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Abstract—Microarchitectural attacks have plunged Computer
Architecture into a security crisis. Yet, as the slowing of Moore’s
law justifies the use of ever more exotic microarchitecture, it is
likely we have only seen the tip of the iceberg.

To better anticipate this security crisis, this paper performs a
systematic security-centric analysis of the Computer Architecture
literature. Our rationale is that when implementing current and
future processors, microarchitects will (quite reasonably) look to
previously-proposed ideas. Our study uncovers seven classes of
microarchitectural optimization with novel security implications,
proposes a conceptual framework through which to study them
and demonstrates several proofs-of-concept to show their efficacy.
The optimizations we study range from those that leak as much
privacy as Spectre/Meltdown (but without exploiting speculative
execution) to those that otherwise undermine security-critical
programs in a variety of ways. Many have storied histories—
ranging from industry patents to media/3rd party speculation
regarding current implementation status to recent renewed inter-
est in the academic community. This paper’s goal is to perform an
early (hopefully not too late) analysis to inform their development
moving forward.

I. INTRODUCTION

Computer Architecture is grappling with a security crisis.
Starting with Spectre and Meltdown [1,2], there has been
a tidal wave of new security vulnerabilities attributed to
microarchitecture (e.g., [3-5]), which has since breathed new
life into the rich sub-area of microarchitectural attacks [6].

This paper’s thesis is that the slowing of Moore’s law
will significantly exacerbate this security problem. Without
transistor scaling, it follows that microarchitects will employ
ever more exotic microarchitectural optimizations to improve
performance. If the past is any indicator of the future, it
stands to reason that these optimizations might have novel—
perhaps even devastating—security implications. Further, be-
yond “simply” impacting future processors, it is likely the
case that some such microarchitecture already exists in current
hardware, creating latent, not-yet-discovered vulnerabilities.
Examining the deluge of exploits that have come out in the last
three years, it is clear that processor complexity has outpaced
attacker bandwidth to find hardware zero days.

To better anticipate this security crisis, the goal of this paper
is to perform a systematic study of the Computer Architecture
literature, through a security lens. Our rationale is that when
implementing current and future processors, microarchitects
will (quite reasonably) look to previously-proposed ideas.
Quoting the website of the recent value predictor competition,

“value prediction has regained interest in an era where Moore’s
Law is fading and Dennard Scaling is gone” [7].

Motivating example: data memory-dependent prefetchers
leak as much privacy as Spectre/Meltdown. As a moti-
vating example, consider prefetching. While the community
is well-aware of the security implications of “traditional”
stride and software prefetching [8, 9], this is only the tip of
the iceberg in the prefetcher literature. In particular, there is
significant literature on data memory-dependent prefetchers,
i.e., prefetchers that take into account the contents of data
memory directly [10-16]. Such prefetchers are effective in
cases where stride prefetchers fail, e.g., in applications domi-
nated by indirections or “pointer chasing.”
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Fig. 1: Indirect-memory prefetcher leaking all of program memory (forming
a universal read gadget [17]) in the sandbox setting. The attacker can choose
which word of private data it wants to leak by setting the value target relative
to the base address of array Y. The victim’s sunglasses represent the sandbox’s
software-level memory-safety checks.

Such prefetchers are prime implementation candidates as
they tackle the critical and ever-increasing memory bot-
tleneck problem. Take for example the “indirect-memory
prefetcher” [13] (recently patented by Intel [18]). The multi-
level design [13] (Listing 3) tries to detect programs of
the form for(i = 0...N) X[Y[Z][i]]] and prefetch the cache
line corresponding to &X[Y[Z[i + A]]], which requires the
prefetcher to sequentially prefetch (make cache accesses for)
z=Z[i + A], followed by y = Y|z], followed by X]y].

Now consider the above prefetcher in an adversarial setting,
as shown in Figure 1. Suppose the attacker wants to read



memory outside of a software sandbox (e.g., in a browser [19]
or eBPF [20] in the Linux kernel, the latter of which was
also targeted in the original Spectre disclosure [21]). (D) In
that case, the attacker can run the now-malicious program
for(i = 0...N) X[Y[Z][i]]]. or another like it, inside the sandbox
to activate the prefetcher. (2) By controlling the contents
of memory immediately after the bounds of Z, the attacker
can trick the prefetcher into reading attacker-controlled data
z = Z[i + /] out of bounds of Z. (3) This implies the attacker
can read an attacker-chosen private value y = Y([z], i.e., out
of bounds of Y, and @ finally leak/transmit that value over a
traditional cache covert channel (e.g., Prime+Probe [22]) vis.
the final prefetch for &X[y]. We provide more details on this
attack in Section V-B.

By repeating the attack for different z, the attacker can
leak all memory outside the sandbox, i.e., form a universal
read gadget [17]. To our knowledge, this is the first microar-
chitectural optimization outside of speculative execution that
can be used to build universal read gadgets with realistic
software assumptions—suggesting such devastating privacy
leakage could be a more systemic problem than previously
believed.

Security analysis of broad classes of microarchitectural
optimizations. Beyond data memory-dependent prefetchers,
this paper studies the security implications of six additional
microarchitectural optimization classes—covering computer
architecture principles ranging from value locality to com-
pressibility to prediction to prefetching to more generally
hardware “fast paths”. In total, we analyze:

1) computation simplification (e.g., [23])

2) pipeline compression (e.g., [24])

3) silent stores (e.g., [25])

4) computation reuse (e.g., [26])

5) value prediction (e.g., [27])

6) register-file compression (e.g., [28])

7) data memory-dependent prefetchers (e.g., [13])

We additionally provide discussion on continuous/trace-based
optimization (e.g., [29]).

There is significant evidence to suggest many of the above
optimization classes will make it to commercial products in
the future, if they have not already. For example, third-party
analysis provides evidence that a limited form of silent stores
is actually implemented on Intel machines today [30], and
support for silent stores is explicitly mentioned in the RISC-V
memory-consistency model documentation [31]. As mentioned
above, value prediction has recently seen a resurgence of
interest, with all-year competitions held to spur innovation [7]
and test-of-time awards given to the originating proposals [32].
Also mentioned above, the data memory-dependent prefetcher
used in our motivating example was recently patented by
Intel [18]. Further, many other industry patents have been
issued for the other optimization classes over the years to a
variety of companies (e.g., [33-36]). Finally, limited forms
of computation simplification and pipeline compression have

indeed been implemented—Ileading to demonstrated attacks
(see [37] and [38], respectively).!

Focus: microarchitecture with novel privacy implications.
Perhaps most importantly, we chose to study the above seven
optimizations because they can leak data beyond what is
possible by prior attacks, and/or via previously-unstudied mi-
croarchitectural mechanisms. Studying such “novel” microar-
chitecture is important, as resulting attacks will most likely
evade current defenses. For example, while there have been
many defenses proposed to block the universal read gadget
caused by Spectre (e.g., [39-41]), such mechanisms are insuf-
ficient for blocking the universal read gadget caused by a data
memory-dependent prefetcher. Further, all optimizations we
study break the widely-deployed software defense paradigm
known as constant-time programming (e.g., [42—46]).

Contributions. To summarize our contributions:

1) We perform the first comprehensive security-centric
study of previously-proposed microarchitectural opti-
mizations. In totality, we analyze the following optimiza-
tion classes: data memory-dependent prefetching, silent
stores, computation reuse, computation simplification,
pipeline compression, register-file compression, value
prediction and continuous/trace-based optimization—
based on their novel security implications.

2) We propose a conceptual framework for reasoning about
leakage through the above microarchitectural optimiza-
tions. The framework precisely describes what infor-
mation leakage is possible through each, in terms of
interactions between in-flight instructions, microarchitec-
tural state and architectural state—in the context of both
passive and active attackers.

3) We provide a proof-of-concept implementation of silent
stores in an architectural simulator, develop a technique to
amplify timing differences stemming from it and use that
technique to break constant-time cryptography. We also
provide a detailed analysis of the data memory-dependent
prefetcher exploit, in the context of the eBPF sandbox.

Open source. We have open-sourced proof-of-concept infras-
tructure related to the project here: https://github.com/FPSG-
UIUC/Pandora.

II. UARCH ATTACK PRIMER AND THREAT MODEL

Microarchitectural attacks are a class of side/covert-channel
attack that enable communication and privacy leakage due
to processor microarchitecture. In the side-channel setting, a
victim program runs and an attacker program that observes
what hardware resources the victim uses, and when, infers
the victim’s private data. In the covert-channel setting, two
attacker programs attempt to communicate with each other
through hardware resource usage intentionally. In both of
the above, attacks can be modeled as a transmitter (i.e.,
victim/sender in the side/covert channel settings, respectively)

! Although, as we will show, these two optimization classes are more general
than what is currently known to be implemented, and thus warrant further
investigation.
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modulating channel (hardware resource), which is then inter-
preted by a receiver (typically another thread) [47]. In many
cases, the transmitter is a specific instruction that modulates
the channel as a function of its operands. We refer to these
as transmit instructions for short [39]. The receiver measures
the channel using sources of non-determinism available to
it, that are a function of microarchitectural resource usage.
These are usually explicit timer instructions or implicit clocks
constructed through shared memory [37,48].

1) Channels and privacy leakage: Over the years, many
hardware structures have been exploited as channels, including
the cache [22,49,50,50,51], TLBs [52], page tables [53, 54],
DRAM [55], branch predictors [56,57] and others [8,9,37,
38,44,58-60]. Any of the above can be used to construct a
covert channel.

A more subtle question, central to this paper, is what
program data do each of the above leak in the side chan-
nel setting? In this way of thinking, the above landscape
changes significantly. For example, memory-related channels
(e.g., through the cache, TLB, DRAM, etc.) only directly
leak functions of the victim’s memory access pattern—i.e.,
data passed as the address operand of a load or store in-
struction. Likewise, branch prediction and arithmetic unit port
contention [59] channels leak the victim’s control flow—i.e.,
data passed as branch predicate/target operands. In this view,
speculative execution attacks such as Spectre [1] are novel, as
they enable incorrect (transient) sequences of instructions to
steer previously un-reachable data to transmitters.

2) Active attacks and performing multiple experi-
ments/replays: Microarchitecture attacks are typically active
attacks, i.e., where the attacker explicitly primes (or precon-
ditions [61]) system state to amplify leakage. For example, in
Spectre variant 1 [1]—if (i < N) Y[X]i]];—the attacker controls
the index i to specify which private value it wishes to leak.
Likewise in the Safecracker attack on compressed caches [4],
the attacker tries to co-locate its own data next to private
data to induce compression as a function of the private data.
Attackers can also precondition microarchitectural state, e.g.,
in Prime+Probe attacks [22].

It is also normally assumed that attackers can perform
many experiments/replays [1,4,57,62]. Each experiment can
use the same preconditioning (to reduce noise) or a different
preconditioning (to amplify leakage). For example, in the case
of Spectre, the attacker can change i over different experiments
to leak information about multiple private data values. Or-
thogonally, in the case of Safecracker, the attacker can change
what data is co-located next to a specific private data value to
incrementally reduce uncertainty about that private data (also
called differential analysis [63]).

3) Attack scenarios: Our proofs-of-concept (Section V)
assume two popular attack scenarios called cloud and sandbox.
The scenario influences how the attacker performs active
attacks, where the receiver can run and what the receiver can
measure.

In the cloud setting, the attacker runs on a remote device
and interacts with the victim program through some well-

defined interface. Two common examples are interacting with
remote web servers through network endpoints or interacting
with SGX enclaves through the SGX ECALL interface [64].
Depending on the setting, the attacker has user- or supervisor-
level privileges and the receiver might be the remote attacker
itself (in which case, it can monitor victim runtime over the
network [65]), or run concurrent to the victim on the same
processor (e.g., as an SMT sibling or on another physical
core [6,66,67], or as the kernel [53, 68, 69]).

In the sandbox setting, the attacker is able to run its own
code in the victim’s address space. Two examples are Linux
eBPF [20] and web browser sandboxes (e.g., NaCl [19]).
For example, eBPF enables the kernel to “safely” run user-
specified code in kernel space when specific OS events, such
as system calls, occur. The kernel (eBPF sandbox creator)
takes steps to ensure that such code cannot read/write memory
outside the sandbox, e.g., by checking that it is memory
safe. The attacker’s goal is to circumvent these protections.
In this setting, the receiver is typically the attacker-controlled
program in the sandbox.

4) Out of scope: physical and energy-related attacks: In
both of the above settings, the attacker is software-based and
monitors microarchitectural resource usage. We treat analog
channels, that require physical equipment to monitor, e.g.,
power draw [63] or EM emissions [70], as out of scope.
We also do not consider interactions between microarchi-
tectural state and clock frequency/power-states (e.g., DVFS
effects) [71,72], although this is important future work.

III. Focus: UARCH WITH NOVEL PRIVACY IMPLICATIONS

Every microarchitectural optimization inherently creates
program data-dependent resource usage, and therefore poten-
tially reveals information to attackers who can monitor that
usage. This paper’s goal is to look at a meaningful subset of
these optimizations, namely those that leak program data that
was not known to be at risk before.

For different microarchitecture variants, we show what data
is at risk in Table I. Data can either be leaked in use (i.c.,
when passed to or returned by a transmit instruction) or at
rest (i.e., where a transmitter activates based on architectural
state directly). For data-in-use leakage, we further break down
which instruction(s) causes the leak and whether operand or
result values leak. For data-at-rest leakage, we break down
what architectural state (the register file or memory) leaks.
In both cases, we assume the victim program is run in
the presence of the software-based attacker (i.e., receiver)
described in Section II-3.?

This view provides useful security-related information for
both attackers and defenders. For example, the widely-
deployed mitigation constant-time programming (e.g., [42—
46]) attempts to block attacks by ensuring that no private
data is computed on by transmit instructions, and speculative
execution attacks [1] use transient execution to pass private

2This receiver is equivalent to the ‘idealized’ BitCycle attacker used in
[45] that can monitor hardware resource usage at flip-flop and clock-cycle
granularity.



data to transmit instructions [39, 47]. In both of the above, the
first step is to identify what are the transmitters latent in a
given microarchitecture.

TABLE I: Leakage landscape. S, U, U’ denote Safe, Unsafe and Unsafe
(but leaking a different function of the data than U, or under different
assumptions), respectively. 1 indicates that this data may be Unsafe if the
victim program contains an appropriate speculative execution gadget [1]. For
arithmetic operations, operands (as opposed to the result) are considered
U if the transmitter can be fully specified by a partition on the operand
assignment space of in-flight dynamic instance(s) of the given instruction
type (Section IV). Representative citations are given for each data type that
the Baseline microarchitecture leaks.

Acronym meanings: CS = computation simplification, PC = pipeline
compression, SS = silent stores, CR = computation reuse, VP =
value prediction, RFC = reg-file compression, DMP = data memory-
dependent prefetching.
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In the table, we analyze leakage relative to a “Baseline”
architecture. The baseline represents a typical commercial
server processor (out-of-order, speculative, multicore) based
on known attacks today (Section II). Each column represents
the same baseline plus the specified microarchitectural op-
timization (that we study in this paper). For example, the
column “SS” indicates the baseline architecture with silent
stores added. U/S indicates that data does/does not leak
(is “Unsafe”/“Safe”) and each column shows the difference
between the baseline and the baseline plus each optimization.
For example: given silent stores, store data transitions from S
— U because silent stores create a transmitter as a function of
in-flight store data. ‘-’ indicates no change in safety relative
to the baseline.

Goal 1: Security analysis of optimizations that expand
leakage relative to Baseline (Table I). As shown in Table I,
each optimization we study (the seven rightmost columns)
increases the scope of what program data can be leaked
relative to what is known today.? That is, all optimizations we

3Speculative execution attacks (e.g., [1]) are not explicitly shown in Table I
because, as noted above, they use transient execution to steer private data
towards transmit instructions, whereas the table’s goal is to articulate what
instructions are transmit instructions.

study break current constant-time programming, reduce the
assumptions needed to launch speculative execution attacks
or otherwise leak previously-considered-safe data. A meta
takeaway is that, if one considers the union of all optimizations
we study, no instruction operand/result (or data at rest) is safe.

Goal 2: Reason precisely about privacy leakage. Beyond
finding optimizations that simply endanger previously safe
data, we are interested in understanding precisely what func-
tion of the private data leaks and under what circumstances.
This is a subtle but important point. For example, in the
cache-based Prime+Probe attack, only the address bits used
to lookup the cache set are unsafe [22], and only if the
attacker primes the cache set beforehand (Section II-2). All
of the optimizations we study have similar subtleties. In the
next section, we provide a framework for precisely specifying
what data leaks and under what circumstances. In Table I,
we indicate that an optimization leaks a different function of
already Unsafe (U) data with the symbol U’.

IV. CHARACTERIZING NOVEL INFORMATION LEAKAGE
THROUGH MICROARCHITECTURE

In this section, we analyze the security implications of the
microarchitectural optimizations from Table I.

A. Microarchitectural Leakage Descriptors: Precisely de-
scribing privacy leakage

Before we begin, we develop a conceptual framework for
concisely, yet precisely, describing what privacy can leak
through microarchitecture.

Microarchitectural optimizations trigger hardware resource
usage changes due to interactions between in-flight dynamic
instructions, ISA-invisible persistent microarchitectural state
(e.g., predictors, caches) and/or ISA-visible persistent archi-
tectural state (e.g., the register file, data memory). We describe
which such interactions result in which distinct observable
outcomes (i.e., distinct modulations of hardware resources that
form a channel; Section II) using what we call microarchi-
tectural leakage descriptors (MLDs). An MLD for a given
microarchitectural optimization is a stateless function that
specifies:

o The inputs needed to describe the optimization’s func-
tional behavior. Each input can have one of three types:
Inst, Uarch or Arch for dynamic instruction, persistent
microarchitectural state and architectural state, respec-
tively.

« A many-to-one mapping from assignments of these inputs
to distinct observable outcomes.

Given a concrete assignment to the inputs, the MLD returns
a unique id (natural number) indicating which distinct ob-
servable outcome the input assignment corresponded to. This
mapping partitions the MLD’s input assignment space.

1) Example MLDs: We show three example MLDs in
Figure 2, for several microarchitectural structures covered in
prior work. We use Python-like notation and assume that MLLD
arguments have convenience fields, e.g., Inst has a PC, opcode,



/' Example 1: single-cycle addition.
mld single_cycle_alu(Inst il1): return 0

/I Example 2: zero-skip multiply.
mld zero_skip_mul(Inst i1): return V; il.arg.v; == 0

/I Example 3: cache w/o shared memory and w/ a
random replacement policy. Assume il is a load,
addr is the load address and cache is the current
cache state.
mld cache_rand(Inst i1, Uarch cache):

return set(il.addr.v) + 1 if il.addr.v ¢ cache else 0

\. J

Fig. 2: Example microarchitectural leakage descriptors (MLDs) for opti-
mizations covered in prior work. set(.) returns the cache set that its argument
(an address) will map to. V denotes logical OR.

etc. When referring to operand/result values vs. register IDs,
we add a suffix .v and .id, respectively.

In Example 1, a single-cycle ALU “takes as input” [the
operands of] a single dynamic instruction (Inst) and produces
the result one cycle later, given any possible assignment to the
operands. Thus, the MLD unconditionally outputs 0, indicating
the ALU does not form a transmitter, i.e., is Safe (Section III).

In Example 2, a multiplier takes a single cycle to execute
if neither operand is 0, but skips (takes O cycles) if either
operand is 0. This creates two distinguishable outcomes, in
the form of timing differences (similar to [37,38]), and the
MLD definition indicates which occurs as a function of the
instruction i1’s operands’ values il.arg.v; for i = [0, 1].

In Example 3, a cache is accessed through a memory
instruction il. Assuming no shared memory and a random
replacement policy, this creates (num_cache_sets + 1) dis-
tinguishable outcomes: one for each possible setting of il’s
address’ set bits (if the cache line corresponding to the address
is un-cached) and one additional outcome (in the event of a
cache hit). Modeling caches with other replacement policies is
analogous; the MLD mapping must simply be extended to take
into account extra information transmitted via replacement
state.

2) Public vs. private vs. attacker-controlled data: In
describing leakage, it is important to understand what data
in the MLD’s input is public, private and attacker controlled.*
This determines to what extent an attacker is able to influence
preconditioning (Section II-2). For example, in the zero-skip
multiply (Example 2, above), if both operands are private, the
attacker learns whether one or more of the inputs equals O.
If one operand is public and the other private, the attacker
learns whether the private operand is O if the public operand
is non-zero, but learns no information if the public operand is
already 0. (If the public operand is O, that the skip occurs
is a purely a function of public information [73].) If one
operand is attacker controlled and the other is private, and

4This can be interpreted as the security lattice L = C C H where L, C,H
denote public, attacker controlled and private data, respectively.

the attacker sets the attacker-controlled operand to a non-zero
value, the multiply leaks precisely whether the other (private)
operand is non-zero. Whether data is public, private or attacker
controlled, as well as what preconditioning is possible for
attacker-controlled data depends on factors such as the victim
program and microarchitectural state.

3) Estimating channel capacity: Finally, we note that
MLD specifications provide information about an optimiza-
tion’s channel capacity. That is, if S denotes the partition
specified by the MLD, log, |S| denotes an upper bound on
the number of bits that can be encoded into the channel at a
given time.

4) A preliminary characterization: Using the MLD
framework, the rest of the section describes each optimization
class in detail. For each we discuss representative papers that,
to the best of our findings, capture the design space and secu-
rity implications of each optimization class. We organize the
discussion based on Table II: based on whether an optimization
creates a transmitter as a function of purely in-flight instruc-
tion(s) (Stateless instruction-centric; Section IV-B), in-flight
instructions interacting with persistent microarchitectural/ar-
chitectural state (Stateful instruction-centric; Section IV-C)
or purely architectural state (Memory-centric; Section IV-D).
We provide example MLDs for specific proposals of each
optimization class in Figure 3, which we refer to throughout
the text.

TABLE II: Optimization classification based on MLD signature.

Instruction (Inst) Memory
Stateless - | Stateful - IV-C | (Arch) -
1V-B Uarch | Arch IV-D

Comp. simplification N
Pipeline compression N
Silent stores N
Computation reuse N
Value prediction N
Reg. file compression N
D-memory prefetching N

B. Stateless Instruction-centric Optimizations

We start by describing two optimization classes—
computation simplification and pipeline compression—that act
on only in-flight instruction(s).

1) Computation simplification: are techniques that sim-
plify or eliminate instruction execution when operand values
satisfy certain conditions [23, 77-82]. The zero-skip multiplier
(Section IV-Al) is a well-known example, but the principle
can be applied to everything from complex instructions (e.g.,
square root [77]) to the simplest integer operations (e.g.,
AND/OR/ADD/etc. [78,80,81]). Further, instruction execu-
tion can be simplified (e.g., divide converted to shift [77,78])
or eliminated entirely (such as the zero-skip multiply in
Section IV-A1). Finally, work saving can manifest in different
forms and in different pipeline stages, e.g., skipping issue/ex-
ecution [77,78], register file reads [81], or both [79,80].
Finally, proposals may require the presence of multiple in-
flight instructions to trigger [23].



// Example 4 (Section IV-B): arithmetic unit operand
packing [24]. i1 and i2 must share the same execution unit
type.
mld operand_packing(Inst i1, Inst i2):
return msb(il.arg.vo) < 16 A msb(il.arg.vi) < 16 A
msb(i2.arg.vo) < 16 A msb(i2.arg.v1) < 16

/I Example 5 (Section IV-C): silent stores [25]. il must be

a store.
mld silent_stores(Inst i1, Arch data_memory):
return il.data.v == data_memory][il.addr.v]

/I Example 6 (Section TV-C): dynamic instruction reuse, Sy
variant [74]. reuse_buffer is the PC-indexed memoization
table that records each memoized instruction’s operand

values.
mld instruction_reuse(Inst i1, Uarch reuse_buffer):
return A; il.arg.v; == reuse_buffer[il.pc][i]

/I Example 7 (Section IV-C): value prediction [75].
prediction_table is the PC-indexed predictor table where
each entry contains a confidence conf (an unsigned
number) and a predicted value prediction.
mld v_prediction(Inst i1, Uarch prediction_table):
return prediction_table[il.pc].conf ||
prediction_table[il.pc].prediction == il.dst.v

/I Example 8 (Section IV-D): Register-file compression
given an N-entry register file, 0/1 variant [76] (which only
compresses if a given register’s value is 0 or 1). Assume
register values are treated as unsigned values.
mld rf_compression(Arch register_file):

return (register_file[N — 1] < 1)]...||(register_file[0] < 1)

/I Example 9 (Section IV-D): 3-level indirect-memory
prefetching, for access pattern X[Y[Z[i]]] [13]. The
prefetcher state includes each array base, e.g., baseX
for &X[0], as well as the starting offset start for the
prefetch i + A.
mld im3I_prefetcher(Uarch imp, Uarch cache,
Arch data_memory):
s=imp.start // s =i+ A
z = data_memory[imp.baseZ+s] / z = Z[i + A]
y = data_memory[imp.baseY +z] // y = Y[Z[i + A]]
return cache_h(imp.baseZ+s, cache) ||
cache_h(imp.baseY +z, cache) ||
cache_h(imp.baseX+y, cache)

Fig. 3: Example microarchitectural leakage descriptors (MLDs) for op-
timization classes we study in Sections IV-B through IV-D. msb(.) returns
the index of the most-significant ON bit in its argument. A denotes logical
AND. cache_h(.) refers to a cache MLD (e.g., cache_rand from Figure 2,
Example 3), but taking an address as the first argument as opposed to a
dynamic instruction. || denotes concatenation, or projection onto the natural
numbers. That is: let dy—_1,...,dp be functions of concrete assignments
to MLD inputs and let Dy_1,...,D0 be the size of their domains.
Then, dy—1||../ld0 = SNT (1228 Dy) * di) + do. Informally, this
means the microarchitecture leaks infzormation about each of dy_1,...,do
independently.

2) Pipeline compression: is a class of techniques that
compress data as it travels through a processor pipeline, to
reduce energy and/or improve throughput [24,83-85]. The

recurring idea is called significance compression [83]: that
a word of data is effectively only as wide (bitwidth-wise)
as its most-significant on-bit. Different schemes exploit this
at different points in the pipeline and for different purposes.
For example, to improve execution unit throughput by packing
multiple narrow-width operands [24] or to improve bandwidth
between pipeline stages or reads/writes to the register file [83—
85]. Schemes further differ in granularity, e.g., whether they
are capable of breaking operands into bits [84, 85], bytes [83],
half-words [83].

3) Security analysis: The community has a nascent under-
standing of both of the above optimization classes as they have
been implemented in limited form and have led to end-to-end
attacks. For example, floating-point subnormal behavior [37]
(computation simplification), digit-serial multiplication [38]
(significance/pipeline compression) and division early exit [44]
(taking ideas from both).

Beyond the above, we make the following observations.
First, it is clear from the above work that the space of such
optimizations is significantly broader than what has been seen
so far. Pushed to the extreme, such optimizations can render
even bitwise instructions, that are critical for constant-time
programming, unsafe [78, 80, 81]. Second, many of the above
are susceptible to active attacks, analogous to those on the
zero-skip multiplier discussed in Section IV-A2.

Third, optimizations act not only on single instructions,
but sometimes require interaction between multiple in-flight
instructions [23,24]. For example, consider the MLD for
operand-packing execution units [24], shown in Figure 3, Ex-
ample 4. This optimization improves execution unit throughput
by packing two arithmetic operations into one if both operands
for two pending instructions are sufficiently narrow width.
This results in one of two observable outcomes, as shown
by the MLD, and depends on both instructions being co-
located to the same reservation station at the same time. This
has implications for specific threat models. For example, a
receiver in a sibling SMT thread can perform an active attack
by setting its own instruction operands (i.e., i2’s) such that the
packing optimization occurs strictly as a function of a victim
instruction’s (il’s) operands.

C. Stateful Instruction-centric Optimizations

We now discuss three optimization classes that trigger
due to interactions between in-flight instructions and either
microarchitectural or architectural state.

1) Silent stores: are stores that do not change the contents
of memory when they are performed [25]. Microarchitecture
for silent stores tries to detect when this is the case, and
skip performing such stores. Different proposals implement
checking in different ways, in different pipeline stages. For
example, at store retirement (comparing the in-flight store data
with the contents of data memory) or in the load-store queue
(comparing the in-flight store with an older in-flight store) [86]
or speculatively in the decode stage [87].

2) Computation reuse: uses hardware to detect and elim-
inate redundant computations [26,74,77,88-94]. At a high



level, these techniques use a key (identifying the computation)
to lookup a hardware memoization table, using the result from
the table and skipping the computation on a hit. This is non-
speculative because table lookups cannot yield false positives,
i.e., always yield correct results on hits.> Two relevant ques-
tions are: (1) what computations are memoized, (2) what key
is used to lookup the table? For (1), proposals have covered
a range of computations, from high-latency instructions [90],
to potentially any arithmetic and memory instruction [74, 94],
to subexpressions [92], to instruction traces [93]. For (2),
some proposals lookup the memoization table by operand
value, e.g., post register-file read [74, 77, 89, 90, 92-94]. Other
proposals lookup the table based on operand ID, e.g., logical
register [74,88,91]. The former typically achieves higher
reuse [74] and is the focus of this section’s discussion. We
discuss the latter’s implications on defenses in Section VI-A.

3) Value prediction: is a family of speculative optimiza-
tions intended to break instruction dependencies, thereby in-
creasing instruction-level parallelism [27,32,75,95-98]. At a
high level, these schemes predict the result of instructions
before they are computed. Similar to other prediction-based
schemes, e.g., branch prediction, incorrect predictions lead
to pipeline squashes. Further, resolved predictions update
dynamic predictor state (if any) with information related to the
resolved value. Prior work has proposed value predicting both
just for loads [75,96,98] and also for broader classes of in-
structions [32, 97]. While different proposals cover a multitude
of prediction heuristics—ranging from simple last-level and
stride predictors to hybrid predictors [97, 99, 100]—nearly all
are threshold based. This means they do not make predictions
until those predictions are sufficiently high confidence, e.g.,
by maintaining counters that track the number of predictable
values seen over time.

4) Security analysis: To our knowledge, prior work has
not performed a security analysis of any of the above three
optimization classes. Yet, third-party analysis indicates that a
limited form of silent stores is implemented on Intel machines
today [30], and support for silent stores is explicitly mentioned
in the RISC-V documentation [31]. (We provide a proof-of-
concept that demonstrates how silent stores renders constant-
time code no longer constant time in Section V-A.) Likewise,
value prediction has recently seen a resurgence of interest with
all-year competitions held to spur innovation [7].

An important observation is that the above take a similar
form from a privacy leakage standpoint. We show MLDs for
silent stores, an implementation of computation reuse called
“dynamic instruction reuse” [74] and a typical confidence-
based value predictor [75] in Figure 3, Examples 5-7. The
takeaway is that all three MLDs leak a function of whether an
instruction operand/result value equals another value stored in
either architectural or microarchitectural state.

5We note that while using a memoized result is non speculative, i.e., is
always correct and will not cause a squash, the memoization table need not
be cleared on a squash [26], implying that transient instructions can poison
the table to transmit secrets through table state. This can be used as a covert
channel in a speculative execution attack [1].

The above has important implications in the context of
active replay attacks (Section II-2). Take for example silent
stores (Figure 3, Example 5). The situation is similar for
computation reuse and value prediction. If the contents of
data_memory(il.addr.v] (data memory at address il.addr.v)
are attacker controlled and the attacker can perform multi-
ple experiments, the attacker can eventually learn il.data.v
precisely. That is, in each experiment the attacker can learn
whether il.data.v == v for some v of its choosing, and vary
v across experiments. Because these optimizations check for
equality, the attacker can exponentially reduce the number
of experiments needed to learn each value if it can perform
checks with narrower-width v. For example, if v is a Word
(Byte) then learning 32 (8) bits takes 232 (28) tries in expec-
tation, respectively.

Similar to attacks on branch predictors [39,56,57], these
attacks are also symmetric. For example, in an attack
through silent stores, il.data.v might be private while
data_memorylil.addr.v] is attacker controlled, or vice versa.
If il.data.v is private, the attacker can learn the value of
an in-flight instruction operand. If data_memory[il.addr.v] is
private, the attacker can learn data at rest (which may or may
not have even been written by a store, e.g., considering other
data write mechanisms such as DMA).

Finally, we expect all of the above to result in similar
receivers relative to previous attacks on branch predictors. That
is, receivers in attacks on branch predictors monitor program
execution time, which is a function of the number of branch
mispredictions (squashes). Similarly, silent stores improve
throughput by freeing up the memory write port, computation
reuse improves pipeline issue/execute stage throughput and
value prediction causes squashes.

D. Memory-centric Optimizations

Finally, we discuss two classes of optimization that trigger
as a function of data at rest, i.e., stored in the register file and
data memory.

1) Register-file compression: exploits value locality to
increase the effective number of physical registers in out-
of-order pipelines, enabling greater instruction-level paral-
lelism [28,76,101-103]. A typical approach is [76]: during
the rename stage, allocate physical registers as usual. When
an instruction produces a result, check if that result’s value is
already present in the register file. If so, return the physical
register allocated to the result to the “free pool”, which enables
younger queued instructions to be renamed. Different schemes
enable different values to be matched, e.g., any value [76, 101],
or just common values such as 0/1 [76, 102]. Other schemes
exploit different types of compressibility, e.g., by applying
significance compression to pack narrow-width values [103],
or by exploiting “value similarity” [28].

2) Data memory-dependent prefetchers: are a class of
prefetchers that take program data memory contents as inputs
directly (as opposed to just program memory addresses) [10-
15]. The motivation is to capture access patterns that cannot
be captured by stream prefetchers, namely those involving



indirections through memory as seen in sparse tensor algebra
and graphs [13-15], and more generally applications with
pointer chasing [10, 11]. The target application influences the
data access pattern that the prefetcher tries to identify and
prefetch for. For example, a common access pattern in sparse
tensor algebra and graph computations is Anl[...A1[AQ[i]]...]-
Correspondingly, Yu et al. [13] (a.k.a. IMP) tries to detect
access patterns given by Y[Z[i]] (“2-level IMP”) and X[Y[Z]i]]]
(“3-level IMP”), for striding loop variable i, and prefetch
data by assuming that Y[Z[i + A]] and X[Y[Z[i + A]]] will
be needed in the future. Ainsworth et al. [14] is similar,
except with the pattern W[X[Y[Z]i]]]]. Note that because such
prefetchers typically need to cross page boundaries, they are
typically located close to the core (to be able to access the
TLB) and prefetch over virtual addresses.

3) Security analysis: Memory-centric optimizations have
significant, novel security implications relative to the other
optimizations we study because they leak data regardless of
how it is computed. This falls outside the model for writing
constant-time programs, and indiscriminately puts either all
architectural registers or data memory at risk. Further, while
we are unaware of current efforts towards implementing
register-file compression, data memory-dependent prefetchers
have been patented by industry [18].

4) Building universal read gadgets, and analysis of data
memory-dependent prefetcher variants: Beyond simply
leaking data memory, we showed in Section I how data-
memory dependent prefetchers can additionally be used to
create universal read gadgets (URGs). (We give more details
on such attacks in Section V-B.)

Using MLD terminology, a URG is an optimization that
takes data memory (data_memory) and attacker-controlled
state ¢ as input—and produces a different observable out-
come as a function of data_memory[f(c)], where f is an
optimization-dependent attacker-known function. The more
distinct observable outcomes for a given f(c), the more the
attacker can reduce its uncertainty about the value stored in
data memory at that address. The larger the range of f(c), the
more values in memory the attacker can learn.

We can use the above framework to determine when opti-
mizations, e.g., prefetchers, can form URGs and under what
circumstances. For example, Figure 3, Example 9 shows the
MLD for the 3-level IMP in [13]. The 2-level variant is the
same except without the cache access to array X, offset y.
Which of these forms a URG and why? Consider the sandbox
setting (Section II-3). The attacker-controlled sandbox is the
address range [a,b); private victim memory is outside of this
range. Typically, s along with the base of Z, Y and X would be
public. Thus the MLD indicates that the prefetcher reveals val-
ues s, z and y—offset by public values—through a cache-based
transmitter. Since s is public, we focus on what the attacker
can learn by observing z and y. In the IMP, z = Z[i + 4],
i.e., is “nearby” data the attacker accessed recently. Then z
can only represent values in the address range [a,b+ A). On
the other hand, it is easy to see that y may represent values in
the address range [&Y[0], MAX_MEM_ADDR), which is all

of victim memory in the worst case, because a < z < b may
hold and the attacker controls all data within that range. This
tells us two things. First, that the 3-level IMP creates a URG.
Second, that the 2-level IMP does not create a URG, beyond
leaking victim data in the address range [b,b + A).

V. EVALUATION: PROOF-OF-CONCEPT DEMONSTRATIONS

We now demonstrate proof-of-concept attacks on several of
the optimizations we study, namely silent stores (Section IV-C)
and data memory-dependent prefetching (Sections I, IV-D).
While we cannot evaluate all optimizations we study, we chose
these as exemplars based on the novelty of their security
implications and their likelihood to be implemented in cur-
rent/future processors.

A. Silent stores

We choose to evaluate silent stores because it is not obvious
that their impact on the pipeline will lead to a measurable
difference in the victim program’s execution. Out-of-order
pipelines are very good at preventing stalls due to stores
being performed to memory. There are also nuances to a
silent store design’s implementation which can absorb data-
dependent timing differences.

Despite these challenges, we demonstrate how a single
dynamic instance of a secret key-dependent silent store can in-
duce an end-to-end timing difference on a real world constant-
time encryption function [104]. The key ingredient is a novel
amplification gadget, i.e., a novel preconditioning for silent
stores, which creates a large (> 100 cycles) timing difference
depending on whether an attacker-chosen store is silent or not.
We describe how this gadget can be leveraged to reveal the
value of a critical store in an encryption operation and how
this information can be used to reconstruct the victim’s key.

1) Silent stores implementation: Lacking a real-world
silent stores implementation, we implement silent stores and
evaluate our attack in Gem5 [105]. Our implementation fol-
lows Lipasti et. al.’s proposal in [86]. As in [86], we assume a
release-consistency memory model. Our amplification gadget
also requires the store queue (SQ) to perform stores to
memory (i.e., dequeue from the SQ) in program order. This
implementation appears in processors today, e.g., the RISC-V
BOOM processor [106]. Note, stores being performed do not
dequeue from the SQ until the cache line they are writing to
is present in the (first-level) cache.

We implement the read-port stealing scheme from [86].
Important cases are shown in Figure 4. The idea is to issue
a load (called the Silent-Store-Load or SS-Load), as soon as
the store address resolves and there is a free load port, that
reads the contents of memory at the store address. If the SS-
Load returns before the store is performed to memory, the
store is marked silent iff the data returned by the SS-Load
equals the store data. When a store marked silent is ready to
be performed, it is silently dequeued without interacting with
memory (Figure 4, Case A). If multiple consecutive stores
are silent, they can all dequeue in the same cycle. Stores not
marked silent are performed as usual (Case B). Note, this



A Store Value == Loaded [ Address H SS-Load SS-Load H Reaches Store SQ |Observable Timing Difference|
. (Silent Store) Resolves Issues Returns SQ Head Dequeues | |
B Store Value != Loaded | Address SS-Load SS-Load Reaches Store Sent Response Store SQ | “Increased by
* (Non-Silent Store) Resolves Issues Returns SQ Head to Cache from Mem* Dequeues | amplification gadget
c No Free Load Port Address [ Reaches Store Sent Response Store SQ
* (Non-Silent Store) Resolves | SQ Head to Cache from Mem Dequeues
D SS-Load Returns Late | Address SS-Load Reaches Store Sent Response Store SQ
*  (Non-Silent Store) Resolves Issues SQ Head to Cache from Mem Dequeues

Fig. 4: The different possible sequences of actions taken by a store given the read-port stealing scheme from [86].

// Preconditions:

// - A, S have resolved

// - line(A) not present in cache

// - line(S) present in cache

// - set(S) != set(A), set(S) == set(A’)
load A’ <- (A) // delay sub-gadget

load _ <- (A’) // flush sub-gadget

store D -> (S) // target store

Fig. 5: A single-threaded (i.e., inline with the victim program) amplification
gadget for a release-consistency memory model and a direct-mapped cache.
line (X) refers to the cache line associated with address X. set (X) refers
to the cache set occupied by line (X).

design does not change the time at which the store reaches the
head of the SQ and only changes the store’s behavior when it
is dequeued.

Finally, if the SS-Load cannot issue because there is no free
load port (Figure 4, Case C) or the SS-Load issues but arrives
after the store is performed (Case D), the store is not marked
silent. Case C is operationally equivalent to an architecture
that does not implement silent stores.

2) Amplification gadget: While silent stores do change
hardware resource usage depending on whether in-flight store
data equals the contents of memory, it is non-trivial to convert
these effects into measurable timing differences that contribute
to end-to-end attacks. Making matters worse, an attack may
hinge on the attacker observing a timing difference stemming
from a single dynamic store instruction. Yet, the net effect of
silent stores on a single dynamic store is likely completely
hidden by out-of-order execution.

We address these challenges by describing an amplification
gadget whose goal is to create a maximal timing difference
based on whether a single specified dynamic store instruction
is silent. The key idea is to maximize the time it takes the
store in question (which we call the target store) to dequeue
from the SQ in the case where it is not silent. If this dequeue
time is sufficiently large, the SQ will fill and stall the pipeline.
(Since stores are performed in program order (Section V-Al),
long-to-dequeue stores will head-of-line block the SQ.) Thus,
if all goes to plan, the amplification gadget stalls the pipeline
iff the target store is not silent.

To maximally delay store dequeue time, the gadget arranges
for the target store’s cache line (called the rarget line) to

not be present in the cache when the target store reaches the
head of the SQ. Since dequeue only happens when the target
line is filled in the cache (Section V-Al), this creates a delay
proportional to the cache miss latency.

Creating the above gadget is challenging because the target
store can only be a silent store candidate if the SS-Load returns
before the target store is performed. That is, we must be in
Cases A or B (not C or D) from Figure 4. Yet, this implies that
the target line is present in the cache which is the opposite of
what we wanted in the previous paragraph. To work around
this issue, the amplification gadget must evict the target line
after the SS-Load completes but before the target store is
performed.

The amplification gadget’s implementation depends on the
threat model. We show one possible implementation where
the gadget is a part of the victim program itself in Figure 5.
The gadget is made up of the target store, as well as two
(or more) other instructions that we call the delay sub-gadget
and the flush sub-gadget (delay and flush gadgets for short).
The delay gadget can be any instruction(s) that takes a long
time to execute. The flush gadget can be any instruction(s)
that depends on the delay gadget (or otherwise executes after
the SS-Load for the target store returns; see below) and whose
execution removes the target line from the cache.

Figure 5 gives an example implementation where both
delay and flush gadgets are loads and flushing is implemented
via cache set contention. Conceptually, the delay gadget will
ensure that the SS-Load completes before the target store is
performed and the flush gadget will ensure that the target line
is evicted between SS-Load completion and when the target
store is performed. In more detail, suppose these instructions
execute. The delay gadget is performed and misses in the
cache. Concurrently, the SS-Load (not shown in the pseudo-
code) for the target store issues and returns first. Thus, the
silent store candidacy check occurs before the target store
is performed. Next, after the SS-Load completes, the delay
gadget returns which enables the flush gadget to execute.
Thus, the target line is removed from cache after the SS-Load
completes but before the target store is performed, as desired.

Other implementations of the gadget are possible. For
example, by having another co-resident thread emulate the
flush gadget.

3) Attacking Bitslice AES128 Encrypt: Using the ampli-
fication gadget, we now demonstrate an end-to-end proof-of-
concept attack on a “constant time” Bitslice AES128 encrypt



implementation [104] (abbreviated BSAES).

We design our proof-of-concept around a scenario in the
cloud threat model (Section II-3). Our victim consists of a
server with a worker thread for encryption calls. Both the
adversary and victim trigger encryption calls with known
plaintexts. Under this model, the encryption worker allocates
various temporary variables on the stack. These variables are
not cleared after use, as subsequent calls are guaranteed to
overwrite them. This is the as-provided behavior of the victim
program.

The goal of our attack is for the attacker to compute the
victim’s secret key by changing its own plaintext to induce a
silent store at a specific location, conditioned on the data left
behind in memory by the victim’s prior encryption operation.
We assume that the attacker has access to its own secret key,
and that the victim is repeatedly encrypting the same public
data (e.g., a packet header).

BSAES achieves constant-time byte substitution by per-
forming a series of exclusive-or operations on the current
AES state. Because this stage requires many more intermediate
values than there are logical registers in x86, these values are
spilled onto the stack. We identified eight locations storing
intermediate values that can be used to reconstruct the AES
state after byte substitution.

After the last byte substitution stage, BSAES performs an
exclusive-or between the AES state and the last sixteen bytes
of the expanded key to compute the final encrypted data. The
key expansion algorithm is invertible, so knowing those sixteen
bytes allows the attacker to reconstruct the entire original
key [107].

The attack can be carried out as follows. First, the victim’s
data is encrypted, leaving behind AES state from its last byte
substitution on the stack. Then, the attacker’s data is encrypted
and the attacker attempts to measure if any of the eight
writes to intermediate values trigger silent stores. Because the
attacker knows its own key and can modify its plaintext, it can
try each possible value for each of the intermediate values over
multiple experiments. Since these intermediate values are 16
bits, an attacker may need to try up to 65,536 possibilities
for each value it wants to reconstruct, for a total of, at most,
524,288 attempts to compute the victim’s key.

We use the amplification gadget to increase the timing
difference caused by a single dynamic silent store on the
BSAES code. For simplicity, we manually added the delay
gadget and flush gadget (Section V-A2) to the BSAES code
before the target store (one of the eight stores writing the
AES state to the stack). In a real attack, the victim program
would need a latent amplification gadget or the attacker
would need to implement the gadget using co-resident threads
(Section V-A2). Results are shown in Figure 6. Incorrect vs.
correct corresponds to whether the attacker overwrites the AES
state byte with a different vs. same value as was stored there
before. This experiment assumes an architecture with a 5-entry
SQ and a 4-way set associative cache. The takeaway is that
depending on whether a single dynamic store is silent creates a
large, easily distinguishable, timing difference (> 100 cycles).
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Fig. 6: Histogram of runtimes for BSAES when the amplification gadget is
applied to one of the eight stores that overwrites AES state. That is, timing
differences reflect whether a single dynamic store instruction was silent or
not.

B. Data memory-dependent prefetching

The goal of this section is to provide details on the attack
example we gave in Section I, which showed the 3-level
indirect-memory prefetcher (IMP) [13, 18] leaking all victim
memory, i.e., forming a universal read gadget. While we
analyze the 3-level IMP here, we expect a similar attack to
go through using any data-dependent memory prefetcher that
performs at least two-level indirections (Section IV-D).

As in the example, we assume the attacker’s goal is to learn
kernel memory. Similar to the original Spectre PoC [21], the
attacker runs a malicious program inside the eBPF sandbox
and will use the IMP to break out of the sandbox (Section II-3).
As discussed previously, eBPF performs static analysis on
sandbox code, e.g., memory-safety checks, to ensure that it
cannot break out of the sandbox. It then JITs the sandbox
code to the target machine ISA to improve performance. Since
we do not have access to real hardware running the IMP, we
instead check our attacks’ assumptions against the IMP design
and eBPF. Specifically, (1) Can the attacker write a program
that is a) likely to trigger IMP and b) bypasses eBPF’s software
analysis? (2) Does the attacker program cause the 3-level IMP
to make out-of-bounds accesses?

1) Bypassing eBPF: We experimented with eBPF and
found that it allows the program shown in Figure 7 to be run
in the kernel. Figure 7a shows source code. In this example,
the attacker can place the address of the value it wants to
learn outside of the sandbox, i.e., the target (Section I), in
Z[N — 1], or immediately out-of-bounds of Z. We found that
eBPF complains unless one adds explicit NULL dereference
checks, i.e., the “if (Iv)” incantations, after each array lookup.
These are bounds checks in disguise because an out-of-bounds
Jookup() into a BPF_ARRAY returns NULL. We note that
although eBPF requires programmers to use the BPF_ARRAY
wrapper to instantiate arrays, Figure 7b shows how these
get JITed into x86 assembly as if they are normal arrays.
Specifically, we see no additional memory accesses made in
between reading Z[i] and Y[Z]i]] into the register file, which
is relevant below.
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BPF_ARRAY(Z, int, N);
BPF_ARRAY(Y, int, N);

irmov  0x0(%rsi),%eax # eax = Z[1]
# bounds check Z[i] < len(Y):

BPF_ARRAY(X, int, N); semp  $0x40,%rax
int attacker () { 1 jae 0x000000000000007f
int j =0; int #v; 5 shl $0x3,%rax
for (j=0;j<N—1;j++) { cadd Yordi,%rax # rax = &Y[Z[i]]
int i =j; 7jmp  0x0000000000000081
v = Z.lookup(&i); & XOr Yoeax,Joeax
if (!v) return O; scmp  $0x0,%rax
v = Y.lookup(v); 0 je 0x00000000000000db

if (!v) return 0;
v = X.lookup(v);
if (!v) return 0;
if (xv) return 0; }
return 0; } 15 MOV

11 movabs $0x...,%rdi # rdi = X object
pmov  %rax,%rsi

13 add $0xd0,%rdi # rdi = &X array
#eax = Y[Z[1]]:

0x0(%rsi),%eax

(a) Attacker eBPF source. (b) Attacker eBPF JITed assembly snippet.

Fig. 7. Attacker program to break out of the eBPF sandbox using the 3-level
indirect-memory prefetcher.

2) Triggering out-of-bounds accesses using the 3-level
IMP: The program in Figure 7 is “tailor made” to trigger
IMP. On the other hand, why would IMP make out-of-bounds
accesses? In short, being a hardware prefetcher, IMP has no
knowledge of array bounds. The IMP design [13] identifies
indirect access patterns by monitoring data returned to the core
(e.g., Z|i]s; Figure 7b, Line 1) and addresses for indirections
that the core subsequently makes (e.g., Y[Z[i]]s; Figure 7b,
Line 15). In the event that its target access pattern X[Y[Z[i]]]
is under way, it will be able to look at this information to solve
for the base of each array, i.e., &Y[0] and &X[0]. At this point,
the IMP begins prefetching and assumes subsequent Z[i]s will
remain in bounds—an assumption the attacker violates.

3) Prefetch buffers: Given the above discussion, we can
conclude the attack will trigger the 3-level IMP to break the
sandbox and transmit out-of-bounds data through a cache-
based covert channel. One remaining subtlety is that some
prefetchers use prefetch buffers, which prevent cache fills
unless the prefetched data is actually read by the attacker
program (which it will not be, per eBPF’s checks). Such a
“defense” might aggravate, but not mitigate our attack. For
example, to our knowledge prefetch buffers are not applied to
every cache level (e.g., the LLC), and the receiver (attacker)
can simply monitor any un-buffered level.

VI. DISCUSSION

A. Possible defense strategies and open problems

The optimization classes we study have privacy implications
for data sent to a variety of instruction operands and for data at
rest (Section IIT). Thus it seems imperative to invest in holistic,
as opposed to point, defenses. We review potential approaches
below, and discuss open challenges. In particular, is it possible
to get security back while maintaining all (or most) of the
performance benefit brought by each optimization?

1) Open challenges in space-time sandboxes: can we
efficiently protect every bit?: There are a number of holistic
defenses that attempt to block all possible microarchitectural

attacks [45,73,108-110] through either spatial/temporal iso-
lation [108-110] and/or information flow principles [45, 73].
For example: By isolating a victim spatially while it runs,
one can block a receiver from measuring data-dependent fine-
grain hardware resource usage. To hide termination time, one
can pad execution time to the worst case [45,73, 108, 109], or
simply accept that seemingly-smaller amount of leakage [110].

While the above approaches hold significant promise, we
argue that termination channel leakage creates a significant
roadblock towards getting both security and performance in the
context of the optimizations we study. That is, incurring worst-
case execution time likely negates the optimizations’ benefits.
On the other hand, leaking even a single bit through timing
rules out protecting many critical applications due to active
replay attacks (Sections II-2, IV-D4)—i.e., where the attacker
runs many experiments, changing data under its control for
each experiment, to slowly leak the entire secret [1,4].

2) Retrofitting constant-time programming: Current
practices for constant-time programming [42—46] break under
the optimizations we studied (Section III). Yet, it may be
possible to retrofit these techniques to get back security. For
example, to mitigate leakage from significance compression
(Section IV-B), software instrumentation can OR a 1 into the
most-significant bit position of each word (assuming this can
be done while preserving functionality). To mitigate leakage
through data memory-centric optimizations such as some vari-
ants of silent store attacks (Section IV-C) and data memory-
dependent prefetching (Section IV-D), one can encrypt all data
that is spilled from the register file/written to data memory.
The advantage of these approaches is that they can be done
in software. The disadvantages are complexity, brittleness and
performance overhead.

It is prudent to start thinking about this retrofit now. For
example, it is unclear (to us) how to retrofit constant-time
programming to handle certain optimizations (e.g., value pre-
diction or register-file compression). Further, there are likely
ample opportunities for higher-performance mitigations given
closer study. For example, while a naive method to block
leakage through silent stores is to use encryption (see above),
it may be sufficient to clear data memory in a targeted fashion.

Finally, we note that some ISAs are adding support for
constant-time programming, e.g., ARM DIT [111]. This has
promise to significantly simplify constant-time reasoning, but
must be augmented to cover all optimizations we study. For
example, ARM DIT as currently described does not cover
memory-centric optimizations (Section IV-D).®

3) Architecting security-conscious microarchitecture:
Finally, we would like to set a research agenda for proac-
tively architecting security-conscious microarchitecture. The
important observation is that, in some cases, slight tweaks to
microarchitecture can render it more secure without compro-
mising (much) performance. For example, dynamic instruction
reuse [74] proposes several variants: Sy, S, and S,4. The

SInterestingly, current ARM DIT does explicitly mention that timing should
be independent of load/store data [111], indicating that ARM could potentially
support protection against load-value prediction and silent stores (Section III).



S, scheme uses instruction operand values as memoization
table keys and thus can leak operand values (Section IV-C),
whereas the latter two schemes use operand register IDs and
thus only leak information about what instruction is executing
(which is public information in constant-time programming,
and only leaks control-flow related information more gen-
erally [56,59,69]). The paper [74] reports that S, achieves
the best performance, but that substantial performance gain
is still possible with other variants. The takeaway is that we
know how to, in some instances, architect still efficient and
more secure microarchitecture. Going forward, the question
is to what extent do similar principles generalize to other
microarchitectural optimizations?

B. Additional optimizations with novel security implications

While we tried to be comprehensive, our study may be in-
complete and we implore the community to continue thinking
about and searching for microarchitecture with novel security
implications. For example, many implemented optimizations
may be unpublished, and outside of the optimizations we stud-
ied we did not search through industry patents. Further, there
may be optimizations that create novel privacy implications
only under subtle circumstances, that our analysis missed.

For example, dynamic optimization of program traces & hot
regions [112, 113] and continuous optimization on instructions
& micro-ops [29,114] use runtime information to optimize
program hot regions and instructions in flight, respectively.
While at first glance such optimizations might seem to cause
privacy problems, they only create novel security implications
in specific circumstances. For example, based on our analysis,
many runtime optimizations such as constant folding (e.g.,
in [29]) do not leak privacy beyond program control flow,
which readily leaks through known attacks (Section III). On
the other hand, if one were to apply a strength reduction
optimization based on the value of a specific operand, this
would create a security issue because strength reduction man-
ifests due to specific operand data beyond control flow and
results in changes to arithmetic unit port contention (which
has been exploited in past attacks [59,69, 115]). These and
other similar, subtle performance techniques deserve further
study; case in point, limited forms of continuous optimization
are implemented today (e.g., as micro-op fusion [116]).

C. Processor attack landscape going forward

Finally, we note that beyond “traditional” microarchitectural
attacks, trends in Dennard scaling and Moore’s law are forging
a significantly broader threat surface related to how power/en-
ergy interact with microarchitecture. For example, research has
demonstrated how undervolting vis. DVFS effects enable novel
integrity attacks through microarchitecture [117, 118]. Recent
work has also shown how co-located but isolated processes
can communicate through power-related mechanisms such as
processor turbo boost [71,72, 119, 120].

We consider a security analysis, analogous to the one
performed in this paper, on power/energy<+microarchitecture-
related attacks to be important future work. Case in point,

these attacks not only can be performed remotely (similar
to traditional microarchitectural attacks), but largely evade
current defenses (e.g., spatial isolation of microarchitectural
structures; Section VI-A1). We applaud recent work to extend
spatial isolation to include energy [121], but more work is
needed to find less-invasive solutions that apply to general-
purpose programs.

VII. RELATED WORK

See previous sections for related work on microarchitec-
tural attacks (Section II), their implications on program data
privacy (Section III) and our study of novel vulnerabilities
through previously-unstudied microarchitectural mechanisms
(Section IV). We provide background on relevant defense
literature in Section VI-A.

To our knowledge, the only other work that studies the
privacy implications of emerging microarchitecture is Safe-
cracker [4]. This work is complementary to our analysis.
It studies compressed caches (e.g., [122]), which would be
classified as Memory-centric optimizations (Section IV) that
render data memory Unsafe (Section III), similar to the
data memory-dependent prefetchers we study. Safecracker
proposes a universal read gadget (URG) but for the cloud
setting, whereas we propose one using data memory-dependent
prefetchers for the sandbox setting (see Sections II-3 and
IV-D4). Yet, our URG requires weak software assumptions:
the attacker merely has to trigger the data memory-dependent
prefetcher in a setting where it has control over the program
(Section V-B). Safecracker requires strong software assump-
tions, namely for the victim to contain a latent buffer overflow
vulnerability.

VIII. CONCLUSION

This paper performed a systematic study of the computer
architecture literature through a security lens. We found a
range of microarchitectural optimizations with novel secu-
rity implications—ranging from ones as devastating as Spec-
tre/Meltdown (but without relying on speculative execution)
to ones that render constant-time programming ineffective,
or in need of overhaul. They further implicate a number of
Computer Architecture concepts, ranging from value locality
to compressibility to prediction to prefetching. While we be-
lieve that many are not implemented in commercial machines
today, some may indeed be; and others are seeing a resurgence
in interest. In any case, given the slowing of Moore’s law, it
stands to reason that many could be implemented in the future
and we should be ready.
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