
SparseTrain: Leveraging Dynamic Sparsity in
Training DNNs on General-Purpose SIMD Processors

Zhangxiaowen Gong
University of Illinois at
Urbana-Champaign
gong15@illinois.edu

Houxiang Ji
University of Illinois at
Urbana-Champaign
hj14@illinois.edu

Christopher Fletcher
University of Illinois at
Urbana-Champaign
cwfletch@illinois.edu

Christopher Hughes
Intel

christopher.j.hughes@intel.com

Josep Torrellas
University of Illinois at
Urbana-Champaign
torrella@illinois.edu

Abstract
Our community has greatly improved the efficiency of deep
learning applications, including by exploiting sparsity in
inputs. Most of that work, though, is for inference, where
weight sparsity is known statically, and/or for specialized
hardware.We propose a scheme to leverage dynamic sparsity
during training. In particular, we exploit zeros introduced by
the ReLU activation function to both feature maps and their
gradients. This is challenging because the sparsity degree is
moderate and the locations of zeros change over time. We
also rely purely on software.

We identify zeros in a dense data representation without
transforming the data, and performs conventional vector-
ized computation. Variations of the scheme are applicable
to all major components of training: forward propagation,
backward propagation by inputs, and backward propaga-
tion by weights. Our method significantly outperforms a
highly-optimized dense direct convolution on several popu-
lar deep neural networks. At realistic sparsity, we speed up
the training of the non-initial convolutional layers in VGG16,
ResNet-34, ResNet-50, and Fixup ResNet-50 by 2.19x, 1.37x,
1.31x, and 1.51x respectively on an Intel Skylake-X CPU.

1 Introduction
Deep Neural Networks (DNNs) have become ubiquitous,
achieving state-of-the-art results across a range of tasks
from image recognition [23] to speech recognition [8] to
scene generation [29] to game playing [33]. While GPUs
are amongst the fastest hardware solutions today for deep
learning training, many institutions train on general-purpose
processors. For example, in the supercomputing space, both
Frontera [2] and SuperMUC-NG [5], the No. 5 and No. 9
supercomputers in the world respectively, as of June 2019,
use only CPUs. In the datacenter space, companies such as
Facebook have large datacenters with many CPUs, and use
spare cycles of their CPUs to do training [38]. Therefore,
accelerating DNN training on general-purpose processors is
an important yet sometimes undervalued area.

An effective approach to accelerating DNNs is to remove
useless computations on zero values in the data, known as
sparsity. Indeed, prior efforts spanning hardware to soft-
ware to algorithms have exploited sparsity to eliminate com-
putation or data transfers at different points in DNN com-
putations. Most of these efforts, though, require hardware
changes [7, 10, 13, 21, 27, 30, 31, 43] and/or apply only to in-
ference [7, 10, 13, 15, 27, 28, 40, 41, 43]. These are serious lim-
itations. Most real-world DNN computations are performed
on conventional CPUs and GPUs [1, 3, 9, 16], due to their
wide availability, generality, and large memory capacity. Fur-
ther, significant time goes into training.
This paper addresses these shortcomings through a soft-

ware only effort to speed up DNN training using sparsity,
on unmodified general-purpose devices. This is challenging
for multiple reasons. First, works targeting sparse inference
typically rely on sparse representations (e.g., Compressed
Sparse Row, or CSR), which the sparsity pattern (i.e., loca-
tions of the non-zeros) is static [13, 27, 28, 40, 41, 43]. For
inference, the DNN weights are read-only, and so fit this
criterion. In training, though, the sparsity pattern in both
the inputs and weights changes over time, since we update
the weights with each batch of inputs. Second, operating on
sparse data incurs overhead. Modern machines are highly
optimized for dense computation, and suffer from extra indi-
rections, branches, etc. in processing sparse data. Prior work
either relies on custom hardware to minimize these over-
heads [7, 10, 13, 27, 31, 43], or sophisticated pre-processing
to “shape” the sparsity pattern to better match existing hard-
ware [28, 40, 41] which, again, only applies for static sparsity.

Our method exploits the rectified linear unit (ReLU [26]),
a ubiquitous operator used by convolutional neural net-
works (CNNs) [17–19, 23, 35, 37], multilayer perceptrons
(MLPs) [22], and recurrent neural networks (RNNs) [8]. After
each DNN layer, all neurons (outputs) in the layer are passed
through ReLU, which clamps each neuron’s value to zero if
it is negative. Whether a neuron is negative depends on the
inputs and weights for that neuron, both of which change
during execution. Thus, ReLU introduces dynamic sparsity.

1

ar
X

iv
:1

91
1.

10
17

5v
1 

 [
cs

.L
G

] 
 2

2 
N

ov
 2

01
9



However, ReLU usually only induces moderate sparsity, e.g.,
40%-90% [30], compared to many scientific computing codes
that exploit sparsity. Further, the sparsity pattern has no dis-
cernible structure. These factors make it difficult to overcome
the overheads associated with exploiting sparsity.
We focus on CNNs. Given modest expected sparsity, we

leave data in a dense layout, and exploit sparsity by detecting
zero input values at runtime, and, when appropriate, branch-
ing over useless computations. Our key observation is that
in a CNN, each neuron has a large factor of reuse after it
passes through the ReLU; thus, with a good loop order, we
can amortize the zero-detection and branching cost over lots
of computation. This is only the first step. We introduce addi-
tional optimizations to minimize overhead while maximizing
data locality, available parallelism, and the amount of work
skipped per zero input. We name our scheme SparseTrain.
SparseTrain is general enough to be used on a variety of

commercially available general-purpose processors. How-
ever, some of our design decisions are influenced by an as-
sumption of SIMD support.

We make the following contributions. First, we propose, to
the best of our knowledge, the first DNN training algorithm
that exploits sparsity from ReLU and applies to unmodified
general-purpose devices. Second, we develop sparse methods
that are decoupled from sparse representations and yield
speedup at modest sparsity. Our algorithm is efficient even at
processing dense input. Finally, our optimization techniques
on register usage, reducing branch mispredictions, and data
layout may provide insights to the community.
With profiled sparsity, we estimate that our method out-

performs a highly optimized dense implementation by 2.19x
for the non-initial convolutional layers in VGG16, 1.37x
for ResNet-34, and 1.31x for ResNet-50, and 1.51x for the
BatchNorm-free Fixup ResNet-50.

Table 1. List of the symbols and their dimensions/iterators

description itr. description dim. itr.

N minibatch size i D input tensor NCWH i, c, x, y
C input channels c Y output tensor NKW ′H ′ i, k, x ′, y′

K output channels k G weight tensor KCRS k, c, u, v
W input width x L loss function
H input height y V vector length
R filter width u Q K tile size
S filter height v T # skippable ops
O horizontal stride P vertical stride

2 Background
2.1 Training Convolutional Neural Networks
CNNs are a type of DNN that is effective for analyzing im-
ages. The leading competitors in recent years’ ImageNet
Large Scale Visual Recognition Competition (ILSVRC) are
mostly variants of CNNs, such as AlexNet [23], VGG [35],

GoogLeNet [37], and ResNet [17]. Within a CNN, the con-
volutional (i.e., conv) layers are the most time consuming
components; thus, reducing the amount of computation in
them can greatly boost performance.

The convolution on a minibatch of N images withC chan-
nels and size H ×W correlates a set of K filters withC chan-
nels and size S × R on the images, producing a minibatch
of N images with K channels and size H/P ×W /O , where
P and O are the strides of the two dimensions, respectively.
We denote filter elements as Gk,c,u,v and image elements as
Di,c,x,y . The forward convolution for output Yi,k,x ′,y′ is:

Yi,k,x ′,y′ =

C−1∑
c=0

R−1∑
u=0

S−1∑
v=0

Di,c,x ′×O+u,y′×P+v ×Gk,c,u,v (1)

In the backward propagation of a conv layer, the gradient
of the loss function L w.r.t. the weights G is calculated by
applying the chain rule:

∂L

∂G
=
∂L

∂Y

∂Y

∂G
(2)

We need ∂L/∂Y from the next layer, and compute ∂L/∂D
for the previous layer if needed. ∂L/∂D is a convolution of
∂L/∂Y with the layer’s filters transposed. The gradient w.r.t.
the weights is a convolution of D with ∂L/∂Y , producing
S × R outputs for each input/output channel combination.

Training a conv layer has three major components: the for-
ward propagation (FWD), the backward propagation by input
(BWI), and the backward propagation by weights (BWW).
Table 2 lists the parameters of the layers that we evaluate.

2.2 ReLU and Dynamic Sparsity
The output of a conv layer is usually passed through an
activation function to introduce non-linearity. One popular
activation is ReLU:

f (x) =max(0,x) (3)

and its derivative is1:

f ′(x) =
{
1, if x > 0
0, otherwise (4)

By definition, ReLU and its derivative produce 50% spar-
sity when the distribution of x is centered at 0. When ReLU-
activated conv layers are cascaded, this is reflected in D in
the forward propagation and ∂L/∂Y in the backward propa-
gation, and it affects all three training components.

Since ReLU-induced sparsity varies with input, we call it
dynamic sparsity to differentiate it from the static sparsity
of weight-pruning. Dynamic sparsity is the only type that
exists during the majority of the training time.2
Leveraging dynamic sparsity is challenging because the

degree of sparsity is usually too low for a typical irregular
sparse computation to outperform highly optimized regular
dense computation. In addition, at these modest sparsity
1The derivative at x = 0 is undefined but usually set to 0.
2Static sparsity is also present when re-training a weight-pruned network,
but we focus on regular dense training.

2



Table 2. Evaluated layer configurations from VGG and ResNet v1.5

Name C K H W R S O P Name C K H W R S O P Name C K H W R S O P

vgg1_2 64 64 224 224 3 3 1 1 vgg2_1 64 128 112 112 3 3 1 1 vgg2_2 128 128 112 112 3 3 1 1
vgg3_1 128 256 56 56 3 3 1 1 vgg3_2 256 256 56 56 3 3 1 1 vgg4_1 256 512 28 28 3 3 1 1
vgg4_2 512 512 28 28 3 3 1 1 vgg5_1 512 512 14 14 3 3 1 1 resnet2_1a 64 64 56 56 1 1 1 1
resnet2_1b 256 64 56 56 1 1 1 1 resnet2_2 64 64 56 56 3 3 1 1 resnet2_3 64 256 56 56 1 1 1 1
resnet3_1a 256 128 56 56 1 1 1 1 resnet3_1b 512 128 28 28 1 1 1 1 resnet3_2 128 128 28 28 3 3 1 1
resnet3_2/r 128 128 56 56 3 3 2 2 resnet3_3 128 512 28 28 1 1 1 1 resnet4_1a 512 256 28 28 1 1 1 1
resnet4_1b 1024 256 14 14 1 1 1 1 resnet4_2 256 256 14 14 3 3 1 1 resnet4_2/r 256 256 28 28 3 3 2 2
resnet4_3 256 1024 14 14 1 1 1 1 resnet5_1a 1024 512 14 14 1 1 1 1 resnet5_1b 2048 512 7 7 1 1 1 1
resnet5_2 512 512 7 7 3 3 1 1 resnet5_2/r 512 512 14 14 3 3 2 2 resnet5_3 512 2048 7 7 1 1 1 1

levels, the metadata overheads of sparse representations such
as CSR may exceed any savings.

2.3 Working Around Batch Normalization
Batch normalization (BatchNorm) [20] is a widely-adopted
technique to facilitate training of deeper networks. Batch-
Norm first computes the mean and variance across the mini-
batch, normalizes the minibatch using those statistics, and
then scales and shifts the normalized minibatch with learn-
able parameters.

In a CNN, BatchNorm is usually inserted between a conv
layer and its subsequent ReLU. In that case, ∂L/∂Y of the
conv layer no longer contains the sparsity produced by ReLU;
thus, dynamic sparsity nearly disappears in BWI.

Fortunately, Zhang et al. showed that with proper initial-
ization [42], one can train without BatchNormwith marginal
accuracy loss. Removing BatchNorm restores the lost dy-
namic sparsity in BWI, and significantly accelerates training
since BatchNorm take a notable portion of training time (24%
for ResNet-50 [12]).

2.4 Baseline Platform
We consider a single node system comprising general-purpose
processors with multiple cores and SIMD support. While
we tune and evaluate on a specific platform described in
Section 4, our approach is applicable to most modern shared-
memory nodes with processors supporting SIMD.
To provide context for our design decisions, we briefly

describe our baseline platform. We study a system with Intel
Skylake cores. Each cycle, each core can execute up to two
AVX-512 arithmetic instructions (e.g., fused multiply-add, or
FMA), read two cache lines (64B) write one cache line from/to
the L1 data cache, and retire a total of four instructions. Each
core has 32 vector registers, a 32KB L1 data cache, a 1MB L2
cache, and a 1.375MB non-inclusive L3 cache.

We leverage sparsity within a highly-tuned deep learning
library, Intel’s MKL-DNN [4]. Our work is limited to gener-
ating additional convolution kernels for MKL-DNN through
the xbyak just-in-time (JIT) assembler [6]. Being low-level
software, the implementation can easily and transparently
be exploited at the application level, e.g., via deep learning
frameworks like TensorFlow or PyTorch.

3 Exploiting Dynamic Sparsity
We leverage dynamic sparsity to speed up DNN training on
shared-memory general-purpose SIMD processors. The idea
is to skip operations that are rendered ineffectual by ReLU.
Our scheme is called SparseTrain.

SparseTrain uses a dense data representation for three rea-
sons. First, the sparsity from ReLU is usually too low for
any sparse representation to benefit. Second, we avoid the
overhead of converting between dense and sparse represen-
tations. Finally, a dense format allows regular memory access
patterns and more efficient vectorization.
In the following, we start by describing a naïve initial

design, and then progressively improve it.

3.1 Naïve Forward Propagation
We begin with direct convolution. Algorithm 1 describes a
naïve vectorized approach that reduces the operation count
in FWD based on zeros in the input. Line 1 and Line 4 rep-
resent collapsed loop nests. For simplicity, the algorithm
assumes unit stride, but can be easily changed for strided
convolution. In the rest of the paper, we assume unit stride
unless otherwise specified. The sparse algorithm for BWI is
similar to FWD, and we will talk about BWW separately.

The main idea is, since an input element is reused R×S×K
times, by making the input stationary in the computation
loop nest, we may skip at most R × S × K calculations when
we detect a zero.

We vectorize the computation along the output channel
dimension (K). The statement in Line 5 represents a vector
FMA operation of lengthV . When we detect a zero in Line 2,
we skip all of the following R × S × K/V ineffectual FMAs.
We denote the number of skippable FMAs per check as T .
As shown in Table 2, K is often on the order of hundreds for
later network layers. This, together with the reuse of R × S
means that, potentially, T is large.

The naïve algorithm has several downsides. Firstly, it nat-
urally has input parallelism: it compares each input element
to zero, and then updates multiple output elements. Input
parallelization requires atomic updates of the outputs, which
drastically reduces performance. Output parallelization is
generally faster. The simplest such approach is to let each
core work on different images in the minibatch. However,

3



Algorithm 1: Naïve Vectorized Sparse FWD
input : input D, filters G
output :output Y

1 for i = 0, c = 0,y = 0,x = 0 to N − 1,C − 1,H − 1,W − 1 do
2 if Di,c,x,y , 0 then
3 for k = 0 to K −V step V do
4 for u = 0,v = 0 to R − 1, S − 1 do
5 Yi,[k :k+V−1],x−u,y−v =

Yi,[k :k+V−1],x−u,y−v + Di,c,x,y ×G[k :k+V−1],c,u,v ;

common practice on training on CPU clusters is to assign
a small minibatch to each node; thus, partitioning whole
images may be too coarse grained, causing load imbalance.
Secondly, a CPU has a limited amount of architectural

vector registers; this is 32 in the CPU we target. If T = R ×
S×K/V is greater than the number of registers, we must spill
registers during computation, inducing overhead. Therefore,
we want to confine T . within the register budget.

Finally, the input’s sparsity pattern is random, triggering
branch mispredicts in the zero-checking. Limiting T to the
register budget (∼32), reduces our chance to amortize the
misprediction penalty.

3.2 Optimized Forward Propagation
This section introduces optimizations to improve the naïve
FWD algorithm. Algorithm 2 shows the high-level ideas.

Algorithm 2: Parallel Vectorized Sparse FWD
input : input D, filters G
output :output Y

1 for i = 0 to N −M stepM in parallel do
2 for y = 0 to H − 1 in parallel do
3 for v = 0 to S − 1 do
4 for k = 0 to K −Q step Q in parallel do
5 for c = 0 to C −V step V do
6 for i ′ = i to i +M − 1 in parallel do
7 for x = 0 toW − 1 do
8 m[0:V−1] = [d , 0 for d in Di,[c :c+V−1],x,y+v ];
9 for c ′ = 0 to V − 1 do

10 if mc ′ is true then
11 for k ′ = k to k +Q −V step V do
12 for u = 0 to R − 1 do
13 Yi′,[k ′:k ′+V−1],x−u,y =

Yi′,[k ′:k ′+V−1],x−u,y + Di′,c+c ′,x,y+v ×
G[k ′:k ′+V−1],c+c ′,u,v ;

3.2.1 Vectorized Zero-Checking
The naïve algorithm compares input elements to zero one
at a time. We vectorize this check along the input channel
dimension (C). Line 8 does a vector comparison to generate
a vector Boolean maskm[0:V−1]; each mask bit indicates if
the corresponding input element is zero. We then use the
mask to control skipping computation.

3.2.2 Increasing Output Parallelism
In a convolution, each input element affects a set of spatially
grouped output elements. Similarly, any output element is
calculated from a limited set of spatially grouped input el-
ements. This allows us to increase output parallelism by
reducing T .
We consider parallelizing at an output row granularity,

similar to how MKL-DNN parallelizes its direct convolution.
When a core works on an output row, it processes the input
elements from S corresponding input rows, one row at a
time. This approach lowers T from R × S × K/V to R × K/V .
Moreover, when R × K/V is still larger than the number of
registers, we further tile the output channel dimension (K)
and decrease T to R ×Q/V , where Q is a factor of K and a
multiple of V . We will discuss how we choose Q in the next
section. We can process the same output row at different
output channel tiles in parallel. With T = R × Q/V , the
number of parallel tasks rises from N in the naïve algorithm
to N × H × K/Q .
Since an input row corresponds to S output rows, multi-

ple cores may read a given input row. In a shared memory
system, such reuse may be captured in a shared cache.

3.2.3 Efficient Vector Register Usage
To avoid register spilling, we limit T . On the target CPU,
the number of zmm vector registers is 32, and Algorithm 2
reserves a zmm register for holding the broadcasted input ele-
ment Di′,c+c ′,x,y+v in Line 13 and keeps a vector of zeros for
the vector compare instruction in Line 8. Therefore, the reg-
ister budget forT is 30. On the target CPU, FMA instructions
can take a memory operand, and the L1 read throughput
matches the FMA throughput (2 per cycle per core); thus, we
can operate on filter elements directly from memory.

We further reduce memory operations on output elements.
As shown in Line 7 of Algorithm 2, we scan through an input
row and update the affected output elements accordingly.
We call such a scan a Row Sweep. Due to a convolution’s
spatial nature, the outputs affected by adjacent input ele-
ments may overlap, depending on the filter width R and the
horizontal stride O . (Recall that we assume a unit stride in
our discussion.) For example, when R = 3 andO = 1, Di,c,x,y
affectsYi,k,[x−2:x ],y , andDi,c,x+1,y affectsYi,k,[x−1:x+1],y . As a
result, when we finish updating the output elements affected
by Di,c,x,y , we only need to save Yi,k,x−2,y to memory and
load Yi,k,x+1,y . On the other hand, Yi,k,[x−1:x ],y can stay in
registers. With this, each output element is only read and
written once during a row sweep.

Moreover, since we JIT-generate kernels for different con-
figurations, we can schedule the registers adequately ac-
cording to R and O with a cyclic renaming scheme. In the
above example, we may use zmm[0:2] as output buffers.
When working on Yi,k,[x−2:x ],y , zmm0 holds Yi,k,x−2,y while
zmm1 and zmm2 hold Yi,k,x−1,y and Yi,k,x,y respectively. After

4



moving on to Yi,k,[x−1:x+1],y , zmm0 proceeds to load Yi,k,x+1,y
while Yi,k,x−1,y and Yi,k,x,y are kept in their previous regis-
ters. By keeping the renaming scheme consistent between
the loads/stores and the FMAs, we avoid copying registers
when moving from one input element to the next.

The cyclic renaming scheme requires unrolling the row
sweep loop, starting on Line 7. For largeW , fully unrolling
can lead to kernels too large for the instruction cache. Since
the cyclic renaming repeats every R iterations, we instead
unroll by a factor of R to limit code size.
Because R and V are fixed by the convolution configura-

tion and the hardware, respectively, the only tunable param-
eter in T = R ×Q/V is Q . As a result, the register budget is
often underutilized. To see why, assume we want Q to be a
factor of the number of output channels K so blocks have
the same size. When R = 5, V = 16, and K = 256, which is a
typical number of channels, a reasonable maximum value of
Q is 64. As a result, T = 20, leaving 10 registers unused.

In such cases, we use spare registers to pipeline the load
of output elements affected by the next input element. Again,
using the above example and assuming that we have a zmm3
to spare, we can use it to load Yi,k,x+1,y while working on
Yi,k,[x−2:x ],y , and schedule the cyclic renaming as if R = 4.
With this, FMAs depend on loads from an earlier iteration,
and the out-of-order hardware can dispatch the FMAs sooner.
When pipelining is enabled, the unroll factor of the row
sweep loop becomes R + 1 instead of R.

With pipelining, we use (R + 1) ×Q/V registers; without
it, we use R ×Q/V . We’d like this number to be as high as
possible but no higher than the register budget. At K = 256
and V = 16, the optimal values of Q for common values of
the filter width R are shown in Table 3. As shown in the table,
the values of Q are 128 for R = 1, 128 without pipelining for
R = 3, and 64 for R = 5. For R = 1, we found the alternative
of Q = 256 without pipelining is slower.

Table 3. Optimal setup for K = 256, V = 16 at different R

R Q T Pipelined? # Registers

1 128 8 Y 16
3 128 24 N 24
5 64 20 Y 24

3.2.4 Reducing Branch Mispredictions
As discussed, the optimal T ≤ 30 on the target CPU. Under
this constraint, the zero checking and skipping method in
Algorithm 2 may induce so many branch mispredictions that
the code actually slows down. Therefore, we transform a
series of branches to a single loop to reduce mispredictions.

Algorithm 3 shows the method, and can replace Lines 8-13
in Algorithm 2. First, we compare the input vector to zeros
to generate a mask (maps to Line 8 in Algorithm 2). This is
done with the vcmpps instruction on the target CPU. Then,

we use popcnt to count the number of 1s in the mask, which
represents the number of non-zero elements in the input
vector. After that, the code loops this number of times as
shown in Line 3-13 in Algorithm 3, where each loop iteration
processes a non-zero element from the input vector.

Algorithm 3: Zero Checking for Branch Performance;
the loop nest at line 6-10 is fully unrolled.
input : input pointer D, filter pointer G
output : register array Y
constant :filter offset B

1 m[0:V-1] = vect_cmp_neq_zero(D[0:V-1]);
2 o = population_cnt(m[0:V-1]);
3 for i = 0 to o − 1 do
4 z = trailing_zero_cnt(m);
5 D += z, G += z * B;
6 for j = 0 to Q/V do
7 for k = 0 to R do
8 Y[j][k][0:V-1]+=broadcast(D[0])*G[j][k][0:V-1]

9 end
10 end
11 m = shift_right(m, z+1);
12 D += 1, G += B;
13 end

In each iteration, we first count the number of trailing
zeros (z) in the mask with the tzcnt instruction. Then, we
advance the input pointer by z, to reach the next non-zero
element in the input vector.We also advance the filter pointer
such that it points to the filter elements corresponding to
the given non-zero input element. Finally, we do the FMAs.
We fully unroll the loop nest in Lines 6-10, and translate

each Y[j][k][0:V-1] to a register name (e.g., zmm2). In addi-
tion, the address calculation of G[j][k][0:V-1] depends on
the shape of the filter array described in Section 3.2.5. Finally,
we shift the mask to the right by z+1 to reflect that we have
finished processing the rightmost non-zero input element,
and also adjusts the input and filter pointers accordingly.

For readability, we omitted some low-level optimizations.
Specifically, we pipeline the vector compare instruction such
that the vector mask for the next iteration is generated dur-
ing the current iteration. We also manually schedule and
pipeline the integer instructions in the loop body to mini-
mize dependence stalls. Moreover, we use shifts and load
effective address (lea) instructions to reduce the strength of
the integer multiplications and the number of integer instruc-
tions. In the end, each loop iteration of Lines 3-13 contains 8
cheap integer instructions plus the FMAs.

3.2.5 Memory Access Optimization
We structured both the working sets and the loop nest care-
fully for high memory performance. First, we set the lowest
dimension of the datasets to a channel tile of size V . On the
target CPU, this is the zmm vector register size and the cache

5



line size. Recall that we vectorize the computation along
channels. Therefore, when the channel tile is aligned to a
cache line boundary, vector instructions operate efficiently
on a vector of the channel data.
We have 3 working sets, with different behaviors: the in-

put D, the filters G, and the output Y . D and Y have spatial
locality during a row sweep. Each row element from them
is loaded/stored only once per row sweep, and adjacent ele-
ments in a row are accessed consecutively. Such a streaming
pattern benefits from hardware prefetching when we assign
the second lowest dimension to the row dimension. We may
also strategically software-prefetch the elements of the next
row to the L2 cache when the line fill buffers (LFB) are not
saturated.
In contrast, G has temporal locality during a row sweep.

Since we compute partial results forW ×Q output elements
fromW×V input elements in a row sweep, we accessQ×V×R
filter elements repeatedly. With the R and Q values listed
in Table 3, when R = {3, 5}, 24KB or 20KB of G elements
are used per row sweep. Thus, on a machine with a 32KB
L1-D cache, the next set of G elements needs to be loaded
from the L2 or below when the input/output channels of
focus change. To counter the issue, we block the minibatch
dimension (N ) with a tile size ofM to reuse each G element
M times, as in Lines 1 and 6 in Algorithm 2. After testing, we
confirmed thatM = 16 is appropriate for most convolution
configurations.
We organize G to leverage the hardware prefetcher. We

set the lowest dimension to an output channel (K) vector
of length V , the next dimension to an input channel (C)
tile of length V , and the next dimension to the filter width
dimension (R). When the kernel works on an input channel
c from a tile, it accesses R × Q/V output channel vectors.
Thanks to the data layout, the hardware can prefetch the
output channel vectors pertaining to c + 1 in the meantime.

3.3 Backward Propagation by Input
For a unit stride convolution, BWI is virtually the same as
FWD, with the exception that the filters are transposed. How-
ever, non-unit strides introduce some differences. Specif-
ically, when applying the register usage optimization de-
scribed in Section 3.2.3 with row stride O > 1, we load Q/V
new Y element vectors into the register buffer after we fin-
ish processing O vectors of D during FWD. On the other
hand, during BWI, we load O × Q/V new ∂L/∂D element
vectors into the register buffers after we finish processing
one ∂L/∂Y element vector.
Also, during a FWD row sweep, some D elements may

affect a number of Y element vectors that is less than T
due to the horizontal stride; however, during a BWI row
sweep, ignoring the image boundaries, an ∂L/∂Y element
always affects T ∂L/∂D element vectors. Our JIT based im-
plementation can correctly generate the appropriate number
of skippable FMAs accordingly.

Finally, the unroll factor of the row sweep loop in FWD is
W ×O . In BWI, it is the least common multiple ofW and O .

3.4 Backward Propagation by Weights
Algorithm 4 is a naïve sparse algorithm for BWW. It checks
for zeros in D. We can easily modify the algorithm to check
for zeros in ∂L/∂Y instead, if we expect more sparsity in
∂L/∂Y of the target layer. In Algorithm 5, we apply output-
parallelization and similar optimizations used in the other
two components, with some changes.

Algorithm 4: Naïve Vectorized Sparse BWW
input : input D, output gradients dY
output :filter gradients dG

1 for i = 0, c = 0,y = 0,x = 0 to N − 1,C − 1,H − 1,W − 1 do
2 if Di,c,x,y , 0 then
3 for k = 0 to K −V step V do
4 for u = 0,v = 0 to R − 1, S − 1 do
5 dG[k :k+V−1],c,u,v =

dG[k :k+V−1],c,u,v + Di,c,x,y × dYi,[k :k+V−1],x−u,y−v ;

Algorithm 5: Parallel Vectorized Sparse BWW
input : input D, output gradients dY
output :filter gradients dG

1 for i = 0 to N −V step V do
2 for y = 0 to H − 1 do
3 for v = 0 to S − 1 in parallel do
4 for k = 0 to K −Q step Q in parallel do
5 for c = 0 to C − 1 in parallel do
6 for x = 0 toW − 1 do
7 m[0:V−1] = [d , 0 for d in D[i :i+V−1],c,x,y+v ];
8 for i ′ = 0 to V − 1 do
9 if mi′ is true then

10 for k ′ = k to k +Q −V step V do
11 for u = 0 to R − 1 do
12 dG[k ′:k ′+V−1],c,u,v = dG[k ′:k ′+V−1],c,u,v +

Di+i′,c,x,y+v × dYi+i′,[k ′:k ′+V−1],x−u,y ;

We vectorize the zero-checking along the minibatch di-
mension (N ) instead of the channel dimension as in FWD
and BWI, reflected in Line 7, because in BWW, the desti-
nation of the FMA operation, dG[k :k+V−1],c,u,v , changes as
the input channel c changes. As a result, if we vectorize the
zero-checking along the input channel dimension (C), we
need to store the previous group ofdG[k :k+V−1],c,u,v vector to
memory and load a new group before entering the loop start-
ing at Line 10, and this frequent register spilling may harm
performance significantly. Luckily, because dG[k :k+V−1],c,u,v
is minibatch-invariant, all input elements from the vector
D[i :i+V−1],c,x,y+v affects the same group of dG[k :k+V−1],c,u,v .
Therefore, vectorizing the zero-checking along theminibatch
dimension avoids spilling the registers.

6



Due to the change in vectorization scheme, we transpose
the input D such that the lowest dimension is a minibatch
tile of size V . This is an effort to avoid gathering.

In a row sweep, a core works on R ×Q filter gradient ele-
ments. Because the total number of filter gradient elements is
R×S×K ×C , the maximum parallelism becomes S×C×K/Q .

Since the set of filter gradient elements is constant during
a row sweep, if we limit the number of filter gradient vectors
being worked on, which is T = R × Q/V , to the register
budget, they can stay in the registers during the entire row
sweep. Consequently, we do not apply the cyclic register
load/store and renaming scheme described in Section 3.2.3.
This also lifts the restriction on the unrolling factor for the
row sweep loop so that it can be chosen freely.

Instead of loading the previous partial results of the filter
gradient vectors at the beginning of a row sweep and store
the new partial results to memory at the end, we clear the
output buffer registers at the beginning and store the FMA
results in them during a row sweep. At the end, we load the
previous partial results and add them to the output buffer
registers as the new partial results, and we immediately
store them back to memory afterwards. Therefore, the filter
gradient elements are only accessed twice in succession at
the end. We also prefetch the filter gradient elements in
software at the beginning. With the optimization, tiling the
minibatch dimension to reuse the filter elements as described
in Section 3.2.5 is unnecessary.
The two source operands of the FMA instructions used

in BWW are the broadcasted input element Di+i′,c,x,y in a
zmm register and the ∂L/∂Y vector dYi+i′,[k ′:k ′+V−1],x−u,y as
a memory operand.

4 Experimental Setup
We build SparseTrain as additional convolution kernels in
MKL-DNN, and use the xbyak JIT assembler to generate the
code. We use MKL-DNN v0.90’s direct convolution kernel as
the baseline, refered to as direct. Georganas et al. [11] docu-
mented most of the optimizations employed by the baseline.

We compare the performance of SparseTrain againstMKL-
DNN ’s on an Intel Core i7-7800X Skylake-X CPU with 6
cores, 2 AVX-512 vector units per core, a 32KB L1 D-cache
and 1MB L2 cache per core, and 8.25MB of shared L3 cache.
We disable hyperthreading as well as dynamic frequency
scaling and enable 2MB pages.

Because our kernels are JIT generated, the choice of com-
piler does not affect our performance much, but it may im-
pact some ofMKL-DNN ’s implementations. We use the Intel
C++ Compiler (ICC) 19.0 for the experiments.

To evaluate SparseTrain at various sparsity levels, we gen-
erate synthetic input with random sparse patterns and ex-
periment on all but the first conv layers from VGG [34] and
ResNet [17]. We use a batch size of 16 during the experiment.
Table 2 lists the experimented layer configurations.

Finally, we estimate the speedup in the end-to-end train-
ing of the conv layers of VGG16, ResNet-34/50, and a variant
of the Fixup ResNet-50 [42]. The original Fixup ResNet elim-
inates BatchNorm but adds a scalar bias between each ReLU
and the next conv layer, which erases dynamic sparsity in
FWD. We remove those bias terms with a 1.0% penalty in
top-1 accuracy.

For the three ResNet variants, we randomly select 5 mini-
batches and profile their real sparsity patterns throughout
100-epoch ImageNet training sessions. We then run Sparse-
Train against the profiled sparsity patterns to project the
total execution time of the conv layers in the whole train-
ing. For VGG16, we use the sparsity levels profiled by Rhu
et al. [30], and we generate synthetic input at the profiled
sparsity levels to project the total execution time.

5 Evaluation
5.1 3 × 3 Convolutional Layers

Figure 1. The speedup over direct on the 3x3 layers

3 × 3 (R = S = 3) has become the most popular con-
volutional layer type in recent years, so the performance
of them is crucial. Techniques such as the Winograd algo-
rithm [24] have been proposed to accelerate 3 × 3 Layers,
and MKL-DNN implements a highly optimized vectorized
Winograd convolution that often outperforms direct. How-
ever, because the Winograd algorithm reduces computation
by transforming the problem to the “Winograd space,” it
has two drawbacks that are absent in SparseTrain. First, the
transformation introduces numerical instability as the filter
size increases, so its application is usually limited to 3 × 3
Layers [39]; second, it requires additional workspace mem-
ory. Further, MKL-DNN ’s Winograd implementation does
not support strided convolution.

7



Besides the aforementioned algorithms, MKL-DNN also
implements a im2col based convolution. The algorithm flat-
tens and duplicates parts of the input image and the filters to
form matrices and then performs matrix multiplication with
gemm calls. The version of MKL-DNN that we use incor-
porates MKL 2019.0 as the backend gemm. Although gemm
itself is highly optimized, creating the matrices incurs time
and memory overheads, so this implementation is generally
slower than direct. Figure 1 shows the speedup of Sparse-
Train at 20-80% sparsity over direct for all three training
components of studied layers. We compare against im2col
andWinograd when applicable. Table 4 lists the geo-mean
speedup at various sparsity.

At 0% sparsity (i.e., a truly dense input), SparseTrain reaches
92%-95% of direct’s performance on average, depending on
the component. This indicates that the overhead to check
for and exploit sparsity is low, and the loop order as well as
the tiling strategy of SparseTrain are effective.

Table 4.Average speedup at different sparsity for 3×3 layers

SparseTrain
im2c. win.0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

FWD 0.92 0.96 1.04 1.13 1.24 1.38 1.56 1.79 2.11 2.48 0.33 1.45
BWI 0.93 0.98 1.06 1.15 1.26 1.40 1.58 1.81 2.10 2.45 0.31 1.48
BWW 0.95 0.98 1.03 1.10 1.18 1.30 1.48 1.76 2.23 3.15 0.37 1.44

On average, the sparsity cross-over point for SparseTrain
to outperform direct is between 10%-20%, which is lower than
the realistic sparsity during training. At 50% sparsity, which
is the expected value at the beginning of the training when
the distribution of the weights is centered at 0, SparseTrain
on average delivers a 1.30x-1.40x speedup.
Typically, the later layers in a network have higher spar-

sity than the earlier layers. The sparsity reaches over 90% for
VGG16 and ResNet-34 layers, and over 80% for ResNet-50
layers. At such level, SparseTrain is on average over 2x faster
than direct. On the contrary, im2col is always significantly
slower than the baseline. When the stride is 1,Winograd is
on average 1.44x-1.48x faster than direct.
SparseTrain performs better at later layers while Wino-

grad dominates at earlier layers. This is partly due to the
increased sparsity at later layers; on average, it takes at least
50%-60% sparsity for SparseTrain to surpassWinograd. The
other factor is a smaller number of channels for earlier layers,
which limits the number of skippable FMAs per input ele-
ment, and thus reduces efficiency. For example, both vgg1_2
and resnet2_2 have C and K of 64, giving us only 12 skip-
pable FMAs. Since SparseTrain and Winograd have different
specialties, they can supplement each other.
With stride 1, SparseTrain for FWD and BWI have simi-

lar performance. However, for stride-2 layers (resnet3_2/r,
resnet4_2/r, and resnet5_2/r), the former outperforms the lat-
ter. As discussed in Section 3.3, ∂L/∂D needs to be loaded

O2 times more rapidly during a row sweep in BWI than Y
being loaded in FWD. Therefore, BWI suffers from cache
bandwidth limitations.

5.2 1 × 1 Convolutional Layers

Figure 2. The speedup over direct on the 1x1 layers

1 × 1 layers (R = S = 1) are widely used in ResNet-50’s
bottleneck blocks. They are unique amongst convolutions
in that the spatial reuse of R × S is completely absent. As a
result, an output element is just a weighted sum of all input
channels at the corresponding input x ,y location.MKL-DNN
provides a specialized algorithm that uses a reduction instead
of the accumulation employed by the baseline to specifically
deal with 1 × 1 Layers. We call it the 1x1 kernel.
Figure 2 shows the speedup on each 1 × 1 layer over

the dense direct from SparseTrain, im2col, and 1x1. Table 5
lists the average speedup at different sparsity. SparseTrain
is developed under the premise that convolution has a high
compute-to-memory ratio. However, the ratio for 1 × 1 lay-
ers is 9x lower than that for 3 × 3 layers with the same
input/output/channel sizes; thus, as we eliminate useless
FMAs, 1 × 1 layers may become bandwidth-bound sooner
than 3 × 3 layers. Therefore, at high sparsity, SparseTrain
is less effective on 1 × 1 layers than on 3 × 3 layers, only
reaching 1.66x-2.04x speedup on average at 80% sparsity.

Table 5.Average speedup at different sparsity for 1×1 layers

SparseTrain
im2c. 1x10% 10% 20% 30% 40% 50% 60% 70% 80% 90%

FWD 0.97 0.98 1.03 1.09 1.17 1.27 1.39 1.51 1.66 1.78 0.62 1.06
BWI 1.03 1.03 1.08 1.15 1.22 1.33 1.43 1.53 1.66 1.76 0.91 1.08
BWW 0.71 0.76 0.83 0.92 1.05 1.20 1.39 1.66 2.04 2.61 0.87 1.23

8



We also notice that BWW behaves differently than the
other two components. At 0% sparsity, SparseTrain’s per-
formance is on par with the baseline for FWD and BWI.
For BWW, though, SparseTrain only reaches 71% of baseline.
However, at high sparsity, SparseTrain’s speedup is higher
for BWW than the other two components.
Here we compare BWW with FWD. Its difference with

BWI can be derived. The difference stems from two com-
peting factors both related to how BWW accesses ∂L/∂Y
against how FWD accesses Y . First, BWW uses a different
loop order, and in a row sweep touches V times more el-
ements from ∂L/∂Y than FWD touches Y at 0% sparsity.
Second, BWW reads ∂L/∂Y elements as a memory operand
of an FMA. When we skip a group of FMAs, we also skip
the access to the ∂L/∂Y elements. At high sparsity, we elim-
inate many such access. In contrast, FWD loads and stores
Y elements using the cyclic register allocation scheme de-
scribed in Section 3.2.3, so the Y elements are loaded and
stored regardless of sparsity pattern. Therefore, at low spar-
sity, BWW performs many more memory accesses, and at
high sparsity, performs many fewer. The effect of the above
factors is less visible at 3 × 3 layers thanks to their higher
compute-to-memory ratio; however, it surfaces at 1×1 layers.

The lower channel sizes at earlier 1×1 layers hurts Sparse-
Train more than they do at earlier 3 × 3 layers due to the
absence of spatial reuse. For example, resnet2_1a has 64 for
C and K , resulting in only 4 FMAs being skippable per zero-
checking. Consequently, we can hardly see speedup from
SparseTrain on earlier 1 × 1 layers. Nonetheless, we can still
efficiently leverage the dynamic sparsity in later 1× 1 layers.
On average, the cross-point sparsity for SparseTrain to

surpass the specialized 1x1 kernel is below 30% for FWD as
well as BWI, and around 50% for BWW.

In addition to 1× 1 and 3× 3 layers, we also experimented
with several 5 × 5 layers and got even higher speedup. We
omit the results due to lack of popularity of the 5 × 5 layers.

5.3 Performance at Profiled Sparsity
Rhu et al. [30] observed that during training, the sparsity
from ReLU often begins at ∼50% but increases rapidly in the
first several epoches, and then slowly decreases. Also, later
conv layers generally have higher sparsity then earlier layers.
They further demonstrated that most of VGG16’s layers are
over 80% sparse on average, and some layers’ outputs may
reach 90% sparsity on average.

Figure 3 presents the sparsity of each ReLU’s output dur-
ing our training of the three ResNet Variants. The average
sparsity of each layer typically ranges from 20% to 90%, and
the observations from Rhu et al. generally hold. One excep-
tion is that the degree of sparsity between adjacent layers
fluctuates periodically; this is caused by the shortcut in each
residual block, which adds positive bias to the outputs of
a block and lowers the sparsity from the subsequent ReLU.

The fluctuation is more pronounced in ResNet-34 and Fixup
ResNet-50 than in ResNet-50.

Figure 3. Measured sparsity in ReLU outputs during 100-
epoch trainings on ImageNet. Each segment of the x-axis
corresponds to a single layer. Within a segment, from left to
right are the sparsity from the first epoch to the last.

The inclusion of BatchNorm affects SparseTrain’s execu-
tion time of both BWI and BWW. Because ResNet-34/50 has
BatchNorm, ∂L/∂Y has no sparsity, so we replace Sparse-
Train with the baseline for BWI, and use the sparsity pattern
in D to measure the execution time of BWW. On the other
hand, VGG-16 and Fixup ResNet-50 do not have BatchNorm,
so we use the sparsity pattern in ∂L/∂Y to measure the exe-
cution time of BWI, and choose the higher average sparsity
from D or ∂L/∂Y to measure the execution time of BWW.
Figure 4 illustrates the estimated total execution time of

the conv layers with different algorithms during end-to-end
training, normalized to the execution time of direct. The
plot stacks the execution time of each component. Because
SparseTrain is not applicable to the first layers in the network
due to the input images often being zero-free, we show the
execution time of the first layer as a constant overhead.

Figure 4. Breakdown of the estimated execution time of
all conv layers from networks during end-to-end training,
normalized to direct

In the plot, the SparseTrain bars are the execution times
of using purely SparseTrain, or in the case of the ResNet-
34/50, SparseTrain for FWD and BWW plus the baseline for
BWI. The win/1x1 bars are the execution times of using the
Winograd convolution or the 1x1 kernel whenever possible.

9



Because we found that SparseTrain and Winograd may com-
plement each other, we also include the combined bars that
contain the execution times with the preferred convolution
implementation of each layer being employed. Because the
im2col implementation is much slower than dense direct, we
omit it in the plot.

Table 6 lists the speedup on the conv layers both including
and excluding the first layer. The results suggest that when
including the first layer, SparseTrain speeds up the training
of the conv layers in the studied networks by 1.28x-2.15x.
By choosing the best algorithm for each layer, we can speed
up training by 1.39x-2.35x. Note that combined chooses the
algorithm for each layer statically according to the average
execution time. If we profile the sparsity of each layer at
intervals during training and then dynamically select the
best implementation to use based on the current sparsity
level, the potential speedup may be higher.

Table 6. Projected speedup on all conv layers from networks

Incl. 1st layer excl. 1st layer
SparseTrainwin/1x1 comb. SparseTrainwin/1x1 comb.

VGG16 2.15 1.66 2.35 2.19 1.68 2.40
ResNet-34 1.31 0.99 1.48 1.37 0.98 1.58
ResNet-50 1.28 1.08 1.39 1.31 1.09 1.44
Fixup ResNet-50 1.45 1.08 1.53 1.51 1.09 1.62

SparseTrain can speedup Fixup ResNet-50 by 1.45x instead
of 1.28x on the original ResNet-50 thanks to the absence
of BatchNorm. We also experimented with minibatch N =
{32, 64}, and confirmed that SparseTrain’s execution time
scales linearly with N .

5.4 Limitations
Apart from the complications caused by BatchNorm, several
other factors may limit the application and/or performance
of SparseTrain. First, SparseTrain is inapplicable to networks
that use activation functions other than ReLU. Nonetheless,
ReLU is by far the most popular activation function for CNN.

Second, althoughwe appliedAlgorithm 3 to combat branch
misprediction, the misprediction rate is still noticeable due
to the low trip count of the transformed loop (≤ V ). Further
reducing mispredictions in software may be hard; however,
because the trip count is generated outside of the loop body,
previous hardware proposals [32] can remove the branch
misprediction entirely by decoupling trip count generation
and loop execution.
Third, the sparsity in FWD and BWI is fully exploited

because only one of the two source operands in their FMAs
contains sparsity. However, both FMA operands in BWW
may be sparse, so the sparsity in BWW is not fully leveraged.
Also, SparseTrain does not take advantage of the sparsity in
the weights if they are iteratively pruned during training.

Finally, due to the vectorization of the zero-checking in
BWW being along the minibatch dimension, we require the
batch size to be a multiple of V for maximum performance.

6 Related Works
Various works compress DNN models by eliminating redun-
dant weights. Network pruning [14] [28] removes redundant
network connections under reasonable criteria. Weight quan-
tization [44][45] sacrifices numerical precision to reduce
model size. Wen et al. [40] studies structured sparsity. Their
compressed models are more hardware-friendly. However,
they are not applicable during training and do not exploit
dynamic sparsity in the activation.

meProp [36] sparsifies the back propagation of LSTMs and
MLPs by only propagating a small number of gradients in
each pass. This reduces back propagation time for the studied
networks and lowers overfitting as a byproduct. Yet, it does
not affect the forward propagation, nor has it been tested on
CNNs. Our work is orthogonal to it and can potentially be
applied in conjunction with it.
Several hardware proposals targeting DNN accelerators

exploit the sparsity in weights, activations, or both. Cn-
vlutin [7] leverages sparsity in activations to skip ineffectual
computations. Eyeriss [10] clock-gates computation path and
local buffer when zero is detected in the activation, and it per-
forms convolution in a synchronous manner, collecting par-
tial results from neighbor processing elements, therefore sav-
ing energy. However, cycles are not saved. Cambricon-X [43]
focuses on weights sparsity and skips multiplications associ-
ated with zero weights obtained by pruning. EIE [13] exploits
the sparsity in both weights and activations using a com-
pressed representation, but it is limited to matrix-vector mul-
tiplication (e.g. fully connected layers) and cannot accelerate
the most time-consuming convolutional layers. SCNN [27]
utilizes the sparsity in both weights and activations, and ac-
celerates the convolution layer. These accelerators modifies
the hardware structure while our work is software only.

Normally, the Winograd algorithm [24] erase the dynamic
sparsity in the activation. Liu et al. [25] restore the activation
sparsity by applying ReLU to the activation after transform-
ing to the Winograd space. However, their approach changes
the network structure. In addition, their focus is to reduce
the operation count for running DNN inference onmobile de-
vices, and they do not target training nor efficient vectorized
implementation.

7 Conclusion
The widespread usage of the ReLU non-linear activation
function in DNNs means that DNN training includes a sig-
nificant fraction of computations on zero values. Traditional
sparse methods, however, are not effective since the fraction
of zeros is modest, and the locations of zeros are dynamic.

10



We observe that each output value from a ReLU function
sees significant reuse in all three phases of training. There-
fore, if we order the main compute loops appropriately, we
can check for zero on the fly, and potentially jump over
chunks of work. We further vectorize the sparsity-checking,
maximize efficiency when sparsity levels are low, and min-
imize branch mispredictions. When applied to direct con-
volutions, at 0% sparsity, our approach generally performs
within 10% of a highly optimized dense code. For training
of real DNNs, our approach is projected to outperform the
dense convolutions by 1.31x-2.19x.
This paper is the first work to exploit dynamic sparsity

with only software techniques and opens up new research
direction in speeding up computation with modest sparsity.

References
[1] [n. d.]. Amazon SageMaker ML Instance Types. https://aws.amazon.

com/sagemaker/pricing/instance-types/.
[2] [n. d.]. Frontera System - Texas Advanced Computing Center. https:

//www.tacc.utexas.edu/systems/frontera.
[3] [n. d.]. GPU-BasedDeep Learning Inference: A Performance and Power

Analysis. https://www.nvidia.com/content/tegra/embedded-systems/
pdf/jetson_tx1_whitepaper.pdf.

[4] [n. d.]. Intel(R)Math Kernel Library for Deep Neural Networks (Intel(R)
MKL-DNN). https://github.com/intel/mkl-dnn.

[5] [n. d.]. SuperMUC-NG - Leibniz-Rechenzentrum (LRZ) Dokumenta-
tion. https://doku.lrz.de/display/PUBLIC/SuperMUC-NG.

[6] [n. d.]. Xbyak: JIT assembler for x86(IA32), x64(AMD64, x86-64) by
C++. https://github.com/herumi/xbyak.

[7] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt,
Natalie Enright Jerger, and Andreas Moshovos. [n. d.]. Cnvlutin:
Ineffectual-neuron-free Deep Neural Network Computing (ISCA’16).

[8] Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl Case, Jared
Casper, Bryan Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam
Coates, Greg Diamos, Erich Elsen, Jesse Engel, Linxi Fan, Christopher
Fougner, Tony Han, Awni Hannun, Billy Jun, Patrick LeGresley, Libby
Lin, Sharan Narang, Andrew Ng, Sherjil Ozair, Ryan Prenger, Jonathan
Raiman, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, YiWang,
Zhiqian Wang, Chong Wang, Bo Xiao, Dani Yogatama, Jun Zhan, and
Zhenyao Zhu. 2015. Deep Speech 2: End-to-End Speech Recognition
in English and Mandarin. arXiv:cs.CL/1512.02595

[9] K. Chen D. Chen S. Choudhury M. Dukhan K. Hazelwood E. Isaac Y.
Jia B. Jia T. Leyvand H. Lu Y. Lu V. Peter B. Reagen F. Sun A. Tulloch
X. Wang Y. Wang B. Wasti R. Xian S. Yoo P. Zhang C. Wu, D. Brooks.
[n. d.]. Machine Learning at Facebook: Understanding Inference at
the Edge. In HPCA’19.

[10] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. [n. d.]. Eyeriss: A Spatial
Architecture for Energy-efficient Dataflow for Convolutional Neural
Networks (ISCA’16).

[11] Evangelos Georganas, Sasikanth Avancha, Kunal Banerjee, Dhiraj
Kalamkar, Greg Henry, Hans Pabst, and Alexander Heinecke. 2018.
Anatomy of high-performance deep learning convolutions on simd
architectures. In SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 830–841.

[12] Igor Gitman and Boris Ginsburg. 2017. Comparison of batch normal-
ization and weight normalization algorithms for the large-scale image
classification. arXiv preprint arXiv:1709.08145 (2017).

[13] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A.
Horowitz, and William J. Dally. [n. d.]. EIE: Efficient Inference Engine
on Compressed Deep Neural Network (ISCA’16).

[14] Song Han, Huizi Mao, and William J. Dally. [n. d.]. Deep Compression:
Compressing Deep Neural Network with Pruning, Trained Quantiza-
tion and Huffman Coding (ICLR’16).

[15] Song Han, Jeff Pool, John Tran, and William J. Dally. [n. d.]. Learn-
ing both Weights and Connections for Efficient Neural Networks
(NIPS’15).

[16] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis, Misha
Smelyanskiy, Liang Xiong, and Xiaodong Wang. [n. d.]. Applied Ma-
chine Learning at Facebook: A Datacenter Infrastructure Perspective.
In HPCA’18.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. [n. d.]. Deep
Residual Learning for Image Recognition (CVPR’16).

[18] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. CoRR abs/1704.04861 (2017). arXiv:1704.04861
http://arxiv.org/abs/1704.04861

[19] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Wein-
berger. 2017. Densely Connected Convolutional Networks. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2017),
2261–2269.

[20] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Ac-
celerating deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167 (2015).

[21] H. Ji, L. Song, L. Jiang, H. H. Li, and Y. Chen. 2018. ReCom: An
efficient resistive accelerator for compressed deep neural networks. In
2018 Design, Automation Test in Europe Conference Exhibition (DATE).
https://doi.org/10.23919/DATE.2018.8342009

[22] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, Richard C. Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James
Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony,
Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy
Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy
Phelps, Jonathan Ross, Amir Salek, Emad Samadiani, Chris Severn,
Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy
Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick
Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,
and Doe Hyun Yoon. [n. d.]. In-Datacenter Performance Analysis of a
Tensor Processing Unit (ISCA’17).

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. [n. d.]. Im-
agenet classification with deep convolutional neural networks. In
Advances in Neural Information Processing Systems (NIPS’12).

[24] Andrew Lavin and Scott Gray. [n. d.]. Fast Algorithms for Convolu-
tional Neural Networks (CVPR’16).

[25] Xingyu Liu, Jeff Pool, Song Han, and William J. Dally. 2017. Ef-
ficient Sparse-Winograd Convolutional Neural Networks. CoRR
abs/1802.06367 (2017).

[26] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. [n. d.]. Rectifier
nonlinearities improve neural network acoustic models (ICML’13).

[27] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer,
StephenW. Keckler, andWilliam J. Dally. [n. d.]. SCNN: An Accelerator
for Compressed-sparse Convolutional Neural Networks (ISCA’17).

[28] Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran
Chen, and Pradeep Dubey. 2016. Faster CNNs with Direct Sparse

11

https://aws.amazon.com/sagemaker/pricing/instance-types/
https://aws.amazon.com/sagemaker/pricing/instance-types/
https://www.tacc.utexas.edu/systems/frontera
https://www.tacc.utexas.edu/systems/frontera
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://github.com/intel/mkl-dnn
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://github.com/herumi/xbyak
http://arxiv.org/abs/cs.CL/1512.02595
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.23919/DATE.2018.8342009


Convolutions and Guided Pruning (ICLR’16).
[29] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised

representation learningwith deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434 (2015).

[30] Minsoo Rhu, Mike O’Connor, Niladrish Chatterjee, Jeff Pool, Youngeun
Kwon, and Stephen W Keckler. 2018. Compressing DMA engine:
Leveraging activation sparsity for training deep neural networks. In
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 78–91.

[31] Sanchari Sen, Shubham Jain, Swagath Venkataramani, and Anand
Raghunathan. 2017. SparCE: Sparsity aware General Purpose Core Ex-
tensions to Accelerate Deep Neural Networks. arXiv:cs.DC/1711.06315

[32] Rami Sheikh, James Tuck, and Eric Rotenberg. 2015. Control-flow
decoupling: An approach for timely, non-speculative branching. IEEE
Trans. Comput. 64, 8 (2015), 2182–2203.

[33] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lil-
licrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and
Demis Hassabis. 2016. Mastering the Game of Go with Deep Neural
Networks and Tree Search. Nature 529, 7587 (Jan. 2016), 484–489.
https://doi.org/10.1038/nature16961

[34] Karen Simonyan and Andrew Zisserman. [n. d.]. Very deep convo-
lutional networks for large-scale image recognition. ArXiv’14 ([n.
d.]).

[35] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Con-
volutional Networks for Large-Scale Image Recognition. CoRR
abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

[36] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. 2017. me-
Prop: Sparsified Back Propagation for Accelerated Deep Learning with

Reduced Overfitting. In Proceedings of the 34th International Confer-
ence on Machine Learning (Proceedings of Machine Learning Research),
Vol. 70. International Convention Centre, Sydney, Australia, 3299–
3308.

[37] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. [n. d.]. Going Deeper with Convolutions (CVPR’15). http:
//arxiv.org/abs/1409.4842

[38] Dean Takahashi. 2018. Gadi Singer interview - How Intel designs
processors in the AI era. https://venturebeat.com/2018/09/09/
gadi-singer-interview-how-intel-designs-processors-in-the-ai-era/

[39] Kevin Vincent, Kevin Stephano, Michael Frumkin, Boris Ginsburg,
and Julien Demouth. 2017. On improving the numerical stability of
winograd convolutions. (2017).

[40] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
2016. Learning Structured Sparsity in Deep Neural Networks. CoRR
abs/1608.03665 (2016). arXiv:1608.03665 http://arxiv.org/abs/1608.
03665

[41] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetu-
parna Das, and Scott Mahlke. [n. d.]. Scalpel: Customizing DNN
Pruning to the Underlying Hardware Parallelism. In ISCA’17.

[42] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. 2019. Fixup Ini-
tialization: Residual Learning Without Normalization. arXiv preprint
arXiv:1901.09321 (2019).

[43] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y.
Chen. [n. d.]. Cambricon-X: An accelerator for sparse neural networks
(MICRO’16).

[44] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. [n.
d.]. Incremental Network Quantization: Towards Lossless CNNs with
Low-Precision Weights (ICLR’17).

[45] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. [n. d.].
Trained ternary quantization (ICLR’17).

12

http://arxiv.org/abs/cs.DC/1711.06315
https://doi.org/10.1038/nature16961
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://venturebeat.com/2018/09/09/gadi-singer-interview-how-intel-designs-processors-in-the-ai-era/
https://venturebeat.com/2018/09/09/gadi-singer-interview-how-intel-designs-processors-in-the-ai-era/
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1608.03665
http://arxiv.org/abs/1608.03665

	Abstract
	1 Introduction
	2 Background
	2.1 Training Convolutional Neural Networks
	2.2 ReLU and Dynamic Sparsity
	2.3 Working Around Batch Normalization
	2.4 Baseline Platform

	3 Exploiting Dynamic Sparsity
	3.1 Naïve Forward Propagation
	3.2 Optimized Forward Propagation
	3.3 Backward Propagation by Input
	3.4 Backward Propagation by Weights

	4 Experimental Setup
	5 Evaluation
	5.1 33 Convolutional Layers
	5.2 11 Convolutional Layers
	5.3 Performance at Profiled Sparsity
	5.4 Limitations

	6 Related Works
	7 Conclusion
	References

