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Abstract
As data sizes continue to grow at an unprecedented rate,
machine learning training is being forced to adopt asynchro-
nous algorithms to maintain performance and scalability.
In asynchronous training, many threads share and update
model parameters in a racy fashion to avoid costly inter-
thread synchronization.

This paper studies the security implications of these codes
by introducing asynchronous poisoning attacks. Our attack
influences training outcome—e.g., degrades model accuracy
or biases the model towards an adversary-specified label—
purely by scheduling asynchronous training threads in a
malicious fashion. Since thread scheduling is outside the pro-
tections of modern trusted execution environments (TEEs),
e.g., Intel SGX, our attack bypasses these protections even
when the training set can be verified as correct. To the best
of our knowledge, this represents the first example where a
class of applications loses integrity guarantees, despite being
protected by enclave-based TEEs such as SGX.
We demonstrate both accuracy degradation and model

biasing attacks on the CIFAR-10 image recognition task,
trained on Resnet-style DNNs using an asynchronous train-
ing code published by Pytorch. We also perform proof-of-
concept experiments to validate our assumptions on an SGX-
enabled machine. Our accuracy degradation attacks are capa-
ble of returning a converged model to pre-trained accuracy
or to some accuracy in between. Our model biasing attack
can force the model to predict an adversary-specified label
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up to ∼ 40% of the time on the CIFAR-10 validation set, de-
pending on parameters. (Whereas the un-attacked model’s
prediction rate towards any label is ∼ 10%.)
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1 Introduction
Modernmachine learning is a data hungry affair. It is well un-
derstood that a major reason for the success of deep learning
has been the availability of public, diverse datasets of un-
precedented scale, e.g., ImageNet [36]. Correspondingly, the
last decade has seen machine learning model training move
from single CPU to single GPU [40], to multicore CPU [3,
20, 26, 51, 58], to larger distributed systems [15, 21, 76]. This
has presented a major performance engineering challenge.
Core training algorithms such as stochastic gradient descent
(SGD) are inherently sequential, making scale-out imple-
mentations performance bottlenecked by cross-node syn-
chronization. As a result, starting with the seminal Hog-
wild! [51] algorithm, significant attention has been paid to
develop multi-threaded asynchronous SGD algorithms (A-
SGD) [4, 5, 15, 20, 21, 23, 32, 33, 44, 46, 51, 55, 58, 69, 76].
A-SGD leverages the inherent noise in training to skip inter-
thread synchronization while maintaining convergence.

We explore the implications of asynchronous training on
machine learning model integrity, in adversarial settings.
Consider a setting such as Machine Learning as a Service
(MLaaS) [1, 2]. In MLaaS, the user submits training data to an
untrusted server, which will train the model on behalf of the
user. Training data is sensitive, thus the user requests that
the server run training inside a hardware-based trusted exe-
cution environment (TEE), such as Intel SGX [33, 34, 45, 54].
To improve performance, users may run asynchronous vari-
ants of SGD inside the TEE, as described above. For example,
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the Chiron system [33] implements SGX enclave-based A-
SGD where each enclave implements a thread which asyn-
chronously shares parameters through a centralized param-
eter server.
Regardless of training algorithm, TEEs should in theory

defeat integrity attacks given even a supervisor-level adver-
sary. For example, Intel SGX uses a combination of attes-
tation mechanisms and runtime protections to ensure that
only validated data runs within the TEE, and that the adver-
sary cannot tamper directly with computation once it starts
running [16, 45]. In particular, these mechanisms defeat con-
ventional poisoning attacks [10, 48–50, 56, 73], which attempt
to influence model integrity by changing the training set.

1.1 This Paper
Despite the apparent safety afforded by TEEs, this paper in-
troduces asynchronous poisoning attacks (APAs), which show
how integrity attacks are still possible even when asynchro-
nous training runs within TEEs. APAs are based on two ob-
servations. First, due to the use of asynchronous algorithms,
training state is a function of not only initial conditions,
e.g., training data, but also the inherent races taking place
between threads. Second, modern trusted execution tech-
nologies allow untrusted code, e.g., the operating system,
to influence races through contention [7, 45], and/or thread
scheduling [45]. Combining these two observations, an ad-
versary can change the result of training by influencing data
races in a coordinated, malicious fashion. To the best of our
knowledge, this represents the first example where a class
of applications loses integrity guarantees, even when “bug-
free”, despite being protected by enclave-based TEEs such
as Intel SGX.
We demonstrate concrete indiscriminate and focused at-

tacks on an A-SGD code representative of prior work [15,
21, 51]. In the literature [48], an indiscriminate attack re-
duces model accuracy while a focused attack does the same
while additionally biasing the model towards a particular
label/class (e.g., classify all spam as not spam but not the
other way around). Unlike traditional poisoning attacks, we
do not rely on changing the training set. Rather, we exploit
a fundamental property in A-SGD codes: that per-thread
model updates can be made asynchronously with respect to
updates from other threads.
Contributions. To summarize, this paper makes the follow-
ing contributions.

1. We introduce asynchronous poisoning attacks (APAs),
whereby an adversary tampers with machine learning
training by influencing data races in a coordinated,
malicious fashion. Because data races are outside the
model for trusted execution, APAs bypass protections
offered by modern TEEs.

2. We design and validate three APA variants—
indiscriminate and focused attacks—which exploit
different aspects of A-SGD.

3. We perform extensive analysis of our attacks on
the CIFAR-10 [39] image recognition task, trained
on Resnet-18 [30] with an A-SGD implementation
published by Pytorch [5]. We also perform proof-of-
concept experiments to validate our assumptions on an
SGX-enabled machine. Our indiscriminate attack is ca-
pable of returning a converged model to pre-trained ac-
curacy or to some accuracy in between. Ourmodel bias-
ing attack can force the model to predict an adversary-
specified label up to ∼ 40% of the time on the CIFAR-10
validation set (whereas the un-attacked model’s pre-
diction rate towards any label is ∼ 10%, i.e., roughly
even across the 10 classes in CIFAR-10).

4. We provide an extensive discussion on defenses, rang-
ing from point defenses to our particular attack vari-
ants, to more general defensive strategies.

2 Background
2.1 Stochastic Gradient Descent (SGD)
Stochastic gradient descent (SGD) is a ubiquitous algorithm
for training machine learning models. See Algorithm 1 for
pseudo-code. SGD takes a loss function (called loss), a train-
ing set T , and several other inputs we discuss below. We
focus on the classification problem in supervised learning.
ThusT consists of labeled inputs (x,y) for input x and labely.
The goal is to learn parameters θ that minimize loss(θ , x,y),
averaged over inputs-labels in T . Without loss of generality,
we will represent y as a scalar that can take one of C unique
values, where C is the number of labels.

To minimize loss, SGD iteratively updates θ based on a
gradient it calculates for loss, given the current θ and B
elements in the training set. B is called the minibatch size.1
Each such update is called a step. Training runs for a number
of epochs E (Line 3), where each epoch is ⌈|T |/B⌉ steps, i.e.,
a complete pass over the training set. The epoch count E and
minibatch size B are user-specified. To start each epoch, SGD
makes random samples fromT with or without replacement
(e.g., by shuffling and then iterating through T , Line 7). This
ensures that each epoch visits each input once (or a small
number of times) and that minibatches are composed of
random inputs, both of which improve accuracy.
Gradient update and scaling factors. The gradients д are
scaled by a learning rate α before being accumulated into
the model state (Line 12). The standard approach [30, 63, 67]
is for the user to select an initial α , and for SGD to “decay” α
once every D epochs (Line 5). Thus, the average magnitude
of updates gets smaller as training proceeds, having the
effect of “fine-tuning” the model. Note that in addition to
1When B > 1, SGD is sometimes called minibatch gradient descent. We
will use this term and SGD interchangeably.
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Function: SGD(loss,T ,B, E,D,α,R)
Inputs: loss (loss function), T (training set), B

(minibatch size), E (number of epochs per
run), D (learning rate decay frequency), α
(learning rate), R (initial conditions, seed)

Outputs:Model parameters θ
1 θ = init(R)
2 α = 0.1 /* learning rate */
3 for e = 0, . . . , E − 1 do
4 if e mod D == 0 then
5 α = α/10.0 /* 10.0 = decay rate, may also be

variable */
6 end
7 T = shuffle(T )
8 for b = 0, . . . , (|T |/B) − 1 do
9 mb = T [B ∗ b : B ∗ (b + 1)] /* sample

minibatch */
10 /* Compute gradients, avged over minibatch */
11 д = 1

B
∑

i=0, ...,B−1 ▽loss(θ,mbi .x,mbi .y)

12 θ = θ − α ∗ д /* update parameters */
13 end
14 end
Algorithm 1: (Minibatch) stochastic gradient descent.
For simplicity, assume B divides |T |.

the learning rate α , different flavors of SGD [22, 38, 77] will
additionally scale individual components in θ based on data-
dependent conditions. (Thus, Figure 1 represents “vanilla”
SGD [30, 63, 67], applying the same scaling factor to all
components in θ .)
Finally, the seed R is used to initialize θ . Putting it all

together, SGD(loss,T ,B, E,D,α,R) becomes a deterministic
function in its inputs.

2.2 Asynchronous SGD (A-SGD)
SGD performance is limited to the parallelism available in
the inner loop, Line 11 in Algorithm 1, which averages gra-
dients over the current minibatch. To alleviate the perfor-
mance bottleneck in SGD, high-performance systems typ-
ically implement asynchronous stochastic gradient descent
(A-SGD) [5, 15, 15, 33, 51, 58, 76]. A-SGD achieves better
scalability by running multiple SGD instances concurrently,
i.e., each processing different minibatches, which work to-
gether to train the same model. In addition to achieving high
performance, prior work has also found A-SGD to result in
higher accuracy models than SGD in some cases, e.g., on
deep neural networks [15].
There are two main A-SGD architectures: those based

on shared memory systems (e.g., [5, 20, 51, 58]) and those
based on distributed systems (e.g., [4, 15, 33]). To simplify
the presentation, we focus on shared memory-based systems
and evaluate our attack on a shared memory implementation

Θ1 = Θ0 - update(Θ0)Θ0 

Θ0 Θ1 = Θ0 - update(Θ0) Θ2 = Θ1 - update(Θ0)

SGD

A-SGD

time

Θ2 = Θ1 - update(Θ1)

Figure 1. Comparison between SGD (top) and A-SGD (bot-
tom). SGD does not have stale updates while A-SGD does
have stale updates (differences highlighted in red). Each ar-
row denotes an update. Two arrows running in parallel (for
A-SGD) denotes two threads. update(θt ) denotes a gradient
update (Algorithm 1, Line 12) using model state θt , or the
state after t updates.

of Hogwild! provided by Pytorch (available online at [5]),
which is similar to Algorithm 1. We discuss the implications
for our attacks on distributed architectures in Section 8.
In shared memory A-SGD, training starts by spawning

a fixed number of worker threads, each of which is simi-
lar to Algorithm 1. Each thread runs at its own pace. Each
thread freely (i.e., without locks) updates a shared copy
of the model parameters θ whenever it reaches Line 12
in Algorithm 1. This implies that gradient updates will be
stale, depending on how threads interleave their updates. Fig-
ure 1 shows an example. SGD always performs updates
based on the most up-to-date state, i.e., we always have
θt = θt−1 −update(θt−1). Depending on thread interleavings,
A-SGD updates are made to stale model parameters, i.e., we
will have θt = θt−1 − update(θt ′) for t ′ < t − 1. For exam-
ple, in the figure the model state is updated with gradients
derived from θ0 twice. Conceptually, this means training
can “overshoot” local optimums by taking “too many steps
in right direction.” Despite this, A-SGD systems still con-
verge because, in expectation, threads run at similar rates
and gradient updates will be derived from recent state [51].

2.3 Deep Neural Networks
Our attacks rely on A-SGD. While A-SGD is general and can
be applied to different models, we assume A-SGD training
deep neural networks (DNNs) due to their popularity and
importance today [15, 21, 33, 46]. A DNN F is a function:

F (θ , x) = σ (L(θ , x)) ∈ RC

which calculates a probability distribution for x being one of
C labels. As discussed, θ is learned during training. L(θ , x)
outputs a C-dimensional vector of logits where the i-th logit
is L(θ, x)i . Each logit is an un-scaled value representing the
DNN’s confidence that the input x is associated to each label.
For example, the index for the highest value logit is the label
the DNN believes the input is associated to. Finally, logits
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are scaled via the softmax function, denoted σ , whose output
is a C-dimensional vector which can be interpreted as the
probability that x is associated to each of the C labels.

2.3.1 Training DNNs
DNNs are nearly all trained via (A-)SGD and backpropa-
gation, the latter which estimates gradients for θ given a
loss function. The details of DNN training are not important
for this paper, but we will use the following abstraction to
explain results. Consider an input, label pair (x,y). Backprop-
agation will produce gradients for each parameter in θ that
are proportional to:

• σ (L(θ, x))j − 1, for logit j = y
• σ (L(θ, x))j , for other logits j , y

Here, we assume the cross entropy loss function, which is
popular for classification tasks. Note that elements output
by softmax are positive, and gradients are subtracted from
parameters in Algorithm 1, Line 12.

There are two takeaways. First, correct/incorrect logit gra-
dients have opposite sign. Gradients for θ will adjust corre-
sponding parameters such that the magnitude of the correct
logit will increase (i.e., when y = j), vice versa for incorrect
logits. Second, gradient magnitudes through each logit are
proportional to those logits’ deviations from expected val-
ues out of the softmax. Note that σ (L(θ , x))j should output
1 if j = y and 0 otherwise. Thus, a DNN with perfect accu-
racy will backpropagate σ (L(θ , x))j − 1 = 0 for logit y and
σ (L(θ , x))j = 0 otherwise, as expected. On the other hand,
a perfectly incorrect DNN will backpropagate the largest
possible gradients, σ (L(θ , x))j − 1 = −1 when j = y and
σ (L(θ , x))j = 1 otherwise, also as expected.

2.4 Enclave Execution
Enclave execution, e.g., with Intel SGX [45, 64], protects
sensitive applications from direct introspection or tampering
from supervisor software. That is, the OS, hypervisor and
other software is considered the attacker [12, 27, 29, 47, 54, 57,
59, 68, 75]. To use SGX, users partition their applications into
enclaves. Applications “enter” and “exit” enclave code using
the SGX functions EENTER and EEXIT, respectively. While
running enclave code, the application can access a privacy-
and integrity-protected region of memory called the EPC
(enclave page cache) which is inaccessible to code outside
of the enclave. This process is bootstrapped by hardware
attestation and digital signatures, which ensure that expected
enclave code executes on expected starting data in the EPC.

Despite providing strong virtual isolation, SGX exposes a
rich interface to the supervisor-level attacker. In particular:
Enclave thread management. Enclaves can be viewed as
normal user-level processes from a task scheduling stand-
point [16]. Further, each enclave can be multi-threaded. This
means the OS (attacker) controls when each enclave thread
is paused/resumed, just like normal threads. The OS also

implements enclave system calls (e.g., thread start/stop calls)
as well as demand paging when the enclave incurs a page
fault.
Side channel amplification. A microarchitectural side
channel is a way for an attacker to infer information about
a victim program based on how the victim uses hardware re-
sources in the system [24]. Prior work has shown how SGX
exacerbates the side channel problem. In particular, SGX
enables a new side channel known as controlled-channel
attack [68, 74], where the attacker can learn the victim’s
page-granularity memory access pattern with zero noise.
Multiple other works have shown how an attacker can learn
a victim’s access pattern at cache line granularity with very
little or, again, zero noise [12, 27–29, 47, 62, 66].
We perform an evaluation of how we exploit these prop-

erties on an SGX-enabled machine in Section 6.

3 Threat Model
We consider an MLaaS-like or otherwise outsourcing setting,
where a user wishes to offload training to an untrusted multi-
tenant cloud [1, 2]. The user submits an untrained model,
e.g., a DNN, and a training set (or part of a training set) to the
server. The code run to train the model is considered public,
e.g., is an open source ML framework like Pytorch [5]. The
training set submitted by the user, and the resulting trained
model parameters, are considered private. Thus, to improve
security, the user runs training inside of SGX enclaves, simi-
lar to Chiron [33], OblivML [54] or Myelin [34]. Although
this currently limits the attack to CPU-based training, ar-
chitectures for secure enclaves are being explored for other
platforms, e.g., GPUs [35]. Further, we assume the user runs
an A-SGD algorithm to improve performance and scalability,
similar to Chiron [33]. We assume the standard SGX attacker,
namely the operating system and other supervisor software
(see Section 2.4).

The adversary’s goal is to corrupt/bias the user’s trained
model. Enclave virtual isolation prevents trivial integrity
attacks by blocking direct tampering of thread state, e.g.,
θ , α , etc., during execution (see Section 2.2). Attestation of
initial program state prevents conventional poisoning attacks
that modify the user-supplied training set (Sections 1, 9). As
discussed in Section 2.4, the adversary can schedule user
threads and can only learn about training execution through
its view, namely microarchitectural side channels, enclave
termination times, system calls, etc.
Training with public labels. Some of our attack variants
(Section 4.2) assume that training set labels are public or at
least distinguishable. If public, the attacker can deduce that
y in (x,y) corresponds to a label with known semantics, e.g.,
“not spam.” If distinguishable, the attacker can deduce for
an (xi ,yi ) and (x j ,yj ) whether yi = yj . Thus, public implies
distinguishable. Labels may be public or distinguishable for
several reasons. First, while training set inputs (e.g., images)
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are obviously high value, labels may not be private infor-
mation. Second, even if part of the training set is private,
the user may augment its training data with a large public
training set such as ImageNet [36], as this has been shown to
improve accuracy (e.g., [13]). The server would likely supply
this data locally to save bandwidth, hence that part of the
training set would be public.2

4 Attack Variants
In this section, we provide three concrete variants of asyn-
chronous poisoning attack (APA). All three attacks leverage
how a supervisor-level adversary can context switch any A-
SGD thread on and off the system at any point. Conceptually,
this allows the adversary to craft a malicious gradient update
that it can then apply to training at a later time of its choos-
ing. When a thread is context switched for the purposes of
the attack, we refer to it as an attack thread.
Context switching is a synchronous event that pauses

and (eventually) resumes the attack thread(s) at a particular
instruction. This allows the adversary to construct different
variants of the exploit depending on when and under what
conditions it decides to pause which threads. For example, the
adversary can pause the thread after a specific epoch, after
copying the minibatch but before copying the parameters,
etc. (see Algorithm 1).
To explain ideas, we assume the adversary can context

switch a thread(s) when needed for the attack and can ter-
minate training at a time of its choosing. Sections 5-6 detail
how these assumptions manifest in real systems.

4.1 V1: Indiscriminate Attack
The first attack flavor is when the adversary indiscriminately
pauses the attack thread at any point in the A-SGD loop, but
before the learning rate decays (i.e., in the first D − 1 epochs).
Later, after the learning rate decays one or more times, the
adversary re-schedules the attack thread, and that thread
makes an update to θ with a specific stale (large) learning
rate.

The attack procedure is as follows. The adversary context
switches the attack thread off the system before the learning
rate decays (i.e., when α = 0.1 in Algorithm 1) and waits for
multiple decays (e.g., when other threads have been making
updates with α = 0.001), at which point it re-schedules the
attack thread. Figure 2 (left) shows the sequence of learning
rates that will be applied at each step across all threads in
time. The malicious update is shown as the red spike in the
last epoch. Recall that gradient updates are accumulated into
the model parameters θ in a read-accumulate-write fashion

2Note, it is still easy to defeat conventional poisoning attacks by verify-
ing the integrity of augmented data through enclave attestation, using a
known hash of the data signed by a trusted third party, e.g., the ImageNet
distribution website.
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Figure 2. The learning rate-based indiscriminate attack (Sec-
tion 4.1). (Left) the sequence of learning rates applied to each
update in time. (Right) a visualization of the error surface.
The malicious update and the step it makes through the
error surface are shown by the red arrow. Non-malicious
updates made by other threads, with decayed learning rates,
are shown with (smaller) black arrows. The θ at the start of
the attack is denoted with X.

(Line 12), meaning the incorrect update is applied to the
current model parameters.

After the re-scheduled thread applies a large update, θ will
be incorrect (i.e., no longer converged if the model had con-
verged already) and the loss function will sharply increase.
This process is visualized in Figure 2 (right). An update with
a large learning rate causes the model to overshoot the op-
timum. That is, the red arrow in the figure is pointing in
the correct direction but has too large a magnitude. This at-
tack can be used to render the resulting model less effective
at its given task—e.g., a spam detector may classify inputs
randomly.
This attack is trivial to perform, as the adversary can

simply pause the attack thread at the start of training and
wait. This attack requires that the A-SGD implementation
proceed in training regardless of how many epochs have
been completed by other threads. This assumption holds
for large-scale A-SGD implementations [15] as well as the
Pytorch code we attack [5].

Once the attack thread performs a malicious update, it can
perform additional malicious updates with the stale learning
rate to increase damage done to the model. Not surprisingly,
we find that the more malicious updates, the more damage
dealt (Section 7).

4.2 V2: Focused Attack
While the previous attack variant decreases model accuracy,
it does not give the adversary a guarantee as to how the
damaged model predicts on each particular label. Ideally,
the adversary would like to reliably bias the model towards
predicting a particular adversary-chosen label. For example,
to classify all incoming mail as “not spam” but not the other
way around.
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We now present such a model biasing attack, commonly
referred to as a focused attack [48]. In our attack, the ad-
versary chooses an attack label that it will bias the model
towards. At a high level, the attack is identical to the at-
tack from Section 4.1, except that the attack thread(s) are
paused after sampling a specific minibatch as opposed to
an arbitrary minibatch. As a result, the malicious update is
performed with a high learning rate and given a specific
adversary-chosen minibatch.
The question is, after which minibatch should the adver-

sary pause the attack thread? Of independent interest, we
show that model bias after an update is proportional to mini-
batch bias for that update. Minibatch bias refers to the phe-
nomenon where labels for inputs in the minibatch are not
equally represented. For example, there might be more “not
spam”-labeled inputs in the minibatch than “spam”-labeled
inputs. We say a minibatch is biased towards label Y if there
are more inputs mapping to label Y in the minibatch than
to other labels. Since minibatch sampling is a random pro-
cess, sampling biased minibatches happens naturally during
training.

The next three sub-sections address important questions
regarding the attack. In particular: How can the adversary
learn minibatch bias? How frequently can we expect how
much minibatch bias to occur? Why does minibatch bias
result in a biased model?

4.2.1 How does the adversary learn minibatch bias?
Suppose training set labels are public as discussed in Sec-
tion 3.3 Then an adversary can deduce minibatch bias in
several ways. In the simplest case, if the seed used to sample
minibatches isn’t kept private, the adversary can trivially
predict the composition (by label ID) of each minibatch. (For
example, the Pytorch codewe attack uses a constant seed [5].)
Even if a secure setting, it may be the case that this seed is
left public because the minibatch sampling distribution is
not normally considered sensitive.

Even if the seed is private, the adversary can still learn the
minibatch bias through a variety of memory access pattern-
related side channels (Section 2.4). A-SGD codes, such as
the Pytorch code we attack [5], do not shuffle actual train-
ing set data per epoch, but rather instantiate iterators that
randomly sample the training set, to improve performance.
When combined with public labels, this means a thread’s
memory access pattern reveals the minibatch label composi-
tion.

As discussed in Section 2.4, SGX enables fine-grain/low- or
zero-noise monitoring of memory access pattern-related side
channels. In our proof-of-concept on an SGX-enabled sys-
tem (Section 6), we use a controlled-channel attack to learn

3If labels are distinguishable, but not public, then the adversary can still
bias the model towards some label.

page-level access pattern [74]. This is sufficient to learn mini-
batch bias for any training set whose elements are roughly or
larger than the size of a 4 KB page. This is often the case. For
example, the CIFAR-10 [39] and “ImagenetLite” [36] train-
ing sets have elements which are 3 KB and 150 KB in size,
respectively. We evaluate our proof-of-concept assuming
CIFAR-10.

4.2.2 Minibatch bias likelihood
We find that sufficiently biased minibatches appear with
high probability. We define the % bias towards an attack
label as the number of inputsM with that label, divided by
the minibatch size B. Continuing our example, CIFAR-10 has
C = 10 labels and has an equal number of inputs for each
class, so % minibatch bias in expectation is 10% for all labels.
We show in our evaluation that for different minibatch sizes,
there is a % bias—between 20% and 50% depending on the
minibatch size—such that minibatches with that bias are
expected to occur and are capable of biasing the model.

An example, for reference: In the evaluation we find
that attacks with 30% biased minibatches can significantly
bias the model given B = 64.

To perform the attack with these parameters, we must de-
termine the number of 30% biased minibatches expected to
occur. Figure 3a shows the probability of seeing at least one
minibatch that is biased by at least a certain % and Figure 3b
shows the expected number of biased minibatches for dif-
ferent % biases. We use C = 10 to model CIFAR-10 [39] and
decay the learning rate after 200 epochs (which means we
are looking for biased minibatches out of a pool of 200 ∗T /B
minibatches). In general, the probability of the next mini-
batch having a M/B ∗ 100% bias is given by the Binomial
distribution Binom(M ;B, 1C ) when A-SGD threads sample
the minibatch via random reads,4 and assuming each label
is equally common in the training set.
Comparing the figures to our example, we see that 30%

biased minibatches are expected to occur. (On average, we
expect to see 1-2 such minibatches.) There are many param-
eters through which to adjust the attack. For example, by
decreasing the minibatch bias threshold to 28%, the expected
number of biased minibatches increases to 6.
Finally, we note that prior work utilizes a large range

of minibatch sizes. For example, Chiron evaluates CIFAR-
10 and ImagenetLite using a 128- and 64-size minibatch,
respectively [33], whereas Georganas et al. [25] (which also
evaluates CPU-based training) uses minibatch sizes of 28 and
70. We will evaluate a range of parameters for completeness.

4That is, with replacement. We note that for practical parameters, this
closely approximates sampling without replacement, as done with our
current implementation.
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Figure 3. Statistics on minibatch biasing. Parameters match
CIFAR-10 [39] which we evaluate in Section 7. CIFAR-10
has 50,000 inputs and C = 10 labels. We vary minibatch size
B in a range explored by prior works targeting CIFAR-10.
Following state-of-the-art results, we decay the learning rate
after 200 epochs [63]. Likelihoods only include minibatches
sampled before the learning rate decays the first time.

4.2.3 Attack root cause
Why does updating the model with a biased minibatch bias
the model? We will explain the root cause using DNN train-
ing as an example. First, the sign and magnitude of gradients
through each logit depends on the correct label for each
input (Section 2.3.1). Second, gradients are averaged across
inputs in each minibatch (Algorithm 1, Line 11). Suppose the
entire minibatch consisted of inputs from a single label. Then
clearly the network will bias towards that label: for each logit
i , the gradient for logit i will have the same sign across all
inputs in the minibatch. Averaging many values sharing the
same sign cannot flip the sign. When the minibatch isn’t
100% biased, seeing this effect depends on the magnitudes of
logit gradients, but is still more likely given a more biased
minibatch. Putting it all together, we find that even a slight
minibatch bias can bias the overall model because that bias
is amplified with a large (stale) learning rate.

4.2.4 Extending to multiple attack threads
The prior attack variant (Section 4.1) gave the adversary the
ability to amplify the attack’s effect by having the attack
thread perform multiple updates with a stale learning rate. Is

Global Minima

Local Minima

X

Global Minima

Local Minima

X

Destructive gradients Constructive gradients

Figure 4. Stale parameter-based attack (Section 4.3). (Left)
Destructive gradient updates do not, cumulatively, force the
model out of convergence. (Right) Constructive gradient
updates force the model out of convergence. Each update
made by an attack thread is shown with a red arrow. The θ at
the start of the attack is denoted with X. Note, the magnitude
of each malicious update is small relative to that in Figure 2,
because this attack variant is done after the learning rate has
fully decayed.

there a similar mechanism for the focused attack? The sub-
tlety is that multiple malicious updates should complement
one another—i.e., both bias the model in the same way to
amplify the effect. This means the strategy used for multiple
malicious updates in Section 4.1 won’t work: when the attack
thread performs its update, the next minibatch it samples
will not be biased in the same way with high probability.

We avoid this problem by coordinating multiple attack
threads. In this case, the adversary listens for biased mini-
batches in two or more attack threads. When it sees a biased
minibatch towards the desired target label, it pauses that
thread, repeating this process for the desired number of at-
tack threads. Then, at the end of training, all threads are
released serially to perform their updates one after another.
Note, no twominibatches will contain the same set of images,
but two (or more) minibatches with the same bias towards
the same label do occur.

4.3 V3: Enhancing Attacks with Stale Parameters
The last two sections presented APA variants that use stale
learning rates to apply large malicious updates. For the at-
tacks to go through, we required the A-SGD algorithm to
use learning rates and for the A-SGD implementation to not
synchronize threads at epoch boundaries. We now present
a more sophisticated attack that does not rely on these as-
sumptions. This is challenging. Without a large learning
rate, an attack thread’s parameter update will have similar
magnitude as updates made by honest threads. The premise
of A-SGD is that such small stale updates should not cause
long-term accuracy loss.
The new idea enabling the attack is to pathologically

schedule multiple attack threads to maximize model parame-
ter staleness at the time updates occur. Consider Algorithm 1.
If a thread is paused between Lines 11 and 12, it has calculated
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a gradient update but not applied that update. If, sometime
later, the thread is un-paused, it will accumulate its stale gra-
dient update into the current model state.5 A simple strategy
to increase the average staleness of updates is to schedule
all threads to sample the same θ and only then apply their
updates (akin to Figure 1).

4.3.1 Challenge: crafting constructive gradient
updates

In our setting, the above attack idea does not go through as
written. The problem is that to avoid relying on a learning
rate, our attack must take place solely after the last learning
rate decay, i.e., at the end of training. At this point, the model
has likely converged. Due to convergence, we conjecture the
following: When converged, subsequent updates make un-
predictable changes to θ because θ already corresponds to a
local optimum. Intuitively, we have reached the “bottom of a
hill” in the error surface and subsequent updates will unpre-
dictably move “around” the bottom of the hill. This makes
stale gradient updates destructive, shown in Figure 4 (left).
Experimentally, we have indeed found that large numbers
of stale updates on a converged model does not noticeably
change model accuracy.

To avoid the destructive gradient problem, we must man-
ufacture what we call constructive gradient updates. By con-
structive, we mean multiple gradient updates that point in
similar directions such that, when accumulated, will drive
the model in a specific direction. The idea is shown in Fig-
ure 4 (right). Conceptually, the idea is to emulate the attack
with a large learning rate (i.e., Figure 2) through the use of
multiple small constructive updates.

The question is, how to construct multiple pending gradi-
ent updates that will be constructive? Of independent inter-
est, we find one method is to re-use the idea from the focused
attack, namely to use biased minibatches (Section 4.2). Sup-
pose two attack threads sample the same θ . We conjecture
that the gradient directions generated by these threads will
be more similar, proportional to the degree of minibatch
bias for both threads towards a given label. For example,
if both threads sample the same θ and additionally sample
minibatches that are 100% biased towards the same label, the
gradients derived by both threads will be maximally similar.6
We show evidence to support this claim in the evaluation.
Specifically, we show that as minibatch bias increases, less
attack threads are required to move the model out of its
converged state.
Putting it all together, the attack works in the following

steps. The adversary will perform the attack with N attack

5Note, this is subtly different than the prior attack variants. For example,
the focused attack in Section 4.2 relies on a specific minibatch, but applies
that minibatch to up-to-date model parameters. Thus, that attack implicitly
pauses the attack thread in between Lines 9 and 11.
6Note that while gradient directions will be similar, they will not be identical
because even with the same θ , the exact minibatch contents will be different.

threads, where N can be any number less than or equal to
the thread total.

1. Wait for the learning rate to fully decay / wait until
immediately before training terminates (if optimizer
does not use a learning rate).

2. As in Section 4.2: Select a target label. Monitor the N
threads for a specific degree of minibatch bias towards
this label and pause each when this bias is detected,
but before the model θ is sampled.

3. When all N threads have biased minibatches, first sam-
ple θ for all N threads and second perform gradient
updates for all N threads.

The attack is more effective with more attack threads, and
with minibatches biased to a larger degree. As before, the
expected number of minibatches biased to different degrees
depends on multiple training parameters such as the mini-
batch size (Section 4.2.2). Thus, the adversary must adjust its
attack parameters based on these training parameters. We
explore the attack space in Section 7.

Interestingly, while our goal was to find constructive gra-
dient updates, the fact that we use biased minibatches to
generate such updates means the above attack can be used
both as an indiscriminate attack and a focused attack. We
evaluate the degree to which different numbers of attack
threads bias the model in Section 7.

4.3.2 Further relaxing attack assumptions
The APA variant in this section requires different assump-
tions than previous variants. This variant requires more at-
tack threads than other variants because each attack update
is smaller. It also requires a mechanism to detect biased mini-
batches (as in Section 4.2). Yet, importantly, it does not rely
on large learning rates which defeats some possible defenses.
An open question is whether there are other means to

build constructive gradient updates. If so, this could further
relax assumptions, e.g., bypassing the need to monitor bi-
ased minibatches. We leave exploring this direction as future
work but posit the following idea: If gradient updates are con-
structed based on a θ which corresponds to an un-converged
model, those gradient updates should have similar direction.
That is, the updates should all be pointing “down the hill.”
Generally, the adversary does not know if the model has
converged, which is required for this idea to go through. Yet,
in some cases the adversary can deduce this information. For
example, immediately after the final learning rate decay, it
is well known that accuracy fluctuates, i.e., the model has to
re-adjust to the final learning rate.

4.4 Coordination with the End of Training
When a malicious update(s) is made, the A-SGD loss function
will either diverge (never recover) or slowly recover over
time as non-malicious training is allowed to proceed. This
is illustrated in Figure 5. Loss decreases ➀ until the attack
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ing.

update ➁, at which point loss spikes and begins to fall again
➂, re-converging at some later point ➃.

Thus, a basic function every attack needs is a way to coor-
dinate malicious updates with the end of training. Else, the
model will simply recover by the time training ends and the
attack may as well not have occurred. How the attacker co-
ordinates the attack with the end of training depends heavily
on the A-SGD implementation. We discuss how this can be
done with the C-based A-SGD and Pytorch A-SGD code, that
we evaluate, in Sections 5-6.

5 Evaluation Methodology
This section describes the methodology for the APA proof-of-
concept codes and attacks we describe in our evaluation (Sec-
tions 6-7). Unfortunately, despite recent work on machine
learning in SGX [33, 34, 53], there are currently no publicly
available end-to-end A-SGD Frameworks implemented un-
der SGX. Thus, we evaluate two codes:

• A C-based prototype we designed, run on an Intel(R)
Core(TM) i7-6700K SGX-enabled CPU.

• A Pytorch example A-SGD code which is download-
able from the Pytorch site [5].

The C-based prototype mimics the main operations in the
PyTorch code (e.g., how minibatch sampling occurs), but

does not have all the functionality needed to produce a high-
accuracymodel (e.g., gradient calculation, back-propagation).
Thus, its purpose is to evaluate hardware assumptions in
an SGX-enabled environment. The PyTorch-based code’s
purpose is to show how APA attacks can actually degrade
training accuracy in a real training session. We expect codes
like the Pytorch implementation to be able to run on SGX-
enabled machines in the future, using library and environ-
ment support such as Haven [9] or Graphene [65]. Both codes
are Hogwild!-style A-SGD algorithms that follow closely to
Algorithm 1. We now discuss relevant details for both codes:
C-based code overview: The C-based code’s computation
is shown in Figure 6. A main thread calls EENTER to ini-
tialize a blank DNN model (➀) with randomly initialized
weights that live in the SGX EPC (the SGX-protected mem-
ory region). It then loads the training dataset, alongside a
per-element signed hash, into non-enclave memory (➁).7
The training dataset/model live at public (OS-known) ad-
dresses in program memory/EPC, respectively. Main calls
pthread_create to spawn A-SGD threads (➂), each of
which call EENTER to run code implementing Lines 3-14 in
Algorithm 1 and join when the algorithm terminates (➇).
PyTorch-based code overview: The experiments on Py-
torch use the code hosted at [5]. The only change we make
to the Pytorch code is to add learning rate decay (➃), which
we implement using Pytorch’s built-in learning rate sched-
uler functionality. Relative to the C-based code, the Pytorch
code spawns A-SGD threads as full-blown processes (➂)
which join in the same way as the C-based code.

Both codes follow the same order of operations. For ex-
ample, minibatch sampling (➄-➅) occurs before the model
state is sampled (➆). Aside from this, the two most relevant
parts of the A-SGD codes for our attacks are how minibatch
sampling occurs (for the focused attack; Section 4.2) and how
training terminates (Section 4.4), discussed in more detail
below.
Minibatch sampling (C and Pytorch): At the beginning
of each training epoch, the Pytorch code “shuffles” the
dataset by generating a fresh iterator of permuted indices
(➄), and copying a subset of the dataset according to the
iterator into a local tensor (➅). Our C-based code emulates
this by indexing randomly into the dataset and performing a
memcpy to a private buffer. As in [33], data is thus streamed
into the enclave. As discussed in Section 4.2, the attacker
needs to observe which inputs are sampled for each mini-
batch to determine minibatch bias. The Pytorch code uses
a public seed to generate each iterator, making it trivial to
learn bias (as the attacker can determine the bias of each

7Because the data is stored in non-enclave memory, it must be integrity ver-
ified to prevent trivial poisoning attacks. SGX EPC memory is not currently
large enough to store the datasets we evaluate in Section 7 (although this
issue will be fixed in SGX V2 [33]). Which implementation is used does not
impact the attack.
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minibatch before training begins). It is reasonable to assume
a real SGX-based training would make the seed private, e.g.,
by sampling the seed through the Intel RDRAND instruction.
Thus, our evaluation on SGX learns minibatch bias through
side channels (Section 6).
Terminating training (C and Pytorch): To disambiguate
between an A-SGD thread and hardware thread, we refer
to an A-SGD thread as a worker in this discussion. Both
the C-based and Pytorch code terminate with a worker join,
followed by an operation which copies the trained model to
a secure channel.

In our evaluations (Section 7), non-attack workers are al-
lowed to terminate normally once the learning rate fully
decays (loop at ➃). Attack workers, on the other hand, are
prematurely terminated immediately after making their last
malicious update. In the Pytorch code, since each worker
is a separate process, terminating a worker can be done
by calling SIGTERM on the worker. Since other non-attack
threads are waiting at a join, this creates a leaked semaphore
warning which the OS (adversary) can mask, at which point
other threads terminate normally and the attack succeeds.
In the C-based prototype, using SIGTERM in this way works
in the same fashion assuming the A-SGD implementation
has implemented a handler for clean enclave exits on thread
termination, which follows how previous A-SGD implemen-
tations (e.g., Project Adam [15]) implement fault tolerance.

5.1 Target Model, Training Dataset and Parameters
We perform all experiments using the CIFAR-10 [39] dataset
and the Resnet-18 [30] CNN.
Dataset. CIFAR-10 is a popular image recognition task with
C = 10 labels, 50 K training inputs and 10 K validation inputs
ranging from animals to vehicles. We note that the validation
and training sets are evenly distributed by each label.
Model under attack. The Resnet-18 [30] model is a CNN
with 18 convolutional layers, plus additional fully connected
and shortcut layers.
Training parameters.We will evaluate using a variety of
minibatch sizes B (B = 32 to B = 128), to show robustness.
We scale parameters as in vanilla SGD, i.e., each parameter
is scaled by the same learning rate. The learning rate starts
at 0.1 and is also decayed by a factor of 10 once at epoch
150 and again at epoch 250. We additionally verified that the
attacks go through with the Adam optimizer [38], but do not
show these results for space.

We assume the model has converged, and perform attacks,
at epoch 350. That is, after the learning rate has decayed for
the last time. We note that learning rate decay schedule is
typically public (e.g., a constant as in Algorithm 1). The net-
work converges to a maximum accuracy of over 90% on the
validation set when run on the Pytorch implementation [5]
for all batch sizes.

6 Evaluation on SGX
In this section, we test key hardware assumptions for our at-
tack on an SGX-enabled machine and our C-based prototype
(Section 5). We validate the focused attack from Section 4.2.
The techniques required validate the indiscriminate attack
variants (Sections 4.1, 4.3) by extension.

To start, workers (hardware threads) are set up to page
fault on the model (➆) and on the training dataset (➄). Using
a modified (malicious) page fault handler in kernel space, we
halt workers by not returning control until specific condi-
tions are met.

On spawn, all but the last worker are halted on their first
page miss on the model (➆). The remaining worker is used as
the attack worker. Page faults are induced for this worker by
clearing page table present bits from all images in CIFAR-10
that belong to a specific attack label. Counting the number
of page faults to these images reveals the number of images
of the target label in the minibatch, which reveals the mini-
batch bias (Section 4.2). The minibatch is known to be biased
once the number of images crosses a threshold.8 All other
threads are resumed at this point. The page fault handler de-
lays returning from the most recent page fault to the attack
worker, until the resumed workers terminate. The attack
worker learning rate is therefore stale relative to the rest
of the workers. Finally, the attacker lets the attack thread
apply this stale learning rate to the model, and then sends a
SIGTERM signal as described in Section 5 and the APA has
been successfully orchestrated.

7 Evaluation on Pytorch
We now evaluate our APAs from Section 4 on a real dataset,
DNN and A-SGD implementation from Pytorch [5]. See Sec-
tion 5 for details on training dataset and model under attack
(CIFAR-10 [39] and Resnet-18 [30]).

We first trained the Resnet model using the Pytorch script
until it converged and then checkpointed the model state.
For each plot, we load the checkpoint and launch an attack
thread(s) from the Pytorch code to directly perform the mali-
cious updates needed to implement each attack variant. For
the focused attack (Section 4.2), we add code to each thread
so that updates only trigger when a minibatch has a specific
% bias. This is functionally equivalent to the proof-of-concept
using thread scheduling, side channels, etc. from Section 6,
but allows us to perform many experiments in an automated
fashion.
Prediction rate. To show accuracy change in greater detail,
we measure validation set prediction rate for each label. The
CIFAR-10 validation set has 10% images in each class/label,

8One subtlety is that we must detect when minibatch sampling is complete
for each iteration. For this, we arrange for page faults to occur on the model,
which is only accessed after a complete minibatch is sampled. At this point,
bias counters are reset and the attacker is ready to listen for page faults in
the next minibatch sample phase.
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Figure 7. Indiscriminate attack using learning rate (Sec-
tion 4.1). The x-axis denotes the number of malicious updates.
In the top graph, the different lines correspond to the pre-
diction rate for each of the ten labels in CIFAR-10. (Which
line corresponds to which label isn’t important, as changes
are random in this attack.)

so the baseline unbiased model should have a prediction rate
of 10% on average for each label. Lower/higher prediction
rates than 10% for a given label indicate the model is biased
against/towards those labels.
Network divergence. If model accuracy drops below 15%
on the validation set, we stop plotting results for that run.
Recall from Section 5.1, the un-attacked model’s accuracy is
> 90%.

7.1 V1: Indiscriminate Attack (Section 4.1)
Figure 7 shows a representative indiscriminate attack that
uses a stale learning rate. The x-axis shows the number of
malicious updates made by a single attack thread.
The takeaway is that the model’s validation accuracy de-

creases as expected, and decreases further given more at-
tack updates. We have found that most of the time, it takes
multiple attack updates to fully diverge the model. We ex-
perimented with a smaller DNN (Lenet-5 [42]) and found
that fewer updates is sufficient to do more damage reliably
(not shown for space). In general, Resnet-18 (a larger DNN
with more layers) seems more robust and requires multiple
malicious updates.

7.2 V2: Focused Attack (Section 4.2)
Figure 8 shows the effect of focused attacks on representative
attack labels9 and for different minibatch sizes and % bias

9There are 10 total attack labels for CIFAR-10, but they show similar trends
to the three we show here.

Table 1. Select prediction rates towards the target labels
T1, T3, T7 in Figure 8. Un-attacked models have an expected
prediction rate of ∼ 10% towards each label.

% prediction rate
B % minibatch bias # threads T1 T3 T7
128 20 4 11.1 16.7 17.3
64 30 2 32.9 26.4 36.6
32 40 1 23.1 37.3 36.4

thresholds. The y-axis plots prediction rate and the x-axis
plots the number of attack threads (Section 4.2.4). All results
are averaged over 10 runs and start from the same initial
model state (for each minibatch size and target label).

There are several takeaways. As minibatch bias increases,
prediction rate towards the target label increases. Interest-
ingly, the effect is “cleaner” with large minibatches. That
is, with larger minibatches the attack more consistently in-
creases prediction rate towards the attack label and decreases
the prediction rate for all other labels. We attribute this to
larger minibatches generating better quality gradients (as
larger minibatch sizes better represent the training set). By
contrast, smaller minibatch experiments are noisier. In the
extreme case, experiments with B = 32 tend to cause model
divergence given a sufficient number of attack threads.

Based on training parameters and likelihood to see biased
minibatches (Section 4.2.2), we expect to see 20% biased
minibatches given B = 128, 30% given B = 64 and 40%
given B = 32. For each of these minibatch sizes, we select
a fixed number of attack threads (which corresponds to the
adversary’s strategy) and show prediction rates towards the
three target labels in Table 1. (That is, Table 1 highlights
results already present in Figure 8.)

We chose the configurations in Table 1 because these rep-
resent practical attacks that can be carried out given the cur-
rent training parameters (e.g., number of epochs per decay).
Some other configurations are not practical—given current
parameters—but are shown for completeness. For example,
we do not expect to see 30% biased minibatches with B = 128
according to Figure 3a. Depending on public training pa-
rameters, the adversary may need to select different attack
parameters.
Impact of minibatch bias. Figure 8 shows that % mini-
batch bias has a large impact on the eventual model bias
(confirming the premise from Section 4.2). To give more in-
sight, Figure 9 examines the impact of additional minibatch
bias %s, all the way up to 100% biased minibatches. We see
that up to 50% biased minibatches, model bias increases as ex-
pected. Beyond 50% minibatch bias, results are unpredictable.
We observed a similar effect when targeting other labels.

This is counter-intuitive given the explanation in Sec-
tion 4.2.3. One explanation is that due to the use of a large
learning rate, results should be unpredictable. This theory
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Figure 8. Focused attack results (Section 4.2) for Resnet. Each graph corresponds to a specific target label (TX is target label
X) and a specific minibatch bias %. The y-axis shows the prediction rate towards each label. The target label is shown using a
dashed line. The x-axis shows the number of attack threads. Attack updates are applied consecutively. Note, if data is not
plotted it is because the model diverged (Section 7).

is undermined by results in Section 7.3, where we see the
same behavior with a small learning rate. An alternate hy-
pothesis is that since highly biased minibatches never occur
in practice, the model is not robust to them.

7.3 V3: Stale Parameter-Based Attacks (Section 4.3)
Figure 10 shows an attack space for our stale parameters-
based attack (Section 4.3) given minibatch size B = 32. In all
experiments, we arbitrarily chose to look for minibatches
biased towards label 0. As with the previous section, all
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Figure 9. Focused attack results (Section 4.2) for target label 3, varying minibatch bias. Graphs (x-, y-axes) are in the same
format as in Figure 8.

results are the average of 10 runs. All attack thread updates
are made with the same (fully decayed) learning rate as
honest thread updates.
There are several takeaways. First, as minibatch bias in-

creases, smaller N is sufficient to decrease model accuracy.
Since gradient updates have the same small magnitude in
every experiment, we see this as evidence that supports our
claims regarding constructive gradients. Second, the model
does bias towards the target label, and bias is generally pro-
portional to the number of attack threads. In fact, we observe
a similar trend as seen in Figure 9: increased minibatch bias
leads to increased model bias, but not for 100% biased mini-
batches. We conjecture the reasons for this are similar to
those explained in Section 7.2.
As with Figure 8, a subset of the results in Figure 10 are

practical given our training parameters. For example, given
our parameters we expect ∼ 1000 minibatches with bias 28%
or more, and therefore expect effects similar to the 30% bias
attack in Figure 10 to occur in practice.

8 Possible Defense Approaches
We now review possible defense approaches against asyn-
chronous poisoning attacks (APAs). The root cause of these
attacks is malicious thread scheduling to influence model
state. We proposed three concrete APAs, based on stale learn-
ing rate and stale model parameters, however others are
likely possible. We will discuss both specific mitigations to
specific attacks and more general defense approaches.

Twomain takeaways are: (a) existing defenses do not block
all known variants of the attack, (b) there may be other vari-
ants we have not yet discovered. As such, we believe future
research is needed to formally study attacker capabilities in
this setting, so as to enable comprehensive and performant
defenses.
Restricting thread scheduling/staleness. One direction
to aggravate (and sometimes mitigate) our attacks is to dis-
allow certain thread schedulings. Specifically, to mitigate
our learning rate-based attacks (Sections 4.1 and 4.2) in

the shared memory model, we recommend synchronizing
worker threads at a course-, e.g., epoch-, granularity. Mitigat-
ing our stale parameter-based attack (Section 4.3) requires
different mitigations, as it does not require de-scheduling
threads for long amounts of time.
Beyond our setting, restricting thread staleness is an im-

portant technique to improve A-SGD convergence rates [17,
18, 31, 37, 41, 52, 71, 78, 79]. Importantly, techniques designed
not specifically to mitigate APAs are only partially (or not
at all) effective against APAs. For example, [78] proposes
restarting a thread’s inner loop if it has not made an update
for > P updates made by other threads (where P is con-
figurable). This is not effective at mitigating our learning
rate-based attacks as restarting the inner loop has no impact
on the learning rate. This attack can be effective at mitigating
the stale parameters-based attack if the number of attack
threads is > P , but this parameter would need to be carefully
tuned with guidance from our analysis (Section 7).
Byzantine A-SGD. Byzantine defenses, such as [11, 14, 19],
develop methods to protect training from a bounded num-
ber of malicious or faulty workers. A basic limitation in
byzantine approaches is that they assume a threshold on the
number of malicious worker threads. An SGX attacker can
corrupt more or even all worker threads for arbitrary periods
of time, violating byzantine assumptions. Further, arbitrary
adversarial thread scheduling allows an attacker to side-step
the assumptions made by individual schemes. For example,
[11] does not consider stale model parameter-based attacks
in their threat model (Section 4.3).
A-SGD design decisions. The popularization of A-SGD has
led to the development of various frameworks. We high-
light some popular architectural features which help aggra-
vate APA as a coincidental side effect. First, some frame-
works [15, 31, 33, 37, 43, 71, 80] keep the learning rate on
dedicated parameter servers, which keeps it out of the adver-
sary’s control. This defeats our learning rate based attack, as
pausing the parameter server would cause all of training to
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Figure 10. Stale parameters-based attack (Section 4.3) given B = 32. The number of threads corresponds to N from Section 4.3.
The red dots indicate model bias towards the target label (label 0) after all N attack threads apply their update.

pause. A notable exception is the SGX-based A-SGD frame-
work Chiron [33], which opts to keep the learning rate local
to worker threads, to minimize parameter server computa-
tion. Thus, Chiron is still susceptible to all proposed variants
of APA.
Many of the above systems propose multiple parameter

servers for load balancing, fault tolerance, etc. If the learn-
ing rate is stored locally in that case, the attack may still
go through. For example, if when pausing one parameter
server others are allowed to continue, this is akin to paus-
ing a worker thread with a high learning rate. We leave
investigating this direction as future work.
All of the above systems remain vulnerable to a stale

parameters-based attack. Furthermore, there is a recent line
of work that tries to replace centralized parameter servers
with peer-to-peer communication to remove bottlenecks [70].
This approach is, once again, susceptible to learning rate-
based attacks.
Defending against specific attack components. Finally,
there are spot mitigations to specific (not fundamental) parts
of various APAs, which are unlikely to fully quell the vul-
nerabilities and/or can lead to significant performance over-
head. For example, we chose controlled-channel attacks to ob-
serve biased minibatches for simplicity, and there are known
mitigations (e.g., T-SGX [60]) to block these channels. Yet,
even without controlled-channel attacks, there are many
low-noise side channels available to the SGX attacker (Sec-
tion 2.4). Alternatively, the user can perform an oblivious
sort over both the private and public components of the
training set. Unfortunately, this is likely to incur huge over-
head: oblivious sort with low hidden constants costs n log2 n
oblivious swaps where n in modern datasets can be in the

hundreds of GB [36]. We note that using an alternative it-
erator to index into unsorted data is not sufficient: the data
itself must be shuffled to block side channels.

9 Related Work
Asynchronous stochastic gradient descent. Stochastic
gradient descent (SGD) has become ubiquitous in modern
machine learning training and asynchronous SGD (A-SGD)
has become a key tool for scaling SGD to larger data sizes.
Starting with Hogwild! [51], there has been significant work
to analyze the statistical [23, 32, 44, 46, 51, 55, 69] and/or
machine efficiency [15, 20, 21, 58, 76] of A-SGD. Originally,
A-SGD was designed to train sparse, convex problems. Re-
cent work shows how A-SGD can be applied to non-convex
error surfaces such as those found in deep learning, which
is studied in this paper [15, 21, 46]. In particular, Google’s
Downpour [21] and Microsoft’s Project Adam [15] both give
large-scale exemplar systems that demonstrate how 10s to
1000s of CPUs running A-SGD can outperform GPU-based
DNN training.

Cyclades [55] is a framework that performs deterministic
A-SGD. While this determinism can be used to defeat APAs,
Cyclades heavily relies on the dataset being sparse. This
precludes it from being used as a defense for some problem
domains, such as neural network training.

In the A-SGD literature, the closest work to that presented
in our paper is [6]. That work discusses how an adversary can
slow convergence by influencing scheduling. That work does
not discuss focused damage, nor does it consider a scenario
where an adversary is seeking to damage the final accuracy
of a model; it seeks only to study denial-of-service attacks
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that delay convergence. Our work influences scheduling to
break model integrity.
Poisoning attacks. Poisoning attacks are a known training-
time attack onmodel integrity [10, 48–50, 56, 73]. Traditional
poisoning attacks require the adversary to change the train-
ing set. We call our attacks asynchronous poisoning attacks
because instead of requiring a change to the training set, our
attacks exploit thread asynchronicity.
Enclave-based trusted execution.We assume an enclave-
based trusted execution environment [64] (TEE) to defeat
trivial and conventional poisoning attacks. Embodied by In-
tel’s SGX [45], these TEEs have seen significant adoption in
securing user-level applications across domains [8, 9, 61].
Our deployment of A-SGD with enclaves is similar to
Panoply [61] or Chiron [33], and only requires the differ-
ent enclave threads be able to share memory, which SGX
currently supports. We note that while there are only com-
mercial enclave abstractions for CPUs, there is currently
work that extends similar concepts to other platforms such
as GPUs [35].
The closest SGX-related work to our attack is Async-

Shock [72], which uses thread scheduling to turn synchro-
nization bugs into integrity attacks on enclave applications.
Relative to AsyncShock, our attack doesn’t exploit applica-
tion bugs, and shows how an important class of applications,
even bug-free, are still susceptible to integrity attacks when
protected by enclave-based TEEs. More importantly, we view
a large part of our contribution to be showing how thread
scheduling can impact a highly stochastic algorithm like
A-SGD in a controllable way.
Side channels in enclave systems. See Section 2.4 for ci-
tations and more detail.

10 Conclusion
This work presents asynchronous poisoning attacks, which
break machine learning training integrity by maliciously
scheduling asynchronous worker threads. We demonstrate
both indiscriminate and focused attacks, showing how an ad-
versary can reduce model accuracy and even bias the model
towards a particular adversary-chosen label.
The attack root cause is that model updates during

asynchronous-SGD are racy, which is fundamental to asyn-
chronous training. There are many additional, subtle con-
tributing factors that make attacks easier to launch. Thus,
we believe it is important for future work to formally study
what damage a supervisor-level adversary can do during
training, so as to develop holistic and provable defenses.
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A Artifact Appendix
A.1 Abstract
This artifact describes the frameworks used for our eval-
uation. The frameworks consist of two main components:
A Pytorch Component, and an SGX Proof of Concept. The
Pytorch Component can be used to replicate the machine
learning results from Section 7. These results can be repli-
cated on anymachine which can run Python, although errors
may be encountered if CUDA is not available. The code of
this component allows for training a baseline, simulating
or executing a full OS-managed attack for the variants de-
scribed in Sections 4.1 & 4.2, and simulating the variant from
Section 4.3. The SGX PoC consists of an SGX application and
a kernel module, which can be used to replicate the results
from Section 6. This artifact was validated on a bare-metal
machine with Ubuntu Linux, using a Intel i7-6700K CPU
with Intel SGX (albeit this requirement could be relaxed by
using SGX in simulation mode). The SGX Application does
not fully train a network; it loads the CIFAR-10 data set into
enclave memory, and spawns multiple threads which asyn-
chronously sample batches and accumulate data into shared
memory. The kernel module contains the logic to perform
a controlled-channel attack [74], which monitors data sam-
pling, and the code to halt and release the worker threads of
the SGX application for the attack.

A.2 Check-list (meta-information)
• Programs: Pytorch (sources included).

• Data set: CIFAR-10 (download script included).
• Run-time environment: The provided kernel module code
(used in the SGX PoC) is specific to Linux (Ubuntu 16.04)
and running it requires root access to a bare-metal machine;
the Intel SGX SDK is the main software dependency.

• Hardware: We recommend a system with CUDA for the
Pytorch evaluation artifact; we recommend a bare-metal
machine with an SGX-enabled Intel CPU for the SGX PoC
evaluation artifact (CPUs without SGX might work too if
SGX is used in simulation mode, but we did not test them).

• Metrics: Validation accuracy, model bias, attack success.
• Output: The Pytorch artifact outputs accuracy and confi-
dence logs. The SGX PoC artifact outputs informational logs
on the attack execution and results.

• Experiments: Scripts and instructions to fully reproduce
the paper’s results are provided in the artifact README files.

• How much time is needed to prepare workflow (ap-
proximately)?: 2 hours to train baseline on GPU; between
5 minutes and 1 hour to download, compile and install the
custom kernel and setup the SGX SDK.

• How much space is needed (approximately)?: About
160 MB are required for CIFAR-10. Log space varies based
on how much run time is allowed to proceed for, as logs are
gathered periodically. In the Pytorch artifact, output logs are
compressed for convenience.

• How much time is needed to complete experiments
(approximately)?: 30 minutes to simulate attacks. 8+ hours
to perform an OS managed attack during training. 5 minutes
to run the attack on the SGX PoC.

• Publicly available?: Yes, on Zenodo (see Section A.3.1).
• Code licenses: All code is covered by the University of
Illinois/NCSA Open Source License.

A.3 Description
A.3.1 How delivered
The full artifact is available on Zenodo at the following URL: https:
//doi.org/10.5281/zenodo.3628042.

A.3.2 Hardware dependencies
A bare-metal machine with Intel CPU (preferably SGX-enabled)
is required to run the SGX PoC from Section 6. Running the SGX
PoC in a virtualized environment may incur issues due to nested
page faults. We recommend a system with CUDA for the Pytorch
evaluation artifact used in Section 7.

A.3.3 Software dependencies
• Pytorch based PoCs: Pytorch V1.2.0; Python 3.7
• SGX based PoC: Ubuntu 16.04; Intel SGX driver; Intel SGX
PSW; Intel SGX SDK.

A.3.4 Data sets
Our Pytorch artifact utilizes the CIFAR-10 dataset. Instructions and
a script to download it are provided in the artifact.

A.4 Installation
The Pytorch PoC requires no installation. Detailed instructions on
using and running the code, including its arguments, are included
in its README file in the artifact. The SGX-PoC code requires
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installing a custom kernel, booting into this kernel, and loading
a kernel module on it. Detailed instructions on these steps are
included in its README file in the artifact.

A.5 Experiment workflow
A typical flow for simulating the attack with the Pytorch PoC is
described below. All the operations below are undertaken using
the same run script. The second step can be repeated with varying
targets and biases for comparison. The third step can be repeated
with varying numbers of stages and steps for comparison.

1. Train a baseline, generating a checkpoint. This checkpoint
will be used as the simulation start point for subsequent
steps.

2. Measure the effect of a focused attack, by specifying the
’simulate’ option of the run script. An indiscriminate attack
can be simulated by specifying a bias of 10 percent.

3. Measure the effect of a stale parameters-based attack, by
specifying the ’simulate-multi’ option of the run script.

Furthermore, an OS-managed attack can be demonstrated by using
the APA zsh file included.

The full experimental workflow for validating the SGX PoC eval-
uation is described in the README file in the artifact. Essentially,
it consists of four steps:

1. Install the custom Linux kernel.
2. Load the attack kernel module.
3. Launch the victim SGX Application.
4. Check the kernel logs to see if the attack worked.

A.6 Evaluation and expected result
Running the Pytorch PoC will allow for real time observations of
validation accuracy. As the attack proceeds, the validation accuracy
will change in observable ways. Furthermore, various logs will be
generated for the confidence of each sample in the validation set for
every possible label. These logs can be used to compute prediction
rates and bias rates.

A successful run of the SGX PoC evaluation will result in the
user-space SGX application completing its execution without crash-
ing and the attack kernel module logging progress on halting and
resuming threads with a final log message saying "Attack complete".

A.7 Experiment customization
The Pytorch PoC allows for different networks and datasets to
be dropped in by simple modifications. This PoC also allows for
simple specification of target label, minibatch bias amount, number
of attacks, and even network recovery time after an attack.
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