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Abstract— Hardware speculation offers a major surface for
micro-architectural covert and side channel attacks. Unfortu-
nately, defending against speculative execution attacks is chal-
lenging. The reason is that speculations destined to be squashed
execute incorrect instructions, outside the scope of what pro-
grammers and compilers reason about. Further, any change to
micro-architectural state made by speculative execution can leak
information.

In this paper, we propose InvisiSpec, a novel strategy to
defend against hardware speculation attacks in multiprocessors
by making speculation invisible in the data cache hierarchy.
InvisiSpec blocks micro-architectural covert and side channels
through the multiprocessor data cache hierarchy due to specula-
tive loads. In InvisiSpec, unsafe speculative loads read data into a
speculative buffer, without modifying the cache hierarchy. When
the loads become safe, InvisiSpec makes them visible to the rest of
the system. InvisiSpec identifies loads that might have violated
memory consistency and, at this time, forces them to perform
a validation step. We propose two InvisiSpec designs: one to
defend against Spectre-like attacks and another to defend against
futuristic attacks, where any speculative load may pose a threat.
Our simulations with 23 SPEC and 9 PARSEC workloads show
that InvisiSpec is effective. Under TSO, using fences to defend
against Spectre attacks slows down execution by 82% relative to a
conventional, insecure processor; InvisiSpec reduces the execution
slowdown to only 5%. Using fences to defend against futuristic
attacks slows down execution by 231%; InvisiSpec reduces the
slowdown to only 17%.

I. INTRODUCTION

The recent disclosure of Spectre [1] and Meltdown [2] has
opened a new chapter in hardware security pertaining to the
dangers of speculative execution. Hardware speculation can
cause execution to proceed in ways that were not intended
by the programmer or compiler. Until recently, this was not
thought to have security implications, as incorrect speculation
is guaranteed to be squashed by the hardware. However, these
attacks demonstrate that squashing incorrect speculative paths
is insufficient for security.

Spectre and Meltdown monitor the micro-architectural foot-
print left by speculation, such as the state left by wrong-path
speculative loads in the cache. This footprint enables micro-
architectural covert or side channels, where an adversary can
infer the speculative thread’s actions. In Meltdown, a user-level
attacker is able to execute a privileged memory load and leak
the memory contents using a cache-based covert channel, all
before the illegal memory load triggers an exception. In Spectre,
the attacker poisons the branch predictor or branch target buffer
to force the victim’s code to speculate down specific paths of

the attacker’s choosing. Different types of attacks are possible,
such as the victim code reading arbitrary memory locations
by speculating that an array bounds check succeeds—allowing
the attacker to glean information through a cache-based side
channel, as shown in Figure 1. In this case, unlike in Meltdown,
there is no exception-inducing load.

1 // cache line size is 64 bytes
2 // secret value V is 1 byte
3 // victim code begins here :
4 uint8 A[10];
5 uint8 B[256∗64];
6 // B size : possible V values ∗ line size
7 void victim ( size t a) {
8 if (a < 10)
9 junk = B[64 ∗ A[a]];

10 }
11 // attacker code begins here :
12 train () ; // train if condition to be true
13 flush (B); // flush every cache line of B
14 call victim (X − &A);
15 scan(B); // access each cache line of B

Fig. 1: Spectre variant 1 at-
tack example, where the at-
tacker obtains secret value V
stored at address X . If the If
condition is predicted as true,
then the V -th cache line in B
is loaded to the cache even
though the load is eventually
squashed.

It can be argued that Meltdown can be fixed with a relatively
modest implementation change: mark the data loaded by an
exception-triggering load as unreadable. However, defending
against Spectre and other forms of speculative execution attacks
that do not cause exceptions presents a two-fold challenge. First,
potentially any instruction performing speculation can result
in an attack. The reason is that speculations destined to be
squashed inherently execute incorrect instructions (so-called
transient instructions), outside the scope of what programmers
and compilers reason about. Since program behavior is unde-
fined, speculative execution attacks will be able to manifest
in many ways, similar to attacks exploiting lack of memory
safety [3]. Second, speculative code that makes any change to
micro-architectural state—e.g., cache occupancy [4] or cache
coherence [5] state—can create covert or side channels.

Given these issues, it is unsurprising that current defenses
against Spectre suffer from either high performance overheads
or incomplete security. For example, consider Spectre variant 1,
where mis-predictions on direct conditional branches can lead
to attacks such as array bounds check bypassing [1]. There is no
current hardware proposal to block it, except for disabling all
speculation, which is clearly unacceptable. In software, current
mitigations are to place LFENCE instructions after sensitive
branches, replace branches with CMOVs, and mask index bits
before the array look-up [6]. Unfortunately, each of these has
usage and/or performance deficiencies—e.g., fences block good
speculation, and masking only helps prevent bounds-bypass



attacks. In addition, these techniques only attempt to block
speculation on branches.

In this paper, we propose InvisiSpec, a novel strategy to
defend against hardware speculation attacks in multiprocessors,
by making speculation invisible in the data cache hierarchy.
The goal is to block micro-architectural covert and side
channels through the multiprocessor data cache hierarchy due
to speculative loads—e.g., channels stemming from cache set
occupancy, line replacement information, and cache coherence
state. We wish to protect against not only Spectre-like attacks
based on branch speculation; we also want to protect against
futuristic attacks where any speculative load may pose a threat.

InvisiSpec’s micro-architecture is based on two mechanisms.
First, unsafe speculative loads read data into a new Speculative
Buffer (SB) instead of into the caches, without modifying
the cache hierarchy. Data in the SB do not observe cache
coherence transactions, which may result in missing memory
consistency violations. Our second mechanism addresses this
problem. When a speculative load is finally safe, the InvisiSpec
hardware makes it visible to the rest of the system by reissuing
it to the memory system and loading the data into the caches.
In this process, if InvisiSpec considers that the load could have
violated memory consistency, InvisiSpec validates that the data
that the load first read is correct—squashing the load if the
data is not correct.

To summarize, this paper makes the following contributions:
1) We present a generalization of speculative execution at-

tacks that goes beyond current Spectre attacks, where any
speculative load may pose a threat.

2) We present a micro-architecture that blocks side and covert
channels during speculation in a multiprocessor data cache
hierarchy.

3) We simulate our design on 23 SPEC and 9 PARSEC
workloads. Under TSO, using fences to defend against
Spectre attacks slows down execution by 82% relative to
a conventional, insecure processor; InvisiSpec reduces the
execution slowdown to only 5%. Using fences to defend
against futuristic attacks slows down execution by 231%;
InvisiSpec reduces the slowdown to only 17%.

II. BACKGROUND AND TERMINOLOGY

A. Out-of-order and Speculative Execution

Out-of-order execution. Dynamically-scheduled proces-
sors [7] execute data-independent instructions in parallel, out
of program order, and thereby exploit instruction-level paral-
lelism [8] to improve performance. Instructions are issued (enter
the scheduling system) in program order, complete (execute
and produce their results) possibly out of program order, and
finally retire (irrevocably modify the architected system state) in
program order. In-order retirement is implemented by queueing
instructions in program order in a reorder buffer (ROB) [9],
and removing a completed instruction from the ROB only once
it reaches the ROB head, i.e., after all prior instructions have
retired.
Speculative execution. Speculative execution is the execution
of an instruction before its validity can be made certain. If, later,

the instruction turns out to be valid, it is eventually retired, and
its speculative execution has improved performance. Otherwise,
the instruction will be squashed and the processor’s state rolled
back to the state before the instruction. (At the same time, all
of the subsequent instructions in the ROB also get squashed.)
Strictly speaking, an instruction executes speculatively in an
out-of-order processor if it executes before it reaches the head
of the ROB.

There are multiple reasons why a speculatively-executed
instruction may end up being squashed. One reason is that a
preceding branch resolves and turns out to be mispredicted.
Another reason is that, when a store or a load resolves the
address that it will access, the address matches that of a
later load that has already obtained its data from that address.
Another reason is memory consistency violations. Finally, other
reasons include various exceptions and the actual squash of
earlier instructions in the ROB.

B. Memory Consistency & Its Connection to Speculation
A memory consistency model (or memory model) specifies

the order in which memory operations are performed by a
core, and are observed by other cores, in a shared-memory
system [10]. When a store retires, its data is deposited into
the write buffer. From there, when the memory consistency
model allows, the data is merged into the cache. We say that
the store is performed when the data is merged into the cache,
and becomes observable by all the other cores. Loads can read
from memory before they reach the ROB head. We say that the
load is performed when it receives data. Loads can read from
memory and be performed out of order—i.e., before earlier
loads and stores in the ROB are. Out-of-order loads can lead
to memory consistency violations, which the core recovers
from using the squash and rollback mechanism of speculative
execution [11]. The details depend on the memory model; we
describe two common models below, which we assume as the
baseline to which InvisiSpec is added.
Total Store Order (TSO) [12], [13] is the memory model of
the x86 architecture. TSO forbids all observable load and store
reorderings except store→load reordering, which is when a load
bypasses an earlier store to a different address. Implementations
prevent observable load→load reordering by ensuring that the
value a load reads when it is performed remains valid when
the load retires. This guarantee is maintained by squashing a
load that has performed, but not yet retired, if the core receives
a cache invalidation request for (or suffers a cache eviction of)
the line read by the load. Store→store reordering is prevented
by using a FIFO write buffer, ensuring that stores perform
in program order. If desired, store→load reordering can be
prevented by separating the store and the load with a fence
instruction, which does not complete until all prior accesses
are performed. Atomic instructions have fence semantics.
Release Consistency (RC) [14] allows any reordering, except
across synchronization instructions. Loads and stores may not
be reordered with a prior acquire or with a subsequent release.
Therefore, RC implementations squash performed loads upon
receiving an invalidation of their cache line only if there is a
prior non-retired acquire, and have a non-FIFO write buffer.
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III. THREAT MODEL

Speculative execution attacks exploit the side effects of
transient instructions—i.e., speculatively-executed instructions
that are destined to be squashed. Specifically, victim programs
speculatively execute access instructions that can write secrets
into general purpose registers or the store queue (see Section IV
for examples). Before such access instructions are squashed,
further speculative transmit instructions may execute and leak
those secrets to adversarial code, the receiver, over a covert
channel. As the access and transmit instructions are transient,
they would not have executed in a non-speculative execution.

Since predictors are not perfect, dangerous access and
transmit instructions may execute in the normal course of
execution. We make conservative (but realistic [1]) assumptions,
and allow the adversary to run arbitrary code before and during
victim execution to influence the victim program’s speculation—
e.g., by changing branch predictor state. We assume that the
processor hardware and the operating system function correctly.

A. Cache Hierarchy-Based Side Channels

In almost all of the known speculative execution attacks,
the adversary transmits over a cache-based side channel. The
adversary exploits the fact that transient load instructions
modify the cache state, which allows the receiver to learn
information out of the victim’s cache state changes.1 The two
most popular techniques for cache-based side channel attacks
are PRIME+PROBE (where the receiver monitors conflicts in
the cache through its own evictions) and FLUSH+RELOAD
(where the receiver uses instructions such as x86’s clflush
to evict the victim’s cache lines). Cache-based side channels
have been demonstrated within and across cores [16], and on
both inclusive and non-inclusive cache hierarchies [17]. Recent
work has also shown side channels from cache coherence state
changes [5] and data TLB state [18].

B. Channels Protected

InvisiSpec blocks covert and side channels that are con-
structed by monitoring the state of any level of a multiprocessor
data cache hierarchy. This includes cache state such as
occupancy (e.g., what lines live in what sets), replacement
information, and coherence information (e.g., whether a line
is in the Exclusive or Shared state). It also includes data TLB
state (e.g., what entries live in the TLB). Our goal is to provide
a complete defense for the data cache hierarchy,2 as it has
been proven to lead to practical attacks [1], [2]. Note that our
mechanism does not preclude protecting additional channels.

Out of scope. Physical side channels (e.g., power [19] or
EM [20]) are out of scope. We also do not protect micro-
architectural channels other than those listed above. One
such example is monitoring the timing of execution units [1],

1The exception is NetSpectre [15]. It uses a timing channel created by
speculative execution, which powers-up SIMD units and thus speeds-up later
SIMD instructions.

2For simplicity, we do not describe the protection of the instruction cache
or instruction TLB. However, we believe they can be protected with similar
or even simpler structures as those we propose for the data cache hierarchy.

including floating-point units [21] and SIMD units [15]—which
can be mitigated by not scheduling the victim and adversary
in adjacent SMT contexts. Other examples are contention on
the network-on-chip [22] or DRAM [23], which may allow an
adversary to learn coarse-grain information about the victim.
We leave protecting these channels as future work.

C. Settings
We block the side and covert channels described in Sec-

tion III-B in the following settings, which differ in where the
adversarial receiver code runs relative to the victim program.

SameThread. The receiver runs in the same thread as the
victim. This case models scenarios such as JavaScript, where
adversarial code, e.g., a malicious advertisement or tab, may be
JITed into an otherwise honest program. As such, we assume
that malicious and honest code temporally multiplex the core.
They share the private caches and TLBs, and the attacker can
snapshot the state of these resources when it becomes active.
On the other hand, it is not possible for malicious code to
learn fine-grain behavior such as exactly when an execution
unit is used.

CrossCore. The receiver runs on a separate physical core.
This case models a multi-tenant cloud scenario where different
VMs are scheduled to different physical cores on the same
socket. The adversary can monitor the last-level cache and its
directory—e.g., how line coherence state changes over time.

SMT. The receiver runs in an adjacent SMT context of the
same core. The threads may share the private caches and/or the
TLB. We note that while our security objective in Section III-B
is only to protect against the monitoring of cache and TLB state,
SMT presents a broader attack surface: fine-grain structures
at the core such as execution units can also be used as covert
or side channels. We leave blocking such channels as future
work.

IV. UNDERSTANDING SPECULATIVE EXECUTION ATTACKS

We discuss the events that can be the source of transient
instructions leading to a security attack. Table I shows examples
of such attacks and what event creates the transient instructions.

Attack What Creates the Transient Instructions
Meltdown Virtual memory exceptionL1 Terminal Fault
Lazy Floating Point

Exception reading a disabled or privileged registerRogue System
Register Read
Spectre Control-flow misprediction
Speculative Address alias between a load and an earlier storeStore Bypass

Futuristic

Various events, such as:
• Exceptions
• Control-flow mispredictions
• Address alias between a load and an earlier store
• Address alias between two loads
• Memory consistency model violations
• Interrupts

TABLE I: Understanding speculative execution attacks.

Exceptions. Several attacks exploit speculation past an
exception-raising instruction. The processor squashes the
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execution when the exception-raising instruction reaches the
head of the ROB, but by this time, dependent transmitting
instructions can leak data. The Meltdown [2] and L1 Terminal
Fault (L1TF) [24], [25] attacks exploit virtual memory-related
exceptions. Meltdown reads a kernel address mapped as
inaccessible to user space in the page table. L1TF reads a
virtual address whose page table entry (PTE) marks the physical
page as not present, but the physical address is still loaded.

The Lazy Floating Point (FP) State Restore attack [26] reads
an FP register after the OS has disabled FP operations, thereby
reading the FP state of another process. The Rogue System
Register Read [26] reads privileged system registers.

Control-flow misprediction. Spectre attacks [1] exploit
control-flow speculation to load from an arbitrary memory
address and leak its value. Variant 1 performs an out-of-
bounds array read, exploiting a branch misprediction of the
array bounds check [1]. Other variants direct the control
flow to an instruction sequence that leaks arbitrary memory,
either through indirect branch misprediction [1], return address
misprediction [27], or an out-of-bounds array write that
redirects the control flow (e.g., by overwriting a return address
on the stack) [28].

Memory-dependence speculation. Speculative Store Bypass
(SSB) attacks [29] exploit a speculative load that bypasses an
earlier store whose address is unresolved, but will resolve to
alias the load’s address [30]. Before the load is squashed, it
obtains stale data, which can be leaked through subsequent
dependent instructions. For example, suppose that a JavaScript
runtime or virtual machine zeroes out memory allocated to a
user thread. Then, this attack can be used to peek at the prior
contents of an allocated buffer. We discovered the SSB attack
in the process of performing this work. While our paper was
under review, a security analysis independently conducted by
Microsoft and Google found this vulnerability [29].

A comprehensive model of speculative execution attacks.
Transient instructions can be created by many events. As long
as an instruction can be squashed, it can create transient
instructions, which can be used to mount a speculative
execution attack. Since we focus on cache-based covert and
side channel attacks, we limit ourselves to load instructions.

We define a Futuristic attack as one that can exploit
any speculative load. Table I shows examples of what can
create transient instructions in a Futuristic attack: all types of
exceptions, control-flow mispredictions, address alias between
a load and an earlier store, address alias between two loads,
memory consistency model violations, and even interrupts.

In the rest of the paper, we present two versions of InvisiSpec:
one that defends against Spectre attacks, and one that defends
against Futuristic attacks.

V. INVISISPEC: THWARTING SPECULATION ATTACKS

A. Main Ideas

1) Unsafe Speculative Loads: Strictly speaking, any load
that initiates a read before it reaches the head of the ROB
is a speculative load. In this work, we are interested in the

(large) subset of speculative loads that can create a security
vulnerability due to speculation. We call these loads Unsafe
Speculative Loads (USLs). The set of speculative loads that
are USLs depends on the attack model.

In the Spectre attack model, USLs are the speculative loads
that follow an unresolved control-flow instruction. As soon as
the control-flow instruction resolves, the USLs that follow it in
the correct path of the branch transition to safe loads—although
they remain speculative.

In our Futuristic attack model, USLs are all the speculative
loads that can be squashed by an earlier instruction. A
USL transitions to a safe load as soon as it becomes either
(i) non-speculative because it reaches the head of the ROB
or (ii) speculative non-squashable by any earlier instruction
(or speculative non-squashable for short). Speculative non-
squashable loads are loads that both (i) are not at the head of the
ROB and (ii) are preceded in the ROB only by instructions that
cannot be squashed by any of the squashing events in Table I for
Futuristic. Note that in the table, one of the squashing events
is interrupts. Hence, making a load safe includes delaying
interrupts until the load reaches the head of the ROB.

To understand why these two conditions allow a USL to
transition to a safe load consider the following. A load at the
ROB head cannot itself be transient; it can be squashed (e.g.,
due to an exception), but it is a correct instruction. The same
can be said about speculative non-squashable loads. This is
because, while not at the ROB head, they cannot be squashed
by any earlier instruction and, hence, can be considered a
logical extension of the instruction at the ROB head.

2) Making USLs Invisible: The idea behind InvisiSpec is to
make USLs invisible. This means that a USL cannot modify
the cache hierarchy in any way that is visible to other threads,
including the coherence states. A USL loads the data into a
special buffer that we call Speculative Buffer (SB), and not
into the local caches. As indicated above, there is a point in
time when the USL can transition to a safe load. At this point,
called the Visibility Point, InvisiSpec takes an action that will
make the USL visible—i.e., will make all the side effects of
the USL in the memory hierarchy apparent to all other threads.
InvisiSpec makes the USL visible by re-loading the data, this
time storing the data in the local caches and changing the
cache hierarchy states. The load may remain speculative.

3) Maintaining Memory Consistency: The Window of Sup-
pressed Visibility for a load is the time period between when
the load is issued as a USL and when it makes itself visible.
During this period, since a USL does not change any coherence
state, the core may fail to receive invalidations directed to the
line loaded by the USL. Therefore, violations of the memory
consistency model by the load run the risk of going undetected.
This is because such violations are ordinarily detected via
incoming invalidations, and are solved by squashing the load.
To solve this problem, InvisiSpec may have to perform a
validation step when it re-loads the data at the load’s visibility
point.

It is possible that the line requested by the USL was already
in the core’s L1 cache when the USL was issued and the
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line loaded into the SB. In this case, the core may receive
an invalidation for the line. However, the USL ignores such
invalidation, as the USL is invisible, and any effects of this
invalidation will be handled at the visibility point.

4) Validation or Exposure of a USL: The operation of re-
loading the data at the visibility point has two flavors: Validation
and Exposure. Validation is the way to make visible a USL that
would have been squashed during the Window of Suppressed
Visibility (due to memory consistency considerations) if, during
that window, the core had received an invalidation for the line
loaded by the USL. A validation operation includes comparing
the actual bytes used by the USL (as stored in the SB) to their
most up-to-date value being loaded from the cache hierarchy. If
they are not the same, the USL and all its successive instructions
are squashed. This is required to satisfy the memory consistency
model. This step is reminiscent of Cain and Lipasti’s value-
based memory ordering [31].

Validations can be expensive. A USL enduring a validation
cannot retire until the transaction finishes—i.e., the line
obtained from the cache hierarchy is loaded into the cache, the
line’s data is compared to the subset of it used in the SB, and
a decision regarding squashing is made. Hence, if the USL is
at the ROB head and the ROB is full, the pipeline stalls.

Thankfully, InvisiSpec identifies many USLs that could not
have violated the memory consistency model during their
Window of Suppressed Visibility, and allows them to become
visible with a cheap Exposure. These are USLs that would not
have been squashed by the memory consistency model during
the Window of Suppressed Visibility if, during that window,
the core had received an invalidation for the line loaded by the
USL. In an exposure, the line returned by the cache hierarchy
is simply stored in the caches without comparison. A USL
enduring an exposure can retire as soon as the line request is
sent to the cache hierarchy. Hence, the USL does not stall the
pipeline.

To summarize, there are two ways to make a USL visible:
validation and exposure. The memory consistency model
determines which one is needed. Figure 2 shows the timeline
of a USL with validation and with exposure.

Window of Suppressed Visibility

Point
Visibility

Retirement

Validation

Window of Suppressed Visibility

Point
Visibility

Retirement

Earliest Possible
Retirement

(a)

Exposure

Earliest Possible
Retirement

(b)

Load is a USL

Load is a USL Load is Safe

Load is Safe

Load is Issued
to Memory

Load is Issued
to Memory

Fig. 2: Timeline of a USL with validation (a) and exposure (b).

B. InvisiSpec Operation

A load in InvisiSpec has two steps. First, when it is issued to
memory as a USL, it accesses the cache hierarchy and obtains
the current version of the requested cache line. The line is only
stored in the local SB, which is as close to the core as the L1
cache. USLs do not modify the cache coherence states, cache
replacement algorithm states, or any other cache hierarchy
state. No other thread, local or remote, can see any changes.
However, the core uses the data returned by the USL to make
progress. The SB stores lines rather than individual words to
exploit spatial locality.

When the USL can be made visible, and always after it
has received its requested cache line, the hardware triggers a
validation or an exposure transaction. Such a transaction re-
requests the line again, this time modifying the cache hierarchy,
and bringing the line to the local caches. As detailed in
Section V-A4, validation and exposure transactions operate
differently and have different performance implications.

We consider two attack models, Spectre and Futuristic, and
propose slightly different InvisiSpec designs to defend against
each of these attacks. In our defense against the Spectre attack,
a USL reaches its visibility point when all of its prior control-
flow instructions resolve. At that point, the hardware issues a
validation or an exposure transaction for the load depending on
the memory consistency model and the load’s position in the
ROB (Section V-C). If multiple USLs can issue validation or
exposure transactions, the transactions have to start in program
order, but can otherwise all overlap (Section V-D).

In our defense against Futuristic attacks, a USL reaches its
visibility point only when: (i) it is not speculative anymore
because it is at the head of the ROB, or (ii) it is still speculative
but cannot be squashed anymore. At that point, the hardware
issues a validation or an exposure for the load depending on
the memory consistency model and the load’s position in the
ROB (Section V-C). If multiple USLs can issue validation or
exposure transactions, the transactions have to be issued in
program order. However, when a validation transaction is issued,
no subsequent validation or exposure transaction can overlap
with it; they all have to wait to be issued until the validation is
complete (Section V-D). On the other hand, when an exposure
transaction is issued, all subsequent exposure transactions up
to, and including, the next validation transaction can overlap
with it (Section V-D).

Overall, in the Spectre and Futuristic defense designs,
pipeline stalls may occur when a validation transaction holds
up the retirement of a load at the head of the ROB and the
ROB is full. This is more likely in Futuristic than in Spectre.

We call these designs InvisiSpec-Spectre (or IS-Spectre)
and InvisiSpec-Future (or IS-Future). They are shown in the
first row of Table II. For comparison, the second row shows
how to defend against these same attacks using fence-based
approaches—following current proposals to defend against
Spectre [32]. We call these designs Fence-Spectre and Fence-
Future. The former places a fence after every indirect or
conditional branch; the latter places a fence before every load.
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Defense Against Spectre Defense Against Futuristic
InvisiSpec-Spectre: InvisiSpec-Future:

Invisi-
Spec
Based

1) Perform invisible loads in
the shadow of an unresolved
BR; 2) Validate or expose
the loads when the BR re-
solves

1) Perform an invisible load if
the load can be squashed while
speculative; 2) Validate or ex-
pose the load when it becomes
either (i) non-speculative or (ii)
un-squashable speculative

Fence Fence-Spectre: Fence-Future:
Based Place a fence after every BR Place a fence before every load

TABLE II: Summary of designs (BR means indirect or
conditional branch.)

Compared to the fence-based designs, InvisiSpec improves
performance. Specifically, loads are speculatively executed as
early as in conventional, insecure machines. One concern is that
validation transactions for loads at the head of the ROB may
stall the pipeline. However, we will show how to maximize
the number of exposures (which cause no stall) at the expense
of the number of validations. Finally, InvisiSpec does create
more cache hierarchy traffic and contention to various cache
ports. The hardware should be designed to handle them.

C. When to Use Validation and Exposure

The memory consistency model determines when to use a
validation and when to use an exposure. Consider TSO first.
In a high-performance TSO implementation, a speculative load
that reads when there is no older load (or fence) in the ROB
will not be squashed by a subsequent incoming invalidation to
the line it read. Hence, such a USL can use an exposure when
it becomes visible. On the other hand, a speculative load that
reads when there is at least one older load (or fence) in the
ROB will be squashed by an invalidation to the line it read.
Hence, such a USL is required to use a validation.

Now consider RC. In this case, only speculative loads that
read when there is at least one earlier fence in the ROB will be
squashed by an invalidation to the line read. Hence, only those
will be required to use a validation; the very large majority of
loads can use exposures.

From this discussion, we see that the design with the highest
chance of observing validations that stall the pipeline is IS-
Future under TSO. To reduce the chance of these events,
InvisiSpec implements two mechanisms. The first one enables
some USLs that would use validations to use exposures instead.
The second one identifies USLs that would use validations,
and squashes them early if there is a high chance that their
validations would fail. We consider these mechanisms next.

1) Transforming a Validation USL into an Exposure USL:
Assume that, under TSO, USL1 initiates a read while there are
earlier loads in the ROB. Ordinarily, InvisiSpec would mark
USL1 as needing a validation. However, assume that, at the
time of issuing the read, all of the loads in the ROB earlier than
USL1 satisfy two conditions: 1) they have already obtained the
data they requested—in particular, if they are USLs, the data
they requested has already arrived at the SB and been passed
to a register, and 2) if they needed to perform validations,
they have completed them. In this case, USL1 is not reordered
relative to any of its earlier loads. As a result, TSO would not
require squashing USL1 on reception of an invalidation to the

line it loaded. Therefore, USL1 is marked as needing exposure,
not validation.

To support this mechanism, we tag each USL with one bit
called Performed. It is set when the data requested by the
USL has been received in the SB and passed to the destination
register. In addition, as we will see in Section VI-A1, we tag
each USL with two state bits to indicate whether the USL
needs a validation or an exposure, and whether the validation
or exposure has completed.

2) Early Squashing of USLs Needing Validations: Assume
that a core receives an invalidation for a line in its cache that
also happens to be loaded into its SB by a USL marked as
needing validation. Receiving an invalidation indicates that the
line has been updated. Such update will typically cause the
validation of the USL at the point of visibility to fail. Validation
could only succeed if this invalidation was caused by false
sharing, or if the net effect of all the updates to the line until the
validation turned out to be silent (i.e., they restored the data to
its initial value). Since these conditions are unlikely, InvisiSpec
squashes such a USL on reception of the invalidation.

There is a second case of a USL with a high chance of
validation failure. Assume that USL1 needs validation and has
data in the SB. Moreover, there is an earlier USL2 to the
same line (but to different words of the line) that also has its
data in the SB and needs validation. When USL2 performs
the validation and brings the line to the core, InvisiSpec also
compares the line to USL1’s data in the SB. If the data are
different, it shows that USL1 has read stale data. At that point,
InvisiSpec conservatively squashes USL1.

D. Overlapping Validations and Exposures

To improve performance, we seek to overlap validation and
exposure transactions as much as possible. To ensure that
overlaps are legal, we propose two requirements. The first
one is related to correctness: during the overlapped execution
of multiple validation and exposure transactions, the memory
consistency model has to be enforced. This is the case even if
some of the loads involved are squashed and restarted.

The second requirement only applies to the Futuristic attack
model, and is related to the cache state: during the overlapped
execution of multiple validation and exposure transactions,
no squashed transaction can change the state of the caches.
This is because the essence of our Futuristic model defense
is to prevent squashed loads from changing the state of the
caches. For the Spectre attack model, this requirement does
not apply because validations and exposures are only issued
for instructions in the correct path of a branch. While some
of these instructions may get squashed (e.g., due to memory
consistency violations) and change the state of the caches, these
are correct program instructions and, hence, pose no threat
under the Spectre attack model

We propose sufficient conditions to ensure the two require-
ments. First, to enforce the correctness requirement, we require
that the validation and exposure transactions of the different
USLs start in program order. This condition, plus the fact that
no validation or exposure for a USL can start until that USL has
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already received the response to its initial speculative request,
ensures that the memory consistency model is enforced. More
details are in the Appendix.

To enforce the second requirement for the Futuristic model,
we require the following conditions. First, if a USL issues a
validation transaction, no subsequent validation or exposure
transaction can overlap with it. This is because, if the validation
fails, it will squash all subsequent loads. Second, if a USL issues
an exposure transaction, all subsequent exposure transactions
up to, and including, the next validation transaction can overlap
with it. This is allowed because exposures never cause squashes.
In the Spectre model defense, validations and exposures can
all overlap—since the cache state requirement does not apply.

Recall that validations and exposures bring cache lines.
Hence, validations and/or exposures to the same cache line
have to be totally ordered.

E. Reusing the Data in the Speculative Buffer

To exploit the spatial locality of a core’s speculative loads, a
USL brings a full cache line into the SB, and sets an Address
Mask that identifies which part of the line is passed to a register.
If a second USL that is later in program order now requests
data from the line that the first USL has already requested or
even brought into the SB, the second USL does not issue a
second cache hierarchy access. Instead, it waits until the first
USL brings the line into the first USL’s SB entry. Then, it
copies the line into its own SB entry, and sets its Address
Mask accordingly.

F. Reducing Main-Memory Accesses

A USL performs two transactions—one when it is first issued,
and one when it validates or exposes. Now, suppose that a
USL’s first access misses in the last level cache (LLC) and
accesses main memory. Then, it is likely that the USL’s second
access is also a long-latency access to main memory.

To improve performance, we design InvisiSpec to avoid this
second main-memory access most of the time. Specifically,
we add a per-core LLC Speculative Buffer (LLC-SB) next to
the LLC. When a USL’s first access reads the line from main
memory, as the line is sent back to the requesting core’s L1
SB, InvisiSpec stores a copy of it in the core’s LLC-SB. Later,
when the USL issues its validation or exposure, it will read
the line from the core’s LLC-SB, skipping the access to main
memory.

If, in between the two accesses, a second core accesses the
line with a validation/exposure or a safe access, InvisiSpec
invalidates the line from the first core’s LLC-SB. This conser-
vatively ensures that the LLC-SB does not hold stale data. In
this case, the validation or exposure transaction of the original
USL will obtain the latest copy of the line from wherever it is
in the cache hierarchy.

VI. DETAILED INVISISPEC DESIGN

A. Speculative Buffer in L1

1) Speculative Buffer Design: InvisiSpec places the SB
close to the core to keep the access latency low. Our main
goal in designing the SB is to keep its operation simple, rather

then minimizing its area; more area-efficient designs can be
developed. Hence, we design the SB with as many entries as
the Load Queue (LQ), and a one-to-one mapping between the
LQ and SB entries (Figure 3).

Address

Valid
Performed
State:
E/V/C/N
Prefetch

Status
Bits

Load Queue
(LQ)

Speculative Buffer
(SB)

Tail Head

Data Line

Address Mask

Fig. 3: Speculative Buffer and its logical connection to the
load queue.

This design makes several operations easy to support. Given
an LQ entry, InvisiSpec can quickly find its corresponding
SB entry. Further, since the LQ can easily find if there are
multiple accesses to the same address, InvisiSpec can also
identify multiple SB entries for the same line. Importantly, it is
trivial to (i) allocate an SB entry for the next load in program
order, (ii) remove the SB entry for a retiring load at the ROB
head, and (iii) remove the SB entries for a set of loads being
squashed. These operations need simple moves of SB’s Head
and Tail pointers—which are the LQ’s Head and Tail pointers.

An SB entry does not store any address. It stores the data
of a cache line plus an Address Mask that indicates which
bytes were read. Each LQ entry has some status bits: Valid,
Performed, State, and Prefetch. Valid records whether the entry
is valid. Performed indicates whether the data requested by
the USL has arrived and is stored in the SB entry. State are
four bits that characterize the state of the load: “requiring an
exposure when it becomes visible” (E), “requiring a validation
when it becomes visible” (V), “exposure or validation has
completed” (C), and “invisible speculation is not necessary for
this load” (N). The latter is used when invisible speculation
is not needed, and the access should go directly to the cache
hierarchy. More than one of these bits can be set at a time.
Recall that the Performed bit and the State bits are used to
change a validation to a cheaper exposure (Section V-C1).
Finally, Prefetch indicates whether this entry corresponds to a
prefetch (Section VI-B).

2) Operation of the Load Queue and Speculative Buffer:
We describe the LQ and SB algorithms at key events.
A load instruction is issued: The hardware allocates an LQ
entry and an SB entry. The LQ entry’s Valid bit is set.
The address of a load is resolved: The load is ready to be
sent to the cache hierarchy. If the load is safe according to
the attack model, the State bits in the LQ entry are set to N
and the load is issued to the cache hierarchy with a normal
coherence transaction. The SB entry will be unused.

Otherwise, the load is a USL, and the State is set to E or V,
as dictated by the memory consistency model (Section V-C).
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The USL is issued to the cache hierarchy with a new Spec-GetS
transaction. This transaction requests the line in an invisible
mode, without changing any state in any cache. The address
mask in the SB entry is set. More details on how Spec-GetS
changes the coherence protocol are given in Section VI-E1.

Similar to conventional core designs, as a Spec-GetS request
is issued, the hardware first tries to reuse any relevant local state.
However, InvisiSpec reuses only state allocated by prior (in
program order) instructions, to avoid creating new side channels
(Section VII). Specifically, the LQ determines whether there is
any prior load in the LQ that already requested the same line.
If so, and if the line has been received by the SB, InvisiSpec
obtains the line from the SB entry where it is, and copies it to
the requesting USL’s SB entry. If, instead, the line has not yet
been received, the requesting USL modifies the prior load’s
MSHR waiting for the line, so that the line is also delivered to
its own SB entry on arrival. If there is a pending request for
the line by a later (in program order) load, the USL issues a
Spec-GetS that allocates a new MSHR. Having multiple Spec-
GetS in flight for the same address does not pose a problem
because they do not change directory state (Section VI-E1).

Finally, if there is a prior store in the ROB to the same
address, the store data is forwarded to the USL’s destination
register, and to the USL’s SB entry. The Address Mask of the
SB entry is set. Then, a Spec-GetS transaction is still issued
to the cache hierarchy, while recording that, when the line is
received, it should not overwrite the bytes in the SB entry that
are marked by the Address Mask. We choose this design to
treat all SB entries equally: they should contain the data line
that their USLs have read speculatively.
The line requested by a USL arrives at the core: The line is
copied to the SB entry of the requesting USL, and the requested
bytes are passed to the USL’s destination register—unless, as
indicated above, the data has already been forwarded by a store.
The Performed bit of the LQ entry is set. All these operations
are performed for the potentially multiple USLs waiting for
this line. These operations are performed no matter where the
line comes from; in particular, it could come from the local
L1 cache, which remains unchanged.
A USL reaches the visibility point: If the USL’s State in the
LQ is V, InvisiSpec issues a validation; if it is E, InvisiSpec
issues an exposure. These transactions can also reuse MSHRs
of earlier requests (in program order) to the same line.
The response to an exposure or validation arrives: The
incoming line is saved in the local cache hierarchy as in regular
transactions. If this was an exposure response, the requesting
USL may or may not have retired. If it has not, InvisiSpec sets
the USL’s State to C. If this was a validation response, the
USL has not retired and needs to be validated. The validation
proceeds by comparing the bytes that were read by the USL
with the same bytes in the incoming cache line. If they match,
the USL’s State is set to C; otherwise, the USL is squashed—
together with all the subsequent instructions. Squashing moves
the LQ and SB tail pointer forward.

All these operations are performed for the potentially
multiple USLs waiting for this line to become visible. At this

point, InvisiSpec also can perform the early squash operation
of Section V-C2.

Note that, in IS-Spectre, squashing a USL can lead to
squashing subsequent USLs that have already become visible.
Squashing such USLs does not cause any security problem,
because they are safe according to IS-Spectre, and so their
microarchitectural side-effects can be observed.
An incoming cache line invalidation is received: In general,
this event does not affect the lines in the SB; such lines
are invisible to the cache coherence protocol. However, we
implement the optimization of Section V-C2, where some
USLs may be conservatively squashed. Specifically, the LQ is
searched for any USL with the Performed bit set that has read
from the line being invalidated, and that requires validation
(i.e., its State is V). These USLs are conservatively squashed,
together with their subsequent instructions. Of course, as in
conventional cores, the incoming invalidation may affect other
loads in the LQ that have brought lines into the caches.
A cache line is evicted from the local L1: Since the lines in
the SB are invisible to the cache coherence protocol, they are
unaffected. As in conventional cores, the eviction may affect
other loads in the LQ that have brought lines into the caches.

3) Primitive Operations: Table III shows the primitive
operations of the SB. Thanks to the SB design, all the operations
are simple. Only the comparison of data in a validation is in
the critical path.

Operation How It is Done Comple- Critical
xity? Path?

Insert the data line Index the SB with the same Low No
requested by a USL index as the LQ. Fill the entry
Validate an SB entry Use the Address Mask to Low Yes

compare the data in the SB
entry to the incoming data

Copy one SB entry Read the data from one entry Low No
to another and write it to another

TABLE III: Primitive operations of the SB.

B. Supporting Prefetching
InvisiSpec supports software prefetch instructions. Such

instructions follow the same two steps as a USL. The first step
is an “invisible” prefetch that brings a line to the SB without
changing any cache hierarchy state, and allows subsequent
USLs to access the data locally. The second one is an ordinary
prefetch that brings the line to the cache when the prefetch
can be made visible. This second access is an exposure, since
prefetches need not go through memory consistency checks.

To support software prefetches, InvisiSpec increases the size
of a core’s SB and, consequently, LQ. The new size of each
of these structures is equal to the maximum number of loads
and prefetches that can be supported by the core at any given
time. InvisiSpec marks the prefetch entries in the LQ with a
set Prefetch bit.

To be secure, InvisiSpec does not support speculative
hardware prefetching. Only when a load or another instruction
is made visible, can that instruction trigger a hardware prefetch.

C. Per-Core Speculative Buffer in the LLC
InvisiSpec adds a per-core LLC-SB next to the LLC. Its

purpose is to store lines that USLs from the owner core have
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requested from main memory, and to provide the lines when
InvisiSpec issues the validations or exposures for the same
loads—hence avoiding a second access to main memory.

To understand the LLC-SB design, consider the case of a
USL that issues a request that will miss in the LLC and access
the LLC-SB. However, before the USL receives the data, the
USL gets squashed, is re-issued, and re-sends the request to the
LLC-SB. First, for security reasons, we do not want the second
request to use data loaded in the LLC-SB by a prior, squashed
request (Section VII). Hence, InvisiSpec forbids a USL from
obtaining data from the LLC-SB; if a USL request misses in
the LLC, the request bypasses the LLC-SB and accesses main
memory. Second, it is possible that the two USL requests get
reordered on their way to the LLC-SB, which would confuse
the LLC-SB. Hence, we add an Epoch ID to each core, which
is a counter that the hardware increments every time the core
squashes instructions. When a core communicates with its
LLC-SB, it includes its Epoch ID in the message. With this
support, even if two USL requests from different epochs are
reordered in transit, the LLC-SB will know that, given two
requests with different IDs, the one with the higher ID is the
correct one.

We propose a simple design of the per-core LLC-SB, which
can be easily optimized. It is a circular buffer with as many
entries as the LQ, and a one-to-one mapping between LQ and
LLC-SB entries. Each LLC-SB entry stores the data of a line,
its address, and the ID of the epoch when the line was loaded.
USL requests and validation/exposure messages contain the
address requested, the index of the LLC-SB where the data
should be written to or read from, and the current Epoch ID.
With this design, the algorithm works as follows:

A USL request misses in the LLC: The request skips the
LLC-SB and reads the line from memory. Before saving the
line in the indexed LLC-SB entry, it checks the entry’s Epoch
ID. If it is higher than the request’s own Epoch ID, the request
is stale and is dropped. Otherwise, line, address, and Epoch
ID are saved in the entry, and the line is sent to the core.

A validation/exposure request misses in the LLC: The
request checks the indexed LLC-SB entry. If the address
and Epoch ID match, InvisiSpec returns the line to the core,
therefore saving a main memory access. Otherwise, InvisiSpec
accesses main memory and returns the data there to the
core. In both cases, InvisiSpec writes the line into the LLC,
and invalidates the line from the LLC-SBs of all the cores
(including the requesting core). This step is required to purge
future potentially-stale data from the LLC-SBs (Section V-F).
Invalidating the line from the LLC-SBs requires search, but is
not in the critical path, as InvisiSpec does it in the background,
as the line is being read from main memory and/or delivered
to the requesting core.

A safe load misses in the LLC: The request skips the LLC-
SB and gets the line from main memory. In the shadow of the
LLC miss, InvisiSpec invalidates the line from the LLC-SBs
of all the cores, as in the previous case. The line is loaded into
the LLC.

D. Disabling Interrupts

In IS-Future, the hardware can initiate a validation or
exposure only when the USL becomes either (i) non-speculative
because it reaches the ROB head or (ii) speculative non-
squashable by any earlier instruction. If we wait until the
load reaches the ROB head to start the validation, the pipeline
may stall. Therefore, it is best to initiate the validation as soon
as the load becomes speculative non-squashable. As indicated
in Section V-A1, speculative non-squashable loads are loads
that, while not at the ROB head, are preceded in the ROB
only by instructions that cannot be squashed by any of the
squashing events in Table I for Futuristic. As shown in the
table, one of the squashing events is interrupts. Therefore, to
make a load speculative non-squashable, interrupts need to
be delayed from the time that the load would otherwise be
speculative non-squashable, until the time that the load reaches
the ROB head.

To satisfy this condition, InvisiSpec has the ability to
automatically, transparently, and in hardware disable interrupts
for very short periods of time. Specifically, given a USL,
when the hardware notices that none of the instructions earlier
than the USL in the ROB can be squashed by any of the
squashing events in Table I for Futuristic except for interrupts,
the hardware disables interrupts. The validation or exposure of
the USL can then be initiatiated. As soon as the USL reaches
the head of the ROB, interrupts are automatically enabled again.
They remain enabled for at least a minimum period of time,
to ensure that interrupts are not starved.

E. Other Implementation Aspects

1) Changes to the Coherence Protocol: InvisiSpec adds a
new Spec-GetS coherence transaction, which obtains a copy
of the latest version of a cache line from the cache hierarchy
without changing any cache or coherence states. For instance,
in a directory protocol, a Spec-GetS obtains the line from
the directory if the directory owns it; otherwise, the directory
forwards the request to the owner, which sends a copy of the
line to the requester. The directory does not order forwarded
Spec-GetS requests with respect to other coherence transactions,
to avoid making any state changes. For this reason, if a
forwarded Spec-GetS arrives at a core after the core has lost
ownership of the line, the Spec-GetS is bounced back to the
requester, which retries. The requesting USL cannot starve
as a result of such bounces, because eventually it either gets
squashed or becomes safe. In the latter case, it then issues a
standard coherence transaction.

2) Atomic Instructions: Since an atomic instruction involves
a write, InvisiSpec does not execute them speculatively.
Execution is delayed as in current processors.

3) Securing the D-TLB: To prevent a USL from observably
changing the D-TLB state, InvisiSpec uses a simple approach.
First, on a D-TLB miss, it delays serving it via a page table
walk until the USL reaches the point of visibility. If the USL is
squashed prior to that point, no page table walk is performed.
Second, on a D-TLB hit, any observable TLB state changes
such as updating D-TLB replacement state or access/dirty
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bits are delayed to the USL’s point of visibility. A more
sophisticated approach would involve using an SB structure
like the one used for the caches.

4) No ABA Issues: In an ABA scenario, a USL reads value
A into the SB, and then the memory location changes to B
and back to A prior to the USL’s validation. An ABA scenario
does not violate the memory model in an InvisiSpec validation.

VII. SECURITY ANALYSIS

InvisiSpec’s SB and LLC-SB do not create new side channels.
To see why, we consider the ways in which a transient, destined
to be squashed USL (i.e., the transmitter) could try to speed
up or slow down the execution of a load that later retires (i.e.,
the receiver). We note that if this second load is also squashed,
there is no security concern, since a squashed load does not
have side effects, and hence does not pose a threat.

Speeding up. The transmitter could attempt to speed up the
receiver’s execution by accessing the same line as the receiver,
so that the latter would get its data with low latency from the
SB or LLC-SB entry allocated by the transmitter. For this to
happen, the transmitter has to execute before the receiver. In
the following, we show that this side channel cannot happen.
To see why, consider the two possible cases:
a) The transmitter comes before the receiver in program order:
In this case, the receiver has to be issued after the transmitter is
actually squashed. Otherwise, the receiver would be squashed
at the same time as the transmitter is. However, when the
transmitter is squashed, its entries in the SB and LLC-SB
become unusable by a later request: the SB entry’s Valid bit is
reset, and the LLC-SB entry’s Epoch ID tag becomes stale, as
the receiver gets a higher Epoch ID. As a result, the receiver
cannot reuse any state left behind by the transmitter.
b) The transmitter comes after the receiver in program order:
This is the case when, because of out-of-order execution, the
transmitter has already requested the line (and maybe even
loaded it into its own SB or LLC-SB entries) by the time
the receiver requests the line. The receiver could be sped-up
only if it could leverage the transmitter’s earlier request or
buffered data. However, InvisiSpec does not allow a load (USL
or otherwise) to reuse any state (e.g., state in an SB entry or in
an MHSR entry) allocated by a USL that is later in program
order. Instead, the receiver issues its own request to the cache
hierarchy (Section VI-A2) and is unaffected by the transmitter.
For the LLC-SB, the only state reuse allowed occurs when
a validation/exposure for a load reuses the entry left by the
Spec-GetS request of the same load.

Slowing down. The transmitter could attempt to slow down
the receiver’s execution by allocating all the entries in one
of the buffers. But recall that the receiver must retire for
the slow-down to be observable. Therefore, the receiver must
come before the transmitter in program order. However, SB
and LLC-SB entries are allocated at issue time, due to their
correspondence to LQ entries. Therefore, allocation of SB
or LLC-SB entries by the later transmitter cannot affect the
allocation ability of the earlier receiver. Finally, contention on
other resources, such as MSHRs or execution units, could slow

down the receiver, but such side channels are considered out
of scope in this paper (Section III-B).

VIII. EXPERIMENTAL SETUP

To evaluate InvisiSpec, we modify the Gem5 [33] simulator,
which is a cycle-level simulator with support for modeling
the side effects of squashed instructions. We run individual
SPECInt2006 and SPECFP2006 applications [34] on a single
core, and multi-threaded PARSEC applications [35] on 8 cores.
For SPEC, we use the reference input size and skip the first 10
billion instructions; then, we simulate for 1 billion instructions.
For PARSEC we use the simmedium input size and simulate the
whole region-of-interest (ROI). Table IV shows the parameters
of the simulated architecture. When running a SPEC application,
we only enable one bank of the shared cache.

Parameter Value
Architecture 1 core (SPEC) or 8 cores (PARSEC) at 2.0GHz
Core 8-issue, out-of-order, no SMT, 32 Load Queue entries, 32

Store Queue entries, 192 ROB entries, Tournament
branch predictor, 4096 BTB entries, 16 RAS entries

Private L1-I Cache 32KB, 64B line, 4-way, 1 cycle round-trip (RT) lat., 1 port
Private L1-D Cache 64KB, 64B line, 8-way, 1 cycle RT latency, 3 Rd/Wr ports
Shared L2 Cache Per core: 2MB bank, 64B line, 16-way, 8 cycles RT local

latency, 16 cycles RT remote latency (max)
Network 4×2 mesh, 128b link width, 1 cycle latency per hop
Coherence Protocol Directory-based MESI protocol
DRAM RT latency: 50 ns after L2

TABLE IV: Parameters of the simulated architecture.

We model the 5 processor configurations shown in Table V:
Base is a conventional, insecure processor, Fe-Sp inserts a fence
after every indirect/conditional branch, IS-Sp is InvisiSpec-
Spectre, Fe-Fu inserts a fence before every load, and IS-Fu is
InvisiSpec-Future. We model both TSO and RC.

Names Configurations
Base UnsafeBaseline Conventional, insecure baseline processor
Fe-Sp Fence-Spectre Insert a fence after every indirect/conditional branch
IS-Sp InvisiSpec-Spectre USL modifies only SB, and is made visible after

all the preceding branches are resolved
Fe-Fu Fence-Future Insert a fence before every load instruction
IS-Fu InvisiSpec-Future USL modifies only SB, and is made visible when it

is either non-speculative or spec non-squashable

TABLE V: Simulated processor configurations.

In InvisiSpec-Future, a USL is ready to initiate a validation/-
exposure when the following is true for all the instructions
before the USL in the ROB: (i) they cannot suffer exceptions
anymore, (ii) there are no unresolved control-flow instructions,
(iii) all stores have retired into the write buffer, (iv) all
loads have either finished their validation or initiated their
exposure transaction, and (v) all synchronization and fence
instructions have completed. At that point, we temporarily
disable interrupts and initiate the validation/exposure. These
are slightly more conservative conditions than those listed in
Table I for Futuristic.

IX. EVALUATION

A. Proof-of-Concept Defense Analysis

We evaluate the effectiveness of InvisiSpec-Spectre at
defending against the attack in Figure 1. We set the secret value
V to 84. After triggering the misprediction in the victim, the
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Fig. 4: Normalized execution time of the SPEC applications on the 5 different processor configurations.

attacker scans array B and reports the access latency. Figure 5
shows the median access latency for each cache line measured
by the attacker after 100 times.
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Fig. 5: Access latency measured in the code of Figure 1.

From the figure, we see that under Base, the attacker
can obtain the secret value. Only the access to the line
corresponding to the secret value hits in the caches, and takes
less than 40 cycles. All the other accesses go to main memory,
and take over 150 cycles. However, with IS-Sp, the attack is
successfully thwarted. All the accesses to all the lines go to
main memory because loads in the mispredicted path of a
branch do not change the cache state, and the SB does not leak
information from squashed loads as discussed in Section VII.

B. Performance Evaluation of the SPEC Applications

Execution time. Figure 4 compares the execution time of
the SPEC applications on the 5 processor configurations of
Table V. From left to right, we show data for each application
under TSO, for the average application under TSO, and for the
average under RC (RC-Average). Each set of bars is normalized
to Base.

If we focus on the fence-based solutions, we see that they
have high overhead. Under TSO, the average execution time of
Fe-Sp and Fe-Fu is 88% and 246% higher, respectively, than
Base. The overhead of InvisiSpec is very small. Under TSO,
the average execution time of IS-Sp and IS-Fu is 7.6% and
18.2% higher, respectively, than Base.

There are three main reasons for the slowdowns of IS-Sp
and IS-Fu: validation stalls, TLB miss stalls, and contention
due to two accesses per load. We consider each of them in
turn.

For IS-Sp and IS-Fu, the figure shows the contribution of the
stall caused by validation operations. However, such stalls are
so small that they cannot be seen in the figure. The reason is
that most of the validations hit in the L1 cache and are served
quickly.

In IS-Sp, the application with the highest execution overhead
is omnetpp (around 80%). The main reason is that omnetpp
suffers many TLB misses. In Base, TLB misses are not delayed,
as they are served speculatively. In contrast, in IS-Sp and IS-
Fu, TLB misses are not served until the corresponding USL
reaches its visibility point.

In some applications, a high rate of cache-missing USLs,
many inducing two cache hierarchy accesses, causes contention
in the cache hierarchy and slows down execution. Specifically,
in IS-Fu, applications with a high number of L1 misses per kilo-
instruction, such as libquantum and GemsFDTD, have some of
the highest execution time increase (around 40-50%). These
applications have about 30 L1 misses per kilo-instruction.

In RC, the trends are similar. The average execution time in
IS-Sp and IS-Fu is 8.2% and 16.8% higher than in Base.
Network traffic. We record the network traffic, measured
as the total number of bytes transmitted between caches, or
between cache and main memory. Figure 6 compares the
traffic in the 5 processor configurations of Table V. The bars
are organized as in Figure 4. For IS-Sp and IS-Fu, we also
show the fraction of the traffic induced by USLs (SpecLoad)
and exposures/validations. The rest of the bar is due to non-
speculative accesses.

Under TSO, the average network traffic in IS-Sp and IS-Fu
is 35% and 59% higher, respectively, than Base. The traffic
increase is about the same under RC.

The higher traffic in IS-Sp and IS-Fu is due to the com-
bination of the impact of the USLs (SpecLoad) and of the
exposures/validations. In some applications such as sjeng, the
traffic without exposures/validations is already substantially
higher than Base. The reason is that these applications have
a high branch misprediction rate, and a given load may be
squashed multiple times in a row — if it is in the shadow of
other mispredicted branches. In IS-Sp and IS-Fu, every time
that a given USL is re-issued to the same address after its
squash, it creates traffic; in Base, re-issuing a load to the same
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Fig. 6: Normalized interconnection network traffic of the SPEC applications on the 5 different processor configurations.

address after its squash creates no network traffic. This is the
reason some applications have a large SpecLoad category.

In applications with a large SpecLoad category, the Expose/-
Validate category is usually small. The reason is that, by the
time a USL is squashed for its last time, it may be reissued as
a non-speculative load, and not require exposure/validation.

On average, the traffic in Fe-Sp and Fe-Fu is like in Base.
Intuitively, it should be lower than Base because Fe-Sp and
Fe-Fu do not execute speculative instructions. In reality, it can
be shown that, while the data traffic is lower, the instruction
traffic is higher, and the two effects cancel out. The reason is
that our simulation system still fetches speculative instructions
(since this paper only focuses on the data cache hierarchy),
without executing them. Fences in the pipeline cause a larger
volume of instructions fetched in mispredicted branch paths.

C. Performance Evaluation of the PARSEC Applications

Execution time. Figure 7 shows the normalized execution time
of the PARSEC applications on our 5 processor configurations.
The figure is organized as in Figure 4. We see that, under TSO,
IS-Sp decreases the average execution time over Base by 0.8%,
and IS-Fu increases it by 13.7%. Under RC, IS-Sp and IS-Fu
increase the average execution time over Base by 3.0% and
14.8%, respectively. These slowdowns are smaller than in the
SPEC programs.
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Fig. 7: Normalized execution time of the PARSEC applications.

From Figure 7, we again see that validation stalls in IS-Sp
and IS-Fu are negligible. The main reason for the slowdowns
in most applications is the resource contention caused by
two accesses per speculative load. However, among all of
the applications, blackscholes and swaptions are faster under

IS-Sp and IS-Fu than under Base. This effect occurs because
of a reduction in the number of pipeline squashes due to the
eviction of cache lines from the L1 cache. Specifically, in Base,
we model existing processors, which conservatively squash
any in-flight load upon receiving an invalidation message for
the line read by the load, or upon evicting the line read by
the load from the L1 cache. In contrast, our InvisiSpec design
does not squash the pipeline on reception of an invalidation
for the line read by a load marked as only needing exposure,
or on eviction from the L1 of the line read by a load marked
as only needing exposure.

This is a correct implementation that saves InvisiSpec many
squashes. For example, blackscholes suffers from more than
2M squashes due to L1 evictions in Base, while few occur
in IS-Sp and IS-Fu. swaptions has more than 5 times more
squashes due to L1 evictions in Base than in IS-Sp and IS-Fu.
Excluding blackscholes and swaptions, under TSO, IS-Sp and
IS-Fu increase the average execution time of the applications
by 8% and 24%, respectively, over Base.

We also see that Fe-Sp and Fe-Fu increase the average
execution time over Base by a substantial 67% and 190%,
respectively, under TSO. Higher numbers are seen under RC.
Network traffic. Figure 8 shows the normalized traffic of
the PARSEC applications in our 5 configurations. The figure
is organized as usual. The IS-Sp and IS-Fu bars are broken
down into traffic induced by USLs (SpecLoad), by exposures/-
validations, and by non-speculative accesses (the rest of the
bar).
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Fig. 8: Normalized network traffic of the PARSEC applications.

On average, Fe-Sp and Fe-Fu have less traffic than Base. The
main reason is that they do not execute speculative instructions.
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Exposures and Validations # Squashes Reason for Squash (%) L1 SB LLC-SB Hit Rate
Application % L1 Hit % L1 Miss Per Branch Consistency Validation Hit Rate in Validations and
Name % Exposures Validations Validations 1M Instructions Misprediction Violation Failure (%) Exposures (%)

Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu

SP
E

C

sjeng 26.6 37.5 68.9 62.5 4.4 0.0 73,752 73,996 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 99.7
libquantum 13.9 13.4 0.1 0.0 86.0 86.6 0 0 100.0 100.0 0.0 0.0 0.0 0.0 5.6 5.4 100.0 100.0
omnetpp 43.9 44.9 47.0 46.9 9.1 8.2 15,890 16,139 100.0 100.0 0.0 0.0 0.0 0.0 4.8 4.4 100.0 100.0
Average 14.7 15.7 71.3 73.3 14.0 11.0 14,816 14,905 97.1 97.4 2.9 2.6 0.0 0.0 0.6 1.9 99.9 99.8

PA
R

SE
C bodytrack 4.2 3.3 87.3 90.5 8.5 6.2 1,974 1,735 95.4 94.3 4.6 5.7 0.0 0.0 0.5 0.8 99.7 99.4

fluidanimate 6.4 6.7 92.9 92.4 0.7 0.9 4,961 4,983 99.8 99.9 0.2 0.1 0.0 0.0 0.1 3.5 100.0 99.9
swaptions 4.5 5.6 88.0 92.3 7.5 2.1 4,556 4,724 61.8 62.4 38.2 37.6 0.0 0.0 3.5 0.8 99.6 98.8
Average 9.0 6.8 83.7 87.8 7.3 5.4 4,527 4,524 87.7 87.7 12.3 12.3 0.0 0.0 1.5 2.4 99.3 99.5

TABLE VI: Characterization of InvisiSpec’s operation under TSO. Sp and Fu stand for IS-Sp and IS-Fu.

Under TSO, IS-Sp and IS-Fu increase the traffic by an average
of 13% and 33%, respectively, over Base. Slightly higher
numbers are observed under RC.

Generally, IS-Sp and IS-Fu have higher traffic than Base.
However, in two applications—blackscholes and swaptions—
the traffic is lower in the InvisiSpec-based configurations (and
in the fence-based ones) than in Base. The reason is that, as
mentioned before, these two applications have more pipeline
squashes due to L1 evictions in Base. This leads to more
memory accesses being re-executed, resulting in higher traffic.

D. Characterization of InvisiSpec’s Operation

Table VI shows some statistics related to InvisiSpec’s
operation under TSO. It shows data on 3 SPEC applications,
the average of SPEC, 3 PARSEC applications, and the average
of PARSEC. Columns 3-8 break down the total number of
exposures and validations into exposures, validations that hit
in the L1 cache, and validations that miss in the L1 cache. We
see that a modest fraction of the transactions are exposures
(e.g., 16% in SPEC and 7% in PARSEC for IS-Fu). Further, a
big fraction are validations that hit in L1 (e.g., 73% in SPEC
and 88% in PARSEC for IS-Fu). This is why overall validation
stall is negligible.

Columns 9-10 show the number of squashes per 1M
instructions. On average, PARSEC applications have a lower
squash rate than SPEC applications. Columns 11-16 break
down these events into the reason for the squash: branch
misprediction, consistency violation, and validation failure.
The large majority are caused by branch mispredictions (e.g.,
97% in SPEC and 88% in PARSEC for IS-Fu), and only a
few by consistency violations (e.g., 2.6% in SPEC and 12%
in PARSEC for IS-Fu). There are practically no validation
failures.

Columns 17-20 show the hit rates in the L1-SB, and in the
LLC-SB. The LLC-SB hit rates only apply to validations and
exposures. On average, L1-SB hit rates are very low (1.9%
in SPEC and 2.4% in PARSEC for IS-Fu), while LLC-SB hit
rates are very high (99.8% in SPEC and 99.5% in PARSEC
for IS-Fu). High LLC-SB hit rates boost performance.

To give an idea of the range of values observed, the table
also shows data for a few individual applications. Finally, we
collected the same statistics under RC. Under RC, there are
practically no validations (i.e., practically all are exposures).
Further, there are very few consistency violations, and practi-
cally all the squashes are due to branch mispredictions.

E. Estimating Hardware Overhead
InvisiSpec adds two main per-core structures, namely, the

L1-SB (a cache) and the LLC-SB (a CAM). We use CACTI
5 [36] to estimate, at 16nm, their area, access time, dynamic
read and write energies, and leakage power. These estimates,
shown in Table VII, do not include their random logic. Overall,
these structures add modest overhead.

Metric L1-SB LLC-SB
Area (mm2) 0.0174 0.0176
Access time (ps) 97.1 97.1
Dynamic read energy (pJ) 4.4 4.4
Dynamic write energy (pJ) 4.3 4.3
Leakage power (mW) 0.56 0.61

TABLE VII: Per-core hardware overhead of InvisiSpec.

X. RELATED WORK

Concurrent to our work, SafeSpec [37] proposes to defend
against speculative execution attacks via a shadow structure
that holds speculative state for caches and TLBs. This structure
is similar to our SB in InvisiSpec. However, SafeSpec does
not handle cache coherence or memory consistency model
issues and, therefore, cannot support multithreaded workloads.
Renau [38] provides a classification of side channel leaks
that result from different predictors present in typical high-
performance cores. He also lists several high-level ideas on
how to protect from speculative time leaks, such as avoiding or
fixing speculative updates. InvisiSpec is different in that it is a
concrete and highly-detailed solution. There have been other
proposals to defend against speculative execution attacks [39],
[6], [40]. As discussed in Section I, they all have performance,
usability, or completeness issues. Further, none of the schemes
considers Futuristic attacks.

Existing defense mechanisms against cache-based side
channel attacks are insufficient to defeat speculative execution
attacks. Cache partition techniques [41], [42], [43] work in
cross-core or SMT settings, but cannot deal with the same-
thread setting (Section III), because they only block cache
interference between different processes or security domains.
Other mechanisms, such as Catalyst [44] and StealthMem [45],
prevent an attacker from observing a victim’s access patterns on
a secure-sensitive region. Such protections are likely ineffective
in speculative execution attacks, where accesses are unlikely
to be within the selected security-sensitive region—e.g., out-
of-bounds array accesses.

Martinez et al. [46] and Bell and Lipasti [30] identify
conditions for an instruction to retire early. We use their ideas.
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In addition, Cain and Lipasti [31] propose to enforce memory
consistency by re-executing loads prior to retirement. This is
somewhat similar to InvisiSpec’s validation technique. However,
in their design, there is no equivalent to an exposure. Further,
all of their loads modify the cache.

XI. CONCLUSION AND FUTURE WORK

This paper presented InvisiSpec, a novel approach to defend
against hardware speculation attacks in multiprocessors by
making speculation invisible in the data cache hierarchy. In
InvisiSpec, unsafe speculative loads read data into a speculative
buffer, without modifying the cache hierarchy. When the loads
are safe, they are made visible to the rest of the system through
validations or exposures. We proposed an InvisiSpec design to
defend against Spectre-like attacks, and one to defend against
futuristic attacks where any speculative load may pose a threat.
Our evaluation showed that, under TSO, using fences to defend
against Spectre attacks slows down execution by 82% relative
to a conventional, insecure processor; InvisiSpec reduces the
execution slowdown to only 5%. Using fences to defend against
futuristic attacks slows down execution by 231%; InvisiSpec
reduces the slowdown to only 17%.

Our current work involves improving InvisiSpec to reduce
its execution overhead. One direction involves leveraging the
fact that many loads can be proven safe in advance, and
do not require InvisiSpec’s hardware. A second one involves
redesigning InvisiSpec’s mechanisms to be more aggressive.
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APPENDIX: ORDERING OF VALIDATIONS AND EXPOSURES

Validation and exposure transactions have to be initiated in
program order to guarantee that TSO memory consistency is
maintained. To see why, recall that the only load-load reordering
that leads to an observable violation of TSO is one in which
two loads from processor P1, which in program order are ld(y)
first and ld(x) second, interact with two stores from other pro-
cessors, st(x) and st(y), such that they end up being globally
ordered in a cycle as: ld(x) → st(x) → st(y) → ld(y) [47].
In other words, ld(x) reads a value that gets overwritten by
st(x), st(y) is globally ordered after st(x), and ld(y) reads
the value stored by st(y). We now prove that such global order
is not possible.

We start by defining what it means for a load ld(x) to be
ordered between two writes to the same variable as in the
expression st(x) → ld(x) → st′(x). In InvisiSpec, the ld(x)
can be of one of three types: (i) a safe load, (ii) an unsafe
speculative load (USL) that is followed by an exposure, or
(iii) a USL that is followed by a validation. For type (i), the
order expression above is clear. For type (ii), the ld(x) in the
expression is the USL access and not the exposure access,
since the data returned by the exposure never reaches the
pipeline. Finally, for type (iii), the ld(x) in the expression
is the validation access and not the USL access, since the

data returned by the validation is the one that confirms the
correctness of the transaction.

To prove that the cycle ld(x) → st(x) → st(y) → ld(y)
is impossible, we consider nine cases, namely the first load
ld(y) ∈ {safe, USL with exposure, USL with validation} and
the second load ld(x) ∈ {safe, USL with exposure, USL with
validation}. We consider each case in turn.

1) ld(x) is safe. In this case, the first load ld(y) can only
be safe. Further, when both ld(y) and ld(x) are safe, the
conventional architecture design ensures that the cycle
cannot be formed.

2) ld(x) is a USL with validation. This is impossible because
if ld(x)’s validation did read a value that got overwritten
by st(x) before ld(y) committed, the resulting invalidation
would squash ld(x).

3) ld(x) is a USL with exposure and ld(y) is safe. This case
cannot create a cycle because the condition for ld(x) to
be a USL with exposure is that ld(y)’s read must have
received its requested data before ld(x) reads.

4) ld(y) and ld(x) are both USLs with exposures. This case
cannot create a cycle for the same reason as Case 3.

5) ld(x) is a USL with exposure and ld(y) is a USL with
validation. This case cannot create a cycle because one
condition for ld(x) to be a USL with exposure is that
ld(y)’s validation is completed before ld(x) reads.

Therefore, our conditions of Sections V-C and V-D are
sufficient to maintain the TSO consistency model.

RC does not prevent load-load reordering unless the loads
are separated by a fence or synchronization. Hence, the in-order
validation/exposure initiation requirement can be relaxed. For
simplicity, this paper enforces this ordering for RC as well.
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