.g.,

due to an exception), but it is a correct instruction. The same

can be said about speculative non-squashable loads. This is

because, while not at the ROB head, they cannot be squashed

by any earlier instruction and, hence, can be considered a

logical extension of the instruction at the ROB head.

2) Making USLs Invisible: The idea behind InvisiSpec is to

make USLs invisible. This means that a USL cannot modify

the cache hierarchy in any way that is visible to other threads,

including the coherence states. A USL loads the data into a

special buffer that we call Speculative Buffer (SB), and not

into the local caches. As indicated above, there is a point in

time when the USL can transition to a safe load. At this point,

called the Visibility Point, InvisiSpec takes an action that will

make the USL visible—i.e., will make all the side effects of

the USL in the memory hierarchy apparent to all other threads.

InvisiSpec makes the USL visible by re-loading the data, this

time storing the data in the local caches and changing the

cache hierarchy states. The load may remain speculative.

3) Maintaining Memory Consistency: The Window of Sup-
pressed Visibility for a load is the time period between when

the load is issued as a USL and when it makes itself visible.

During this period, since a USL does not change any coherence

state, the core may fail to receive invalidations directed to the

line loaded by the USL. Therefore, violations of the memory

consistency model by the load run the risk of going undetected.

This is because such violations are ordinarily detected via

incoming invalidations, and are solved by squashing the load.

To solve this problem, InvisiSpec may have to perform a

validation step when it re-loads the data at the load’s visibility

point.

It is possible that the line requested by the USL was already

in the core’s L1 cache when the USL was issued and the
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line loaded into the SB. In this case, the core may receive

an invalidation for the line. However, the USL ignores such

invalidation, as the USL is invisible, and any effects of this

invalidation will be handled at the visibility point.

4) Validation or Exposure of a USL: The operation of re-

loading the data at the visibility point has two flavors: Validation
and Exposure. Validation is the way to make visible a USL that

would have been squashed during the Window of Suppressed

Visibility (due to memory consistency considerations) if, during

that window, the core had received an invalidation for the line

loaded by the USL. A validation operation includes comparing

the actual bytes used by the USL (as stored in the SB) to their

most up-to-date value being loaded from the cache hierarchy. If

they are not the same, the USL and all its successive instructions

are squashed. This is required to satisfy the memory consistency

model. This step is reminiscent of Cain and Lipasti’s value-

based memory ordering [31].

Validations can be expensive. A USL enduring a validation

cannot retire until the transaction finishes—i.e., the line

obtained from the cache hierarchy is loaded into the cache, the

line’s data is compared to the subset of it used in the SB, and

a decision regarding squashing is made. Hence, if the USL is

at the ROB head and the ROB is full, the pipeline stalls.

Thankfully, InvisiSpec identifies many USLs that could not

have violated the memory consistency model during their

Window of Suppressed Visibility, and allows them to become

visible with a cheap Exposure. These are USLs that would not
have been squashed by the memory consistency model during

the Window of Suppressed Visibility if, during that window,

the core had received an invalidation for the line loaded by the

USL. In an exposure, the line returned by the cache hierarchy

is simply stored in the caches without comparison. A USL

enduring an exposure can retire as soon as the line request is

sent to the cache hierarchy. Hence, the USL does not stall the

pipeline.

To summarize, there are two ways to make a USL visible:

validation and exposure. The memory consistency model

determines which one is needed. Figure 2 shows the timeline

of a USL with validation and with exposure.

Window of Suppressed Visibility

Point
Visibility

Retirement

Validation
Window of Suppressed Visibility

Point
Visibility

Retirement

Earliest Possible
Retirement

(a)

Exposure

Earliest Possible
Retirement

(b)

Load is a USL

Load is a USL Load is Safe

Load is Safe

Load is Issued
to Memory

Load is Issued
to Memory

Fig. 2: Timeline of a USL with validation (a) and exposure (b).

B. InvisiSpec Operation

A load in InvisiSpec has two steps. First, when it is issued to

memory as a USL, it accesses the cache hierarchy and obtains

the current version of the requested cache line. The line is only

stored in the local SB, which is as close to the core as the L1

cache. USLs do not modify the cache coherence states, cache

replacement algorithm states, or any other cache hierarchy

state. No other thread, local or remote, can see any changes.

However, the core uses the data returned by the USL to make

progress. The SB stores lines rather than individual words to

exploit spatial locality.

When the USL can be made visible, and always after it

has received its requested cache line, the hardware triggers a

validation or an exposure transaction. Such a transaction re-

requests the line again, this time modifying the cache hierarchy,

and bringing the line to the local caches. As detailed in

Section V-A4, validation and exposure transactions operate

differently and have different performance implications.

We consider two attack models, Spectre and Futuristic, and

propose slightly different InvisiSpec designs to defend against

each of these attacks. In our defense against the Spectre attack,

a USL reaches its visibility point when all of its prior control-

flow instructions resolve. At that point, the hardware issues a

validation or an exposure transaction for the load depending on

the memory consistency model and the load’s position in the

ROB (Section V-C). If multiple USLs can issue validation or

exposure transactions, the transactions have to start in program

order, but can otherwise all overlap (Section V-D).

In our defense against Futuristic attacks, a USL reaches its

visibility point only when: (i) it is not speculative anymore

because it is at the head of the ROB, or (ii) it is still speculative

but cannot be squashed anymore. At that point, the hardware

issues a validation or an exposure for the load depending on

the memory consistency model and the load’s position in the

ROB (Section V-C). If multiple USLs can issue validation or

exposure transactions, the transactions have to be issued in

program order. However, when a validation transaction is issued,

no subsequent validation or exposure transaction can overlap

with it; they all have to wait to be issued until the validation is

complete (Section V-D). On the other hand, when an exposure

transaction is issued, all subsequent exposure transactions up

to, and including, the next validation transaction can overlap

with it (Section V-D).

Overall, in the Spectre and Futuristic defense designs, the

only pipeline stalls may occur when a validation transaction

holds up the retirement of a load at the head of the ROB

and the ROB is full. This is more likely in Futuristic than in

Spectre.

We call these designs InvisiSpec-Spectre (or IS-Spectre)

and InvisiSpec-Future (or IS-Future). They are shown in the

first row of Table II. For comparison, the second row shows

how to defend against these same attacks using fence-based

approaches—following current proposals to defend against

Spectre [32]. We call these designs Fence-Spectre and Fence-
Future. The former places a fence after every indirect or

conditional branch; the latter places a fence before every load.
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Defense Against Spectre Defense Against Futuristic

InvisiSpec-Spectre: InvisiSpec-Future:
Invisi-
Spec
Based

1) Perform invisible loads in
the shadow of an unresolved
BR; 2) Validate or expose
the loads when the BR re-
solves

1) Perform an invisible load if
the load can be squashed while
speculative; 2) Validate or ex-
pose the load when it becomes
either (i) non-speculative or (ii)
un-squashable speculative

Fence Fence-Spectre: Fence-Future:
Based Place a fence after every BR Place a fence before every load

TABLE II: Summary of designs (BR means indirect or

conditional branch.)

Compared to the fence-based designs, InvisiSpec improves

performance. Specifically, loads are speculatively executed as

early as in conventional, insecure machines. One concern is that

validation transactions for loads at the head of the ROB may

stall the pipeline. However, we will show how to maximize

the number of exposures (which cause no stall) at the expense

of the number of validations. Finally, InvisiSpec does create

more cache hierarchy traffic and contention to various cache

ports. The hardware should be designed to handle them.

C. When to Use Validation and Exposure
The memory consistency model determines when to use a

validation and when to use an exposure. Consider TSO first.

In a high-performance TSO implementation, a speculative load

that reads when there is no older load (or fence) in the ROB

will not be squashed by a subsequent incoming invalidation to

the line it read. Hence, such a USL can use an exposure when

it becomes visible. On the other hand, a speculative load that

reads when there is at least one older load (or fence) in the

ROB will be squashed by an invalidation to the line it read.

Hence, such a USL is required to use a validation.
Now consider RC. In this case, only speculative loads that

read when there is at least one earlier fence in the ROB will be

squashed by an invalidation to the line read. Hence, only those

will be required to use a validation; the very large majority of

loads can use exposures.
From this discussion, we see that the design with the highest

chance of observing validations that stall the pipeline is IS-

Future under TSO. To reduce the chance of these events,

InvisiSpec implements two mechanisms. The first one enables

some USLs that would use validations to use exposures instead.

The second one identifies USLs that would use validations,

and squashes them early if there is a high chance that their

validations would fail. We consider these mechanisms next.
1) Transforming a Validation USL into an Exposure USL:

Assume that, under TSO, USL1 initiates a read while there are

earlier loads in the ROB. Ordinarily, InvisiSpec would mark

USL1 as needing a validation. However, assume that, at the

time of the read, all of the loads in the ROB earlier than USL1

have already obtained the data they requested—in particular,

if they are USLs, the data they requested has already arrived

at the SB and been passed to a register. In this case, USL1 is

not reordered relative to any of its earlier loads. As a result,

TSO would not require squashing USL1 on reception of an

invalidation to the line it loaded. Therefore, USL1 is marked

as needing exposure, not validation.

To support this mechanism, we tag each USL with one bit

called Performed. It is set when the data requested by the

USL has been received in the SB and passed to the destination

register.

2) Early Squashing of USLs Needing Validations: Assume

that a core receives an invalidation for a line in its cache that

also happens to be loaded into its SB by a USL marked as

needing validation. Receiving an invalidation indicates that the

line has been updated. Such update will typically cause the

validation of the USL at the point of visibility to fail. Validation

could only succeed if this invalidation was caused by false

sharing, or if the net effect of all the updates to the line until the

validation turned out to be silent (i.e., they restored the data to

its initial value). Since these conditions are unlikely, InvisiSpec

squashes such a USL on reception of the invalidation.

There is a second case of a USL with a high chance of

validation failure. Assume that USL1 needs validation and has

data in the SB. Moreover, there is an earlier USL2 to the

same line (but to different words of the line) that also has its

data in the SB and needs validation. When USL2 performs

the validation and brings the line to the core, InvisiSpec also

compares the line to USL1’s data in the SB. If the data are

different, it shows that USL1 has read stale data. At that point,

InvisiSpec conservatively squashes USL1.

D. Overlapping Validations and Exposures

To improve performance, we seek to overlap validation and

exposure transactions as much as possible. To ensure that

overlaps are legal, we propose two requirements. The first

one is related to correctness: during the overlapped execution

of multiple validation and exposure transactions, the memory

consistency model has to be enforced. This is the case even if

some of the loads involved are squashed and restarted.

The second requirement only applies to the Futuristic attack

model, and is related to the cache state: during the overlapped

execution of multiple validation and exposure transactions,

no squashed transaction can change the state of the caches.

This is because the essence of our Futuristic model defense

is to prevent squashed loads from changing the state of the

caches. For the Spectre attack model, this requirement does

not apply because validations and exposures are only issued

for instructions in the correct path of a branch. While some

of these instructions may get squashed (e.g., due to memory

consistency violations) and change the state of the caches, these

are correct program instructions and, hence, pose no threat

under the Spectre attack model

We propose sufficient conditions to ensure the two require-

ments. First, to enforce the correctness requirement, we require

that the validation and exposure transactions of the different

USLs start in program order. This condition, plus the fact that

no validation or exposure for a USL can start until that USL has

already received the response to its initial speculative request,

ensures that the memory consistency model is enforced. More

details are in the Appendix.

To enforce the second requirement for the Futuristic model,

we require the following conditions. First, if a USL issues a
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validation transaction, no subsequent validation or exposure

transaction can overlap with it. This is because, if the validation

fails, it will squash all subsequent loads. Second, if a USL issues

an exposure transaction, all subsequent exposure transactions

up to, and including, the next validation transaction can overlap

with it. This is allowed because exposures never cause squashes.

In the Spectre model defense, validations and exposures can

all overlap—since the cache state requirement does not apply.

Recall that validations and exposures bring cache lines.

Hence, validations and/or exposures to the same cache line

have to be totally ordered.

E. Reusing the Data in the Speculative Buffer

To exploit the spatial locality of a core’s speculative loads, a

USL brings a full cache line into the SB, and sets an Address

Mask that identifies which part of the line is passed to a register.

If a second USL that is later in program order now requests

data from the line that the first USL has already requested or

even brought into the SB, the second USL does not issue a

second cache hierarchy access. Instead, it waits until the first

USL brings the line into the first USL’s SB entry. Then, it

copies the line into its own SB entry, and sets its Address

Mask accordingly.

F. Reducing Main-Memory Accesses

A USL performs two transactions—one when it is first issued,

and one when it validates or exposes. Now, suppose that a

USL’s first access misses in the last level cache (LLC) and

accesses main memory. Then, it is likely that the USL’s second

access is also a long-latency access to main memory.

To improve performance, we design InvisiSpec to avoid this

second main-memory access most of the time. Specifically,

we add a per-core LLC Speculative Buffer (LLC-SB) next to

the LLC. When a USL’s first access reads the line from main

memory, as the line is sent back to the requesting core’s L1

SB, InvisiSpec stores a copy of it in the core’s LLC-SB. Later,

when the USL issues its validation or exposure, it will read

the line from the core’s LLC-SB, skipping the access to main

memory.

If, in between the two accesses, a second core accesses the

line with a validation/exposure or a safe access, InvisiSpec

invalidates the line from the first core’s LLC-SB. This conser-

vatively ensures that the LLC-SB does not hold stale data. In

this case, the validation or exposure transaction of the original

USL will obtain the latest copy of the line from wherever it is

in the cache hierarchy.

VI. DETAILED INVISISPEC DESIGN

A. Speculative Buffer in L1

1) Speculative Buffer Design: InvisiSpec places the SB

close to the core to keep the access latency low. Our main

goal in designing the SB is to keep its operation simple, rather

then minimizing its area; more area-efficient designs can be

developed. Hence, we design the SB with as many entries as

the Load Queue (LQ), and a one-to-one mapping between the

LQ and SB entries (Figure 3).

Address

Valid

Performed

State:
E/V/C/N

Prefetch

Status
Bits

Load Queue
(LQ)

Speculative Buffer
(SB)

Tail Head

Data Line

Address Mask

Fig. 3: Speculative Buffer and its logical connection to the

load queue.

This design makes several operations easy to support. Given

an LQ entry, InvisiSpec can quickly find its corresponding

SB entry. Further, since the LQ can easily find if there are

multiple accesses to the same address, InvisiSpec can also

identify multiple SB entries for the same line. Importantly, it is

trivial to (i) allocate an SB entry for the next load in program

order, (ii) remove the SB entry for a retiring load at the ROB

head, and (iii) remove the SB entries for a set of loads being

squashed. These operations need simple moves of SB’s Head

and Tail pointers—which are the LQ’s Head and Tail pointers.
An SB entry does not store any address. It stores the data

of a cache line plus an Address Mask that indicates which

bytes were read. Each LQ entry has some status bits: Valid,

Performed, State, and Prefetch. Valid records whether the entry

is valid. Performed indicates whether the data requested by

the USL has arrived and is stored in the SB entry. Recall that

this information is used to change a validation to a cheaper

exposure (Section V-C1). State indicates the state of the load.

It can be “requiring an exposure when it becomes visible” (E),

“requiring a validation when it becomes visible” (V), “exposure

or validation has completed” (C), and “invisible speculation

is not necessary for this load” (N). The latter is used when

invisible speculation is not needed, and the access should

go directly to the cache hierarchy. Finally, Prefetch indicates

whether this entry corresponds to a prefetch (Section VI-B).
2) Operation of the Load Queue and Speculative Buffer:

We describe the LQ and SB algorithms at key events.
A load instruction is issued: The hardware allocates an LQ

entry and an SB entry. The LQ entry’s Valid bit is set.
The address of a load is resolved: The load is ready to be

sent to the cache hierarchy. If the load is safe according to

the attack model, the State bits in the LQ entry are set to N

and the load is issued to the cache hierarchy with a normal

coherence transaction. The SB entry will be unused.
Otherwise, the load is a USL, and the State is set to E or V,

as dictated by the memory consistency model (Section V-C).

The USL is issued to the cache hierarchy with a new Spec-GetS
transaction. This transaction requests the line in an invisible

mode, without changing any state in any cache. The address

mask in the SB entry is set. More details on how Spec-GetS
changes the coherence protocol are given in Section VI-E1.

Similar to conventional core designs, as a Spec-GetS request

is issued, the hardware first tries to reuse any relevant local state.
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However, InvisiSpec reuses only state allocated by prior (in

program order) instructions, to avoid creating new side channels

(Section VII). Specifically, the LQ determines whether there is

any prior load in the LQ that already requested the same line.

If so, and if the line has been received by the SB, InvisiSpec

obtains the line from the SB entry where it is, and copies it to

the requesting USL’s SB entry. If, instead, the line has not yet

been received, the requesting USL modifies the prior load’s

MSHR waiting for the line, so that the line is also delivered to

its own SB entry on arrival. If there is a pending request for

the line by a later (in program order) load, the USL issues a

Spec-GetS that allocates a new MSHR. Having multiple Spec-
GetS in flight for the same address does not pose a problem

because they do not change directory state (Section VI-E1).

Finally, if there is a prior store in the ROB to the same

address, the store data is forwarded to the USL’s destination

register, and to the USL’s SB entry. The Address Mask of the

SB entry is set. Then, a Spec-GetS transaction is still issued

to the cache hierarchy, while recording that, when the line is

received, it should not overwrite the bytes in the SB entry that

are marked by the Address Mask. We choose this design to

treat all SB entries equally: they should contain the data line

that their USLs have read speculatively.

The line requested by a USL arrives at the core: The line is

copied to the SB entry of the requesting USL, and the requested

bytes are passed to the USL’s destination register—unless, as

indicated above, the data has already been forwarded by a store.

The Performed bit of the LQ entry is set. All these operations

are performed for the potentially multiple USLs waiting for

this line. These operations are performed no matter where the

line comes from; in particular, it could come from the local

L1 cache, which remains unchanged.

A USL reaches the visibility point: If the USL’s State in the

LQ is V, InvisiSpec issues a validation; if it is E, InvisiSpec

issues an exposure. These transactions can also reuse MSHRs

of earlier requests (in program order) to the same line.

The response to an exposure or validation arrives: The

incoming line is saved in the local cache hierarchy as in regular

transactions. If this was an exposure response, the requesting

USL may or may not have retired. If it has not, InvisiSpec sets

the USL’s State to C. If this was a validation response, the

USL has not retired and needs to be validated. The validation

proceeds by comparing the bytes that were read by the USL

with the same bytes in the incoming cache line. If they match,

the USL’s State is set to C; otherwise, the USL is squashed—

together with all the subsequent instructions. Squashing moves

the LQ and SB tail pointer forward.

All these operations are performed for the potentially

multiple USLs waiting for this line to become visible. At this

point, InvisiSpec also can perform the early squash operation

of Section V-C2.

Note that, in IS-Spectre, squashing a USL can lead to

squashing subsequent USLs that have already become visible.

Squashing such USLs does not cause any security problem,

because they are safe according to IS-Spectre, and so their

microarchitectural side-effects can be observed.

An incoming cache line invalidation is received: In general,

this event does not affect the lines in the SB; such lines

are invisible to the cache coherence protocol. However, we

implement the optimization of Section V-C2, where some

USLs may be conservatively squashed. Specifically, the LQ is

searched for any USL with the Performed bit set that has read

from the line being invalidated, and that requires validation

(i.e., its State is V). These USLs are conservatively squashed,

together with their subsequent instructions. Of course, as in

conventional cores, the incoming invalidation may affect other

loads in the LQ that have brought lines into the caches.

A cache line is evicted from the local L1: Since the lines in

the SB are invisible to the cache coherence protocol, they are

unaffected. As in conventional cores, the eviction may affect

other loads in the LQ that have brought lines into the caches.

3) Primitive Operations: Table III shows the primitive

operations of the SB. Thanks to the SB design, all the operations

are simple. Only the comparison of data in a validation is in

the critical path.

Operation How It is Done Comple- Critical
xity? Path?

Insert the data line Index the SB with the same Low No
requested by a USL index as the LQ. Fill the entry

Validate an SB entry Use the Address Mask to Low Yes
compare the data in the SB
entry to the incoming data

Copy one SB entry Read the data from one entry Low No
to another and write it to another

TABLE III: Primitive operations of the SB.

B. Supporting Prefetching

InvisiSpec supports software prefetch instructions. Such

instructions follow the same two steps as a USL. The first step

is an “invisible” prefetch that brings a line to the SB without

changing any cache hierarchy state, and allows subsequent

USLs to access the data locally. The second one is an ordinary

prefetch that brings the line to the cache when the prefetch

can be made visible. This second access is an exposure, since

prefetches need not go through memory consistency checks.

To support software prefetches, InvisiSpec increases the size

of a core’s SB and, consequently, LQ. The new size of each

of these structures is equal to the maximum number of loads

and prefetches that can be supported by the core at any given

time. InvisiSpec marks the prefetch entries in the LQ with a

set Prefetch bit.

To be secure, InvisiSpec does not support speculative

hardware prefetching. Only when a load or another instruction

is made visible, can that instruction trigger a hardware prefetch.

C. Per-Core Speculative Buffer in the LLC

InvisiSpec adds a per-core LLC-SB next to the LLC. Its

purpose is to store lines that USLs from the owner core have

requested from main memory, and to provide the lines when

InvisiSpec issues the validations or exposures for the same

loads—hence avoiding a second access to main memory.

To understand the LLC-SB design, consider the case of a

USL that issues a request that will miss in the LLC and access

the LLC-SB. However, before the USL receives the data, the
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USL gets squashed, is re-issued, and re-sends the request to the

LLC-SB. First, for security reasons, we do not want the second

request to use data loaded in the LLC-SB by a prior, squashed

request (Section VII). Hence, InvisiSpec forbids a USL from

obtaining data from the LLC-SB; if a USL request misses in

the LLC, the request bypasses the LLC-SB and accesses main

memory. Second, it is possible that the two USL requests get

reordered on their way to the LLC-SB, which would confuse

the LLC-SB. Hence, we add an Epoch ID to each core, which

is a counter that the hardware increments every time the core

squashes instructions. When a core communicates with its

LLC-SB, it includes its Epoch ID in the message. With this

support, even if two USL requests from different epochs are

reordered in transit, the LLC-SB will know that, given two

requests with different IDs, the one with the higher ID is the

correct one.

We propose a simple design of the per-core LLC-SB, which

can be easily optimized. It is a circular buffer with as many

entries as the LQ, and a one-to-one mapping between LQ and

LLC-SB entries. Each LLC-SB entry stores the data of a line,

its address, and the ID of the epoch when the line was loaded.

USL requests and validation/exposure messages contain the

address requested, the index of the LLC-SB where the data

should be written to or read from, and the current Epoch ID.

With this design, the algorithm works as follows:

A USL request misses in the LLC: The request skips the

LLC-SB and reads the line from memory. Before saving the

line in the indexed LLC-SB entry, it checks the entry’s Epoch

ID. If it is higher than the request’s own Epoch ID, the request

is stale and is dropped. Otherwise, line, address, and Epoch

ID are saved in the entry, and the line is sent to the core.

A validation/exposure request misses in the LLC: The

request checks the indexed LLC-SB entry. If the address

and Epoch ID match, InvisiSpec returns the line to the core,

therefore saving a main memory access. Otherwise, InvisiSpec

accesses main memory and returns the data there to the

core. In both cases, InvisiSpec writes the line into the LLC,

and invalidates the line from the LLC-SBs of all the cores

(including the requesting core). This step is required to purge

future potentially-stale data from the LLC-SBs (Section V-F).

Invalidating the line from the LLC-SBs requires search, but is

not in the critical path, as InvisiSpec does it in the background,

as the line is being read from main memory and/or delivered

to the requesting core.

A safe load misses in the LLC: The request skips the LLC-

SB and gets the line from main memory. In the shadow of the

LLC miss, InvisiSpec invalidates the line from the LLC-SBs

of all the cores, as in the previous case. The line is loaded into

the LLC.

D. Disabling Interrupts

In IS-Future, the hardware can initiate a validation or

exposure only when the USL becomes either (i) non-speculative

because it reaches the ROB head or (ii) speculative non-

squashable by any earlier instruction. If we wait until the

load reaches the ROB head to start the validation, the pipeline

may stall. Therefore, it is best to initiate the validation as soon

as the load becomes speculative non-squashable. As indicated

in Section V-A1, speculative non-squashable loads are loads

that, while not at the ROB head, are preceded in the ROB

only by instructions that cannot be squashed by any of the

squashing events in Table I for Futuristic. As shown in the

table, one of the squashing events is interrupts. Therefore, to

make a load speculative non-squashable, interrupts need to

be delayed from the time that the load would otherwise be

speculative non-squashable, until the time that the load reaches

the ROB head.
To satisfy this condition, InvisiSpec has the ability to

automatically, transparently, and in hardware disable interrupts

for very short periods of time. Specifically, given a USL,

when the hardware notices that none of the instructions earlier

than the USL in the ROB can be squashed by any of the

squashing events in Table I for Futuristic except for interrupts,

the hardware disables interrupts. The validation or exposure of

the USL can then be initiatiated. As soon as the USL reaches

the head of the ROB, interrupts are automatically enabled again.

They remain enabled for at least a minimum period of time,

to ensure that interrupts are not starved.

E. Other Implementation Aspects
1) Changes to the Coherence Protocol: InvisiSpec adds a

new Spec-GetS coherence transaction, which obtains a copy

of the latest version of a cache line from the cache hierarchy

without changing any cache or coherence states. For instance,

in a directory protocol, a Spec-GetS obtains the line from

the directory if the directory owns it; otherwise, the directory

forwards the request to the owner, which sends a copy of the

line to the requester. The directory does not order forwarded

Spec-GetS requests with respect to other coherence transactions,

to avoid making any state changes. For this reason, if a

forwarded Spec-GetS arrives at a core after the core has lost

ownership of the line, the Spec-GetS is bounced back to the

requester, which retries. The requesting USL cannot starve

as a result of such bounces, because eventually it either gets

squashed or becomes safe. In the latter case, it then issues a

standard coherence transaction.
2) Atomic Instructions: Since an atomic instruction involves

a write, InvisiSpec does not execute them speculatively.

Execution is delayed as in current processors.
3) Securing the D-TLB: To prevent a USL from observably

changing the D-TLB state, InvisiSpec uses a simple approach.

First, on a D-TLB miss, it delays serving it via a page table

walk until the USL reaches the point of visibility. If the USL is

squashed prior to that point, no page table walk is performed.

Second, on a D-TLB hit, any observable TLB state changes

such as updating D-TLB replacement state or access/dirty

bits are delayed to the USL’s point of visibility. A more

sophisticated approach would involve using an SB structure

like the one used for the caches.
4) No ABA Issues: In an ABA scenario, a USL reads value

A into the SB, and then the memory location changes to B
and back to A prior to the USL’s validation. An ABA scenario

does not violate the memory model in an InvisiSpec validation.
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VII. SECURITY ANALYSIS

InvisiSpec’s SB and LLC-SB do not create new side channels.

To see why, we consider the ways in which a transient, destined

to be squashed USL (i.e., the transmitter) could try to speed

up or slow down the execution of a load that later retires (i.e.,

the receiver). We note that if this second load is also squashed,

there is no security concern, since a squashed load does not

have side effects, and hence does not pose a threat.

Speeding up. The transmitter could attempt to speed up the

receiver’s execution by accessing the same line as the receiver,

so that the latter would get its data with low latency from the

SB or LLC-SB entry allocated by the transmitter. For this to

happen, the transmitter has to execute before the receiver. In

the following, we show that this side channel cannot happen.

To see why, consider the two possible cases:
a) The transmitter comes before the receiver in program order:
In this case, the receiver has to be issued after the transmitter is

actually squashed. Otherwise, the receiver would be squashed

at the same time as the transmitter is. However, when the

transmitter is squashed, its entries in the SB and LLC-SB

become unusable by a later request: the SB entry’s Valid bit is

reset, and the LLC-SB entry’s Epoch ID tag becomes stale, as

the receiver gets a higher Epoch ID. As a result, the receiver

cannot reuse any state left behind by the transmitter.
b) The transmitter comes after the receiver in program order:
This is the case when, because of out-of-order execution, the

transmitter has already requested the line (and maybe even

loaded it into its own SB or LLC-SB entries) by the time

the receiver requests the line. The receiver could be sped-up

only if it could leverage the transmitter’s earlier request or

buffered data. However, InvisiSpec does not allow a load (USL

or otherwise) to reuse any state (e.g., state in an SB entry or in

an MHSR entry) allocated by a USL that is later in program

order. Instead, the receiver issues its own request to the cache

hierarchy (Section VI-A2) and is unaffected by the transmitter.

For the LLC-SB, the only state reuse allowed occurs when

a validation/exposure for a load reuses the entry left by the

Spec-GetS request of the same load.

Slowing down. The transmitter could attempt to slow down

the receiver’s execution by allocating all the entries in one

of the buffers. But recall that the receiver must retire for

the slow-down to be observable. Therefore, the receiver must

come before the transmitter in program order. However, SB

and LLC-SB entries are allocated at issue time, due to their

correspondence to LQ entries. Therefore, allocation of SB

or LLC-SB entries by the later transmitter cannot affect the

allocation ability of the earlier receiver. Finally, contention on

other resources, such as MSHRs or execution units, could slow

down the receiver, but such side channels are considered out

of scope in this paper (Section III-B).

VIII. EXPERIMENTAL SETUP

To evaluate InvisiSpec, we modify the Gem5 [33] simulator,

which is a cycle-level simulator with support for modeling

the side effects of squashed instructions. We run individual

SPECInt2006 and SPECFP2006 applications [34] on a single

core, and multi-threaded PARSEC applications [35] on 8 cores.

For SPEC, we use the reference input size and skip the first 10

billion instructions; then, we simulate for 1 billion instructions.

For PARSEC we use the simmedium input size and simulate the

whole region-of-interest (ROI). Table IV shows the parameters

of the simulated architecture. When running a SPEC application,

we only enable one bank of the shared cache.

Parameter Value
Architecture 1 core (SPEC) or 8 cores (PARSEC) at 2.0GHz

Core 8-issue, out-of-order, no SMT, 32 Load Queue entries, 32
Store Queue entries, 192 ROB entries, Tournament
branch predictor, 4096 BTB entries, 16 RAS entries

Private L1-I Cache 32KB, 64B line, 4-way, 1 cycle round-trip (RT) lat., 1 port

Private L1-D Cache 64KB, 64B line, 8-way, 1 cycle RT latency, 3 Rd/Wr ports

Shared L2 Cache Per core: 2MB bank, 64B line, 16-way, 8 cycles RT local
latency, 16 cycles RT remote latency (max)

Network 4×2 mesh, 128b link width, 1 cycle latency per hop

Coherence Protocol Directory-based MESI protocol

DRAM RT latency: 50 ns after L2

TABLE IV: Parameters of the simulated architecture.

We model the 5 processor configurations shown in Table V:

Base is a conventional, insecure processor, Fe-Sp inserts a fence

after every indirect/conditional branch, IS-Sp is InvisiSpec-

Spectre, Fe-Fu inserts a fence before every load, and IS-Fu is

InvisiSpec-Future. We model both TSO and RC.

Names Configurations

Base UnsafeBaseline Conventional, insecure baseline processor

Fe-Sp Fence-Spectre Insert a fence after every indirect/conditional branch

IS-Sp InvisiSpec-Spectre USL modifies only SB, and is made visible after
all the preceding branches are resolved

Fe-Fu Fence-Future Insert a fence before every load instruction

IS-Fu InvisiSpec-Future USL modifies only SB, and is made visible when it
is either non-speculative or spec non-squashable

TABLE V: Simulated processor configurations.

In InvisiSpec-Future, a USL is ready to initiate a validation/-

exposure when the following is true for all the instructions

before the USL in the ROB: (i) they cannot suffer exceptions

anymore, (ii) there are no unresolved control-flow instructions,

(iii) all stores have retired into the write buffer, (iv) all

loads have either finished their validation or initiated their

exposure transaction, and (v) all synchronization and fence

instructions have completed. At that point, we temporarily

disable interrupts and initiate the validation/exposure. These

are slightly more conservative conditions than those listed in

Table I for Futuristic.

IX. EVALUATION

A. Proof-of-Concept Defense Analysis

We evaluate the effectiveness of InvisiSpec-Spectre at

defending against the attack in Figure 1. We set the secret value

V to 84. After triggering the misprediction in the victim, the

attacker scans array B and reports the access latency. Figure 5

shows the median access latency for each cache line measured

by the attacker after 100 times.

From the figure, we see that under Base, the attacker

can obtain the secret value. Only the access to the line

corresponding to the secret value hits in the caches, and takes

less than 40 cycles. All the other accesses go to main memory,
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Fig. 4: Normalized execution time of the SPEC applications on the 5 different processor configurations.

Fig. 5: Access latency measured in the code of Figure 1.

and take over 150 cycles. However, with IS-Sp, the attack is

successfully thwarted. All the accesses to all the lines go to

main memory because loads in the mispredicted path of a

branch do not change the cache state, and the SB does not leak

information from squashed loads as discussed in Section VII.

B. Performance Evaluation of the SPEC Applications

Execution time. Figure 4 compares the execution time of

the SPEC applications on the 5 processor configurations of

Table V. From left to right, we show data for each application

under TSO, for the average application under TSO, and for the

average under RC (RC-Average). Each set of bars is normalized

to Base. For IS-Sp and IS-Fu, we show the contribution of the

stall caused by validation operations.

If we focus on the fence-based solutions, we see that they

have high overhead. Under TSO, the average execution time

of Fe-Sp and Fe-Fu is 88% and 246% higher, respectively,

than Base. The overhead of InvisiSpec is lower, although still

significant. Under TSO, the average execution time of IS-Sp
and IS-Fu is 22% and 80% higher, respectively, than Base.

There are three main reasons for the slowdowns of IS-Sp
and IS-Fu: validation stalls, lack of cache state reuse after

branch squash, and contention due to two accesses per load.

We consider each of them in turn.

The figure shows that, for most applications, validation stalls

in IS-Sp and IS-Fu are minor. The reason is that most of

the validations hit in the L1 cache and are served quickly.

Memory-bound applications with high LLC miss rates, such as

libquantum and bwaves, suffer the most from validations. In

these cases, validation hits in the LLC-SB reduce the overhead.

In IS-Sp, the application with the highest execution overhead

is omnetpp (around 100%). The main reason is the lack of

cache state reuse after branch squash. omnetpp has both a high

branch misprediction rate and a high LLC miss rate. In Base,

instructions in a branch path that will be squashed still bring

useful data into the cache, which then speeds-up the execution

of instructions in the correct branch path. This is common in

branches where both directions quickly converge to the same

instruction flow. In contrast, IS-Sp and IS-Fu do not allow

squashed loads to modify the cache.

In IS-Fu, applications with a high rate of memory system

accesses such as gamess, cactusADM, and tonto have the

highest execution time increase (around 100-150%). About 30%

of the instructions in these applications are load instructions.

The resulting high rate of USLs, many inducing two cache

hierarchy accesses, causes contention in the cache hierarchy

and slows down execution.

In RC, the average execution time in IS-Sp and IS-Fu is

20% and 67% higher than in Base. This is a bit less than TSO.

Network traffic. We record the network traffic, measured as the

total number of bytes transmitted between caches, and between

cache and main memory. Figure 6 compares the traffic in the 5

processor configurations of Table V. The bars are organized as

in Figure 4. For IS-Sp and IS-Fu, we show the fraction of the

traffic induced by USLs (SpecLoad) and exposures/validations.

The rest of the bar is due to non-speculative accesses.

Under TSO, the average network traffic in IS-Sp and IS-Fu
is 34% and 60% higher, respectively, than Base. The traffic

increase is about the same under RC.

On average, the traffic in IS-Sp and IS-Fu without the

exposures/validations is a bit higher than in Base. On top

of that, we have the exposure and validation traffic. However,

in some applications—most notably sjeng—the traffic without

exposures/validations is already much higher than Base. The

reason is that these programs have a high branch misprediction

rate. This leads to many USLs that get squashed, increasing the

SpecLoad category. Note that a given load may be squashed

multiple times in a row, if it is in the shadow of multiple

mispredicted branches—inducing a large SpecLoad category. In

programs with a large SpecLoad category, the Expose/Validate
category is usually small. The reason is that, by the time a

USL is squashed for its last time, it may be reissued as a

non-speculative load, and not require exposure/validation.

On average, the traffic in Fe-Sp and Fe-Fu is like in Base.
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Fig. 6: Normalized interconnection network traffic of the SPEC applications on the 5 different processor configurations.

Intuitively, it should be lower than Base because Fe-Sp and

Fe-Fu do not execute speculative instructions. In reality, it can

be shown that, while the data traffic is lower, the instruction

traffic is higher, and the two effects cancel out. The reason is

that our simulation system still fetches speculative instructions

(since this paper only focuses on the data cache hierarchy),

without executing them. Fences in the pipeline cause a larger

volume of instructions fetched in mispredicted branch paths.

C. Performance Evaluation of the PARSEC Applications
Execution time. Figure 7 shows the normalized execution time

of the PARSEC applications on our 5 processor configurations.

The figure is organized as in Figure 4. We see that Fe-Sp and

Fe-Fu increase the average execution time over Base by a

substantial 61% and 171%, respectively. On the other hand,

IS-Sp and IS-Fu increase the execution time by 20% and 65%,

respectively. Similar numbers are attained with RC. These

slowdowns are smaller than in SPEC programs.

Fig. 7: Normalized execution time of the PARSEC applications.

From Figure 7, we see that validation stalls in IS-Sp and

IS-Fu are minimal. This is because many of the validations are

satisfied by the L1 cache. The main reasons for the slowdowns

are the lack of cache state reuse after branch squashes, and

the resource contention caused by two accesses per speculative

load. We consider the higher number of accesses next.
Network traffic. Figure 8 shows the normalized traffic of the

PARSEC applications in our 5 configurations. The figure is

organized as usual. The IS-Sp and IS-Fu bars are broken down

into traffic induced by USLs (SpecLoad), by exposures/valida-

tions, and (the rest of the bar) by non-speculative accesses.
On average, Fe-Sp and Fe-Fu have slightly less traffic than

Base. The main reason is that they do not execute speculative

Fig. 8: Normalized network traffic of the PARSEC applications.

instructions. Under TSO, IS-Sp and IS-Fu increase the traffic by

an average of 14% and 38%, respectively, over Base. Similar

numbers are obtained under RC.

Generally, IS-Sp exhibits modest traffic increases. This

is because these applications have relatively low branch

misprediction rates. IS-Fu has more traffic. A good fraction of

the traffic typically comes from validations and exposures.

D. Characterization of InvisiSpec’s Operation

Table VI shows some statistics related to InvisiSpec’s

operation under TSO. It shows data on 3 SPEC applications,

the average of SPEC, 3 PARSEC applications, and the average

of PARSEC. Columns 3-8 break down the total number of

exposures and validations into exposures, validations that hit

in the L1 cache, and validations that miss in the L1 cache.

We see that a good fraction of the transactions are exposures

(e.g., 37% in SPEC and 31% in PARSEC for IS-Fu). Further,

only a small fraction are validations that miss in L1 (e.g., 12%

in SPEC and 3% in PARSEC for IS-Fu). That is why most

applications do not suffer from long validation stalls.

Columns 9-10 show the number of squashes per 1M
instructions. PARSEC applications have a lower squash rate

than SPEC applications. Columns 11-16 break these events into

the reason for the squash: branch misprediction, consistency

violation, and validation failure. The large majority are caused

by branch mispredictions (e.g., 99% in SPEC and 98% in

PARSEC for IS-Fu), and only a few by consistency violations

(e.g., 1% in SPEC and 2% in PARSEC for IS-Fu). There are

practically no validation failures.

Columns 17-20 show the hit rates in the L1-SB, and in the

LLC-SB. The LLC-SB hit rates only apply to validations and
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Exposures and Validations # Squashes Reason for Squash (%) L1 SB LLC-SB Hit Rate
Application % L1 Hit % L1 Miss Per Branch Consistency Validation Hit Rate in Validations and
Name % Exposures Validations Validations 1M Instructions Misprediction Violation Failure (%) Exposures (%)

Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu

S
P

E
C

sjeng 34.2 49.0 64.7 51.0 1.1 0.0 75449 79105 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 89.5 89.7
libquantum 0.9 1.0 0.0 0.0 99.1 99.0 0 0 100.0 100.0 0.0 0.0 0.0 0.0 3.1 3.8 100.0 100.0
omnetpp 40.6 42.6 50.7 49.5 8.7 7.9 17001 17667 100.0 100.0 0.0 0.0 0.0 0.0 4.8 4.5 99.9 99.8
Average 18.4 37.1 63.9 51.0 17.7 11.9 14734 15277 97.5 99.1 2.5 0.9 0.0 0.0 0.8 1.3 96.2 97.5

PA
R

S
E

C bodytrack 8.5 36.2 88.9 62.7 2.6 1.1 2439 2487 93.2 92.3 6.8 7.7 0.0 0.0 0.2 0.2 97.9 98.1
fluidanimate 23.7 31.7 74.8 66.8 1.5 1.5 4291 4338 100.0 100.0 0.0 0.0 0.0 0.0 0.1 0.3 85.2 96.4
swaptions 15.9 31.2 71.2 67.4 12.9 1.4 2316 2350 97.1 96.8 2.9 3.2 0.0 0.0 0.3 0.1 96.2 96.0
Average 19.3 31.1 73.3 65.5 7.4 3.4 4074 4296 98.2 97.8 1.8 2.2 0.0 0.0 0.2 0.6 89.7 94.0

TABLE VI: Characterization of InvisiSpec’s operation under TSO. Sp and Fu stand for IS-Sp and IS-Fu.

exposures. On average, L1-SB hit rates are very low (1.3%

in SPEC and 0.6% in PARSEC for IS-Fu), while LLC-SB hit

rates are very high (98% in SPEC and 94% in PARSEC for

IS-Fu). High LLC-SB hit rates boost performance.

To give an idea of the range of values observed, the table

also shows data for a few individual applications. Finally, we

collected the same statistics under RC. Under RC, there are

practically no validations (i.e., practically all are exposures).

Further, there are very few consistency violations, and practi-

cally all squashes are due to branch mispredictions.

E. Estimating Hardware Overhead

InvisiSpec adds two main per-core structures, namely, the

L1-SB (a cache) and the LLC-SB (a CAM). We use CACTI

5 [36] to estimate, at 16nm, their area, access time, dynamic

read and write energies, and leakage power. These estimates,

shown in Table VII, do not include their random logic. Overall,

these structures add modest overhead.

Metric L1-SB LLC-SB

Area (mm2) 0.0174 0.0176
Access time (ps) 97.1 97.1
Dynamic read energy (pJ) 4.4 4.4
Dynamic write energy (pJ) 4.3 4.3
Leakage power (mW) 0.56 0.61

TABLE VII: Per-core hardware overhead of InvisiSpec.

X. RELATED WORK

Concurrent to our work, SafeSpec [37] proposes to defend

against speculative execution attacks via a shadow structure

that holds speculative state for caches and TLBs. This structure

is similar to our SB in InvisiSpec. However, SafeSpec does

not handle cache coherence or memory consistency model

issues and, therefore, cannot support multithreaded workloads.

Renau [38] provides a classification of side channel leaks

that result from different predictors present in typical high-

performance cores. He also lists several high-level ideas on

how to protect from speculative time leaks, such as avoiding or

fixing speculative updates. InvisiSpec is different in that it is a

concrete and highly-detailed solution. There have been other

proposals to defend against speculative execution attacks [39],

[6], [40]. As discussed in Section I, they all have performance,

usability, or completeness issues. Further, none of the schemes

considers Futuristic attacks.

Existing defense mechanisms against cache-based side

channel attacks are insufficient to defeat speculative execution

attacks. Cache partition techniques [41], [42], [43] work in

cross-core or SMT settings, but cannot deal with the same-

thread setting (Section III), because they only block cache

interference between different processes or security domains.

Other mechanisms, such as Catalyst [44] and StealthMem [45],

prevent an attacker from observing a victim’s access patterns on

a secure-sensitive region. Such protections are likely ineffective

in speculative execution attacks, where accesses are unlikely

to be within the selected security-sensitive region—e.g., out-

of-bounds array accesses.

Martinez et al. [46] and Bell and Lipasti [30] identify

conditions for an instruction to retire early. We use their ideas.

In addition, Cain and Lipasti [31] propose to enforce memory

consistency by re-executing loads prior to retirement. This is

somewhat similar to InvisiSpec’s validation technique. However,

in their design, there is no equivalent to an exposure. Further,

all of their loads modify the cache.

XI. CONCLUSION AND FUTURE WORK

This paper presented InvisiSpec, a novel approach to defend

against hardware speculation attacks in multiprocessors by

making speculation invisible in the data cache hierarchy. In

InvisiSpec, unsafe speculative loads read data into a speculative

buffer, without modifying the cache hierarchy. When the loads

are safe, they are made visible to the rest of the system through

validations or exposures. We proposed an InvisiSpec design to

defend against Spectre-like attacks, and one to defend against

futuristic attacks where any speculative load may pose a threat.

Our evaluation showed that, under TSO, using fences to defend

against Spectre attacks slows down execution by an average

of 74% over a conventional, insecure processor; InvisiSpec

induces an execution slowdown of only 21%. Using fences to

defend against futuristic attacks slows down execution by an

average of 208%; InvisiSpec induces a slowdown of 72%.

Our current work involves improving InvisiSpec to reduce

its execution overhead. One direction involves leveraging the

fact that many loads can be proven safe in advance, and

do not require InvisiSpec’s hardware. A second one involves

redesigning InvisiSpec’s mechanisms to be more aggressive.
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APPENDIX: ORDERING OF VALIDATIONS AND EXPOSURES

Validation and exposure transactions have to be initiated in

program order to guarantee that TSO memory consistency is
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maintained. To see why, recall that the only load-load reordering

that leads to an observable violation of TSO is one in which

two loads from processor P1, which in program order are

ld(y) first and ld(x) second, interact with two stores from

other processors, st(x) and st(y), such that they end up being

globally ordered as: ld(x) → st(x) → st(y) → ld(y) [47]. In

other words, ld(x) reads a value that gets overwritten by st(x),
st(y) is globally ordered after st(x), and ld(y) reads the value

stored by st(y). Assume that the USLs for ld(y) and ld(x)
have proceeded out of order and resulted in the above global

order. However, in-order initiation of validations/exposures

implies that when ld(x)’s validation is initiated, the USL for

ld(y) has already returned the data. If the latter returned the

value stored by st(y), then the validation of ld(x) must now

obtain the value stored by st(x). Therefore, ld(x)’s validation

will fail, and ld(x) will be squashed. This enforces TSO.

RC does not prevent load-load reordering unless the loads

are separated by a fence or synchronization. Hence, the in-order

validation/exposure initiation requirement can be relaxed. For

simplicity, this paper enforces this ordering for RC as well.
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