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A Retrospective on Path ORAM

Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren

Abstract—Path oblivious RAM (ORAM) is an ORAM pro-
tocol that simultaneously enjoys simplicity and efficiency. As a
result, it holds promise to provide cryptographic-grade and prac-
tical access pattern protection in multiple application domains,
including but not limited to secure hardware. In this paper, we
review Path ORAM’s key ideas and contribution, summarize its
impact and subsequent works, and discuss future directions.

Index Terms—Computer security, cryptographic protocols,
microprocessors, side-channel attacks.

I. INTRODUCTION

MAGINE that a client would like to outsource a database
Iof sensitive records to an untrusted server. To protect the
privacy of the data, the client encrypts all records before
uploading them to the server. However, it is well-known
that encryption alone is not sufficient for ensuring privacy;
numerous works have shown that by observing the access pat-
terns alone, very sensitive information can be reconstructed
[71, [34]-[36], [65], [71], [76]. As a simple example, if the
client is performing binary searches on sorted records, the
sequence of memory accesses reveals whether a small or large
key is being searched.

Therefore, the client would like to “encrypt” the
access patterns as well. The ground-breaking works by
Goldreich et al. [26], [27] introduced oblivious RAM
(ORAM), an algorithm that obfuscates access patterns to data
such that no information is leaked. Their ingenious con-
struction accomplishes this by permutating (encrypted) data
blocks stored on the server and periodic reshuffling data
around. Their construction incurs 0(10g3 N) bandwidth over-
head. Throughout this paper, N denotes the total number of
logical blocks.

Goldreich and Ostrovsky’s work was an amazing theoretical
breakthrough. At the same time, it raised major questions that
have intrigued the community since. On the theoretical front,
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a lower bound was shown by Goldreich and Ostrovsky [27],
and recently strengthened by Larsen and Nielsen [37], that
any ORAM scheme must suffer from 2 (log N) bandwidth
overhead. Can we bridge the gap between upper and lower
bounds in bandwidth? On the practical side, Goldreich and
Ostrovksy’s construction would have incurred 103 x~10°x
overhead in practice for a medium-sized database (e.g., one
that contains millions of blocks). Can we ever hope to get
ORAMs adopted in practice?

The main technical tool behind Goldreich and Ostrovsky’s
construction is for the client to carefully maintain (on the
server) a hierarchy of data structures of geometrically growing
sizes—for this reason, Goldreich and Ostrovsky’s paradigm is
commonly referred to as “hierarchical ORAMSs.” Since then,
several subsequent works [28], [69], [70] improved hierachical
ORAMs.

It was not until 2011 that a fundamentally new paradigm
for constructing ORAMs, commonly referred to as the tree-
based framework, was proposed in a work by Shi ef al. [58].
The tree-based paradigm captured the community’s atten-
tion primarily due to its conceptual simplicity. Although
Shi et al’s [58] initial tree-based ORAM still suffers from
O(log® N) overhead, a line of subsequent works have quickly
improved the asymptotical and practical performance of tree-
based ORAMs [10], [13], [23], [53], [63]. Among these works,
Path ORAM [63] is arguably the most well-known.

With an extremely simple construction that can be described
in only 15 lines of pseudo-code (Fig. 1), Path ORAM made a
leap forward in answering the above open challenges.

1) On the practical side, Path ORAM or its close vari-
ants have become the scheme of choice in multiple
research communities, including secure hardware, cloud
computing, and secure multiparty computation.

2) On the theoretical front, Path ORAM was the first small
client storage scheme to match the logarithmic lower
bound for some parameter regimes.

3) Last but not least, Path ORAM is also an ideal candidate
for learning ORAM and for pedagogy.

Organization: Section II reviews the Path ORAM scheme
and result. We will summarize the broad applications and
impact of Path ORAM in Section III, and then end this paper
by discussing future directions.

II. PATH ORAM REVIEW
A. ORAM Definition

An ORAM scheme is an algorithm running on a trusted
client that translates the client’s logical memory requests to a
sequence of accesses to an untrusted storage server. Depending
on the application scenario, the client may be a CPU, an
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enclave, or a user of some cloud storage service. An ORAM
scheme provides a standard memory abstraction where a client
can make two types of requests of the form (read, a, 1) or
(write, a, data*): both instructions would return the current
contents residing at logical address a and the latter addition-
ally updates the contents at @ with data*. An ORAM scheme
is said to be secure if for any two logical request sequences
of the same length Iy and Ij, the physical access patterns
produced by the scheme (i.e., the sequence of physical loca-
tions accessed) are indistinguishable. Note that this definition
implies that the physical access patterns do not reveal the log-
ical address, the operation (read versus write), or the data of
any request.

B. Protocol

Path  ORAM follows the tree-based paradigm of
Shi et al. [58] and organizes untrusted server-side stor-
age as a binary tree of height L = O(logN). Each node in
the tree is a bucket that has Z = O(1) slots to store logical
data blocks. Every slot stores either a real block or a dummy
block. Every time a block is updated on the server, the block
is re-encrypted by the client using fresh randomness.

Each block is assigned to a path in the binary tree. Path
ORAM maintains the following key invariant: At all times,
each data block occupies a slot in some bucket on the path
it is assigned to, or is stored locally in a client-side data
structure called the stash.

To aid understanding, we shall first make a simplifying
assumption that the client locally stores the block-to-path map-
ping for all blocks—this auxiliary data structure is called a
position map. We later discuss how to remove this assumption.

With the above invariant, reading/writing a block in Path
ORAM is done through the algorithm in Fig. 1. To elaborate,
it consists of the following steps.

1) The client looks up the position map to determine the

path that the block is mapped to (line 1).

2) The client downloads all blocks in all buckets along that
path, decrypts those blocks and adds them to the stash
(lines 2—4). By the invariant, the block of interest now
lives in the stash. The client can now update the block’s
data if the operation was a write (lines 5 and 6).

3) The client flips coins to assign a new random path
to the accessed block by updating the position map
(lines 7 and 8).

4) The client re-encrypts and uploads as many blocks as
possible in the stash back to the binary tree, along the
same path the client read in Step 2, placing the blocks as
close to the leaf nodes as possible while still respecting
the invariant (lines 9—14).

Security, Correctness, and Efficiency: In the above protocol,
every read or write request requires the client to download
and upload a random path. The choice of the random path
was determined when the block was last accessed and has not
been revealed to the server prior to this access. Thus, security
of the protocol is easy to see.

The concrete bandwidth overhead (without recursion)
is exactly 2(L 4+ 1)Z = ©(logN). The Path ORAM
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Access(op, a, data™):

1: © + position|a]
2: for £ € {0,1,...,L} do
S « S U DownloadBucket(P(z, ¢))
: end for

3
4
5: data < Read block a from S

6: data”® < (op = write) ? data” : data

7: position[a] <— z* + UniformRandom(0...2L — 1)
8: S« (S—{(a,z,data)}) U {(a,z*,data™)}

9: for e {L,L—1,...,0} do

10: S+ {(a/,a',data’) € S : P(x,0) = P(2’,0)}
11: S’ + Select min(|S’|, Z) blocks from S’.

12: S+ S5-98

13: UploadBucket(P(z, ¢),S")

14: end for

15: return data

Fig. 1. Protocol for Path ORAM access. Read or write a data block identified
by a. If op = read, the input parameter data® = None, and the Access
operation reads block a from the ORAM. If op = write, the Access operation
writes the specified data® to the block identified by a and returns the block’s
old data. position is the position map. S is the stash. L is the depth of the
tree. P(x, £) is the £th bucket (counting from root to leaf) on path x. Z is the
number of slots per bucket.

papers [60], [63] provided a stochastic analysis that proved the
following result: As long as the bucket size Z > 5 and the tree
height L > [log N1, then over T number of accesses, the stash
size never exceeds R except with T - exp(—S2(R)) probability.
Experiments show that Z = 4 with L = [log N1—1 works well
in practice. Further decreasing Z or L would require additional
mechanisms and new analysis to make sure the stash remains
small [55].

Recursion: One remaining issue is the position map size,
which has ®(N) entries (one for each block). This structure
can be shrunk to as small as a constant number of entries by
applying the ORAM recursion trick proposed in Shi et al. [58].
The idea is to store the original position map in a second Path
ORAM. The position map of this second ORAM is smaller
than the original one. This process can be repeated until the
position map becomes small enough to fit in client storage.
We remark that, in order to get the aforementioned O(log N)
bandwidth overhead, it is crucial to use ®(log N)-bit blocks
for position map ORAMs, regardless of the data block size B.
With this parametrization suggested in the journal version [60],
Path ORAM consumes a bandwidth of O(BlogN + log® N)
measured in bits, which is O(BlogQN) if B = Q(log2 N). The
conference version [63] did not adopt this parametrization and
had suboptimal bandwidth.

III. IMPACT AND SUBSEQUENT WORKS

Since its proposal, Path ORAM has had significant impact
and spurred follow-up research. In this section, we review
recent works that built on Path ORAM.

A. Algorithmic Improvements

Many subsequent ORAM algorithms followed the Path
ORAM paradigm. Ren ef al. [53] presented a variant of Path
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ORAM with improved bandwidth and simpler stash analysis.
Wang et al. [66] presented Circuit ORAM, which matches
Path ORAM’s asymptotic O(log N) bandwidth and improves
client storage to O(1). Onodera and Shibuya [50] presented
techniques to reduce Path ORAM’s server storage from O(N)
to N 4+ o(N). Boyle et al. [5], Chen et al. [12], and Chan
and Shi [10] studied parallel ORAMs and adopt Path ORAM
or its close variants as starting points of their construc-
tions. Wang et al. [68] showed how to construct efficient
oblivious data structures by piggybacking on Path ORAM’s
recursion.

B. Outsourced Storage and Databases

Bindschaedler et al. [4] and Chang et al. [11] conducted
experiments comparing ORAM schemes for practical out-
sourced storage. Both papers conclude that Path ORAM is the
most efficient small client storage scheme but has worse band-
width than partition ORAM [62], the most efficient scheme
with large client storage. However, neither work was aware of
our improved variant of Path ORAM [53]. This variant utilizes
client storage more effectively and we expect it to match the
bandwidth of partition ORAM for storage outsourcing [62].
Crooks et al. [15] developed a cloud-based oblivious key-value
store system based on this improved variant.

Bindschaedler et al. [4] also identified lack of support for
concurrent accesses as a major bottleneck in existing ORAM
schemes. This issue has since been partially addressed by
the works of Sahin et al. [56] and Chakraborti and Sion [8],
which extend Path ORAM to support concurrent accesses from
many clients. Another work by Chakraborti et al. [9] extends
Path ORAM to support range queries in a locality-friendly
manner.

C. Secure Hardware

When client storage is limited, as is the case for secure
hardware, Path ORAM is by far the most efficient ORAM.
It was embraced by secure hardware designs immediately
after its invention. The Ascend secure processor [20], [54], the
Phantom secure processor [43], the GhostRider system [38],
and the practical obfuscation project [48] all adopt Path
ORAM. A number of works suggested improvements to
Path ORAM from a hardware, system or architectural
level [21], [22], [49], [64], [73]-[75]. To the best of our
knowledge, Path ORAM is the only ORAM to have been
implemented in hardware. Most other ORAMs are difficult
to implement even in software.

The Ascend secure processor built a custom silicon imple-
mentation of Path ORAM with the following specifica-
tions [54]. The Path ORAM controller consumes 0.51 mm?
area in 32 nm SOI process. The power consumption is about
30 mW at 250 MHz, 75 mW at 500 MHz, 150 mW at
750 MHz, and 300 mW at 857 MHz. One access of 512-bit
data (one cache line) from main memory has a latency of
around 1275 cycles, which leads to an average slowdown
of about 4x on SPEC INT 2006 benchmarks according to
simulation [21].
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D. Secure Computation

ORAM has been adopted as a building block for secure
computation in the RAM model to avoid converting RAM
programs into circuits [29]. Keller and Scholl [24] and
Gentry et al. [25] used Path ORAM as the underlying ORAM
scheme. Wang et al. devised ORAM schemes specifically opti-
mized for secure computation [66], [67] following the Path
ORAM paradigm.

E. Data Oblivious Computing

Path ORAM has taken on similar roles in many data
oblivious programming proposals, such as data oblivious ISA
extensions [72], ZeroTrace [57], and Oblix [46]. A line of
work [40], [41] designs domain-specific programming lan-
guages and compilers that automatically compile a program
into an oblivious format, which may then be executed by
either trusted hardware or secure multiparty computation pro-
tocols. Type systems have also been developed to ensure
that the source or target program indeed satisfies oblivious-
ness [16], [38], [39].

IV. FUTURE DIRECTIONS

We have mentioned that Path ORAM is the first small client
storage ORAM to achieve the asymptotically optimal O(log N)
bandwidth; but we noted that it holds only when the block
size B = Q(log2 N). Recently, Asharov et al. [2], building on
Patel et al. [52], has proposed a small client ORAM scheme
that achieves O(log N) bandwidth with B = Q(log N) block
size. Since it takes ® (log N) bits to address a logical memory
with N blocks, B = ®(logN) is the minimum block size
worth catering for. In this sense, Asharov et al. [2] claimed
to have achieved asymptotic optimality in the standard model.
Currently, their construction is highly complex, has huge hid-
den constants, and fundamentally relies on the hierarchical
ORAM framework [27]. It is interesting to investigate whether
the same result can be achieved with simpler constructions,
possibly following the tree-based (Path) ORAM paradigm.

Since ORAM schemes are approaching the lower bound
in the standard model, it is important to explore new mod-
els in which overhead can be further reduced. For example,
several works have studied how untrusted computation at the
storage can dramatically reduce bandwidth costs [17], [18],
[45], [53]. This is a natural model in storage outsourcing and
secure computation. It can be relevant to hardware and embed-
ded security as well since a storage device starts to support a
full software stack and even main memory is being endowed
with local computation (e.g., hybrid memory cubes). Onion
ORAM [18] in particular shows how untrusted computation
can be used to “break” the O(log N) bandwidth lower bound
and achieve O(1) bandwidth overhead. Unfortunately, Onion
ORAM requires expensive untrusted computation of homo-
morphic encryption and an open challenge is how to achieve
similar results with cheaper computation.

Another active line of research considers a multiserver
setting and assumes no collusion or at least one honest
server [51], [61]. Recent works in this direction incorporate
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ideas from untrusted computation to further improve effi-
ciency [1], [31]. A related line of work observes that there is
no client versus server distinction when using ORAM in secure
computation and these schemes are known as distributed
ORAMs [6], [19], [42].

In large part due to Path ORAM, we are at an exciting junc-
ture in ORAM’s history where bandwidth overhead has been
reduced to the point where ORAM is now practical in many
settings today. One major direction for future work is there-
fore to explore new applications where ORAM can be used,
such as secure enclaves [14], [33] and symmetric searchable
encryption [32], [47], [59].

As ORAM finds more applications, we will need to solve
new usability challenges. For example, how can we anony-
mously share a single ORAM across multiple distrusting users
and/or coordinate users with complex access controls? There
have been attempts in these directions [3], [30], [44] but much
future research is needed to get a practical solution.
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