
Optimizing Selective Protection for CNN Resilience
Abdulrahman Mahmoud∗, Siva Kumar Sastry Hari†, Christopher W. Fletcher‡, Sarita V. Adve‡, Charbel Sakr†,

Naresh Shanbhag‡, Pavlo Molchanov†, Michael B. Sullivan†, Timothy Tsai†, and Stephen W. Keckler†
∗Harvard University, †NVIDIA Corporation, ‡University of Illinois at Urbana-Champaign

Abstract—As CNNs are being extensively employed in high
performance and safety-critical applications that demand high
reliability, it is important to ensure that they are resilient to transient
hardware errors. Traditional full redundancy solutions provide high
error coverage, but the associated overheads are often prohibitively
high for resource-constrained systems. In this work, we propose
software-directed selective protection techniques to target the most
vulnerable work in a CNN, providing a low-cost solution. We propose
and evaluate two domain-specific selective protection techniques for
CNNs that target different granularities. First, we develop a feature-
map level resilience technique (FLR), which identifies and statically
protects the most vulnerable feature maps in a CNN. Second, we
develop an inference level resilience technique (ILR), which selectively
reruns vulnerable inferences by analyzing their output. Third, we
show that the combination of both techniques (FILR) is highly
efficient, achieving nearly full error coverage (99.78% on average) for
quantized inferences via selective protection. Our tunable approach
enables developers to evaluate CNN resilience to hardware errors
before deployment using MAC operations as overhead for quicker
trade-off analysis. For example, targeting 100% error coverage on
ResNet50 with FILR requires 20.8% additional MACs, while mea-
surements on a Jetson Xavier GPU shows 4.6% runtime overhead.

I. INTRODUCTION

Recent advances in deep learning and convolutional neural
networks (CNNs) have ushered in an era where machine learning
heavily influences both the software and hardware landscapes in the
areas of high performance computing (HPC) and safety-critical sys-
tems. Diverse application domains including video analytics, climate
studies, autonomous vehicle systems, and medical devices have all
begun heavily relying on CNNs for improved performance and
energy efficiency. Dedicated hardware features such as GPU tensor
cores and discrete accelerators such as Google’s Tensor Processing
Units (TPUs) have further fueled this growth. With the increased uti-
lization of CNNs in many safety-critical domains, understanding the
implications of transient hardware errors (also called soft errors) on
CNN outcomes can help guide and direct resiliency in this domain.

HPC and safety-critical system studies indicate that transient
hardware errors caused by particle strikes or voltage droops can have
severe unintended consequences on an application’s output unless
the system is designed to detect these errors [6], [7], [12], [28], [32],
[61], [75]. This is particularly important for safety critical systems
such as autonomous vehicles, where the sheer scale at which
these devices are deployed demand extremely low failure rates
for individual components. Modern certification standards, such
as ISO-26262 [25] for automotive safety, aim to ensure ultra-low
failure rates in hardware units; however, achieving low failure rates
without the high overheads of dual- or triple-modular redundancy
(DMR or TMR) continues to be a research objective [21], [76].

Prior work has shown that corruptions that manifest as large
neuron values are major contributors of DNN vulnerability to

soft errors [22], [33], [57], [81]. Typical fault-free neuron values
have limited range, falling within a small fraction of the total
range offered by the floating-point data representation (e.g., FP32).
Thus, range checkers are shown to be effective in mitigating large
neuron value corruptions during an inference [9], [46]. However,
the applicability of the range checkers is limited in state-of-the-art
quantized models that use data types with small ranges (e.g., INT8)
because the fault-free neuron values span the full range of the data
type by design. For safety-critical applications with the requirement
of low SDC rates, it is important to identify and mitigate errors that
may silently corrupt output for models that use small data types.

In this work, we study software-directed selective protection
for CNN models employed at finer-granularities for a low
overhead solution compared to indiscriminate redundancy. A
few research questions need to be addressed for an effective
solution: (Q1) At what granularity should the selective protection
be performed? (Q2) Which components at this granularity
should be selected for protection? (Q3) How should the selective
protection be implemented? Answering these questions requires
understanding the resilience characteristics of CNNs. Furthermore,
by understanding the effect of soft errors on the outcome of CNNs,
we can potentially leverage domain-specific knowledge to develop
low-overhead reliability solutions and avoid the heavy hammer of
DMR or TMR (which are still commonly used in practice [80]).

We introduce two techniques for selective protection in CNNs
– feature-map level resilience (FLR) and inference level resilience
(ILR). FLR selectively protects the vulnerable feature maps
(fmaps for short) of a CNN before deployment for static, “built-in”
resiliency. We find that not all fmaps of a CNN have the same
vulnerability to soft errors. By identifying and selectively protecting
the highly vulnerable fmaps, FLR helps avoid the uninformed
and hefty hammer of full duplication by honing protection efforts
on the most important sub-components of the network. However,
addressing Q2 (which fmaps to protect?) requires a typically
expensive resiliency analysis of the CNN that involves simulating
many error injections and evaluating the outcomes. Traditional
approaches measure a binary outcome for an output corruption:
either the error caused an output misclassification, or it did not.
To accelerate this analysis, we propose a novel, domain specific
metric called ∆Loss which converts the binary metric for output
corruptions into a continuous metric. We show that ∆Loss speeds up
analysis by 3.2× on average (up to 9.4×) by gathering vulnerability
information even when an output misclassification does not
occur (§III-B). Addressing Q3, FLR protects the vulnerable fmap
computations by only duplicating the corresponding vulnerable
filters in the network. We show that FLR exhibits a sublinear error
coverage versus runtime overhead tradeoff. For example, for the

networks studied, we show that we can obtain 90% error coverage
on average with only 62% overhead (as low as 29% for SqueezeNet).

The second novel technique we present targets the granularity
of each inference a CNN performs. ILR is a dynamic method that
identifies inferences deemed vulnerable to soft errors and selectively
protects them. The key challenge associated with this technique is
identifying which inferences need protection (Q2) and ensuring that
this determination is done quickly online to employ a verification
method. To that end, we analyze the vulnerability of inferences based
on the outputs of a model and discover a strong correlation between
the correct result’s confidence and vulnerability. Specifically, we
found that the difference between the top two class confidences
(called Top2Diff) exhibits a strong inverse relationship (Spearman
coefficient of -0.93) with the occurrence of an output misclassifica-
tion due to a soft error. For Q3, we perform a resiliency analysis on
CNNs to identify network-specific thresholds for Top2Diff, and sub-
sequently introduce a lightweight logic check after each inference
and rerun (for verification) if the Top2Diff is below the threshold.
Our results show that we can get 90% error coverage on average
with only 17% overhead (as low as 9% overhead for ResNet50).

As described above, the FLR technique duplicates a fraction
of computations in all the inferences; the duplication decision is
made before the model is deployed. In contrast, ILR duplicates
a full inference, but is invoked dynamically based on inference
output. In this paper, we analyze the overhead and protection
trade-offs offered by the two techniques. We also consider a novel
combination of the two where FLR selectively protects fmaps to
complement the selective inference protection by ILR for a target
error coverage. Our results show that the combined technique,
called FILR, can obtain nearly full error coverage (99.78%) with
about 48% overhead on average (as low as 21% for ResNet50).

In summary, the contributions of this paper are as follows:
• We introduce a novel, domain-specific resiliency analysis

metric called ∆Loss, which can significantly accelerate error
injection campaigns to identify vulnerable feature maps in
a CNN by 3.2× on average. We use ∆Loss for feature-map
level resilience (FLR) in a CNN.

• We discover and exploit a strong correlation between the
output confidence of an inference and probability of an SDC.
Leveraging this relationship, we introduce an inference-level
resilience (ILR) technique for CNNs.

• We find that combining our domain specific insights and
two techniques of FLR and ILR is better than the sum of
its parts. Our combination, FILR, can obtain 99.78% error
coverage with just 48% overhead on average (and as low as
21% overhead for ResNet50), using number of additional
MACs as a proxy.

• Our implementation on a Jetson Xavier GPU with batch size =
1 shows that FILR incurs 1.6% runtime overhead on average.

• We perform an analysis of error-propagation in CNNs at
different levels (network, layer, and fmap) and also explore
various error models. Our analysis provides multiple insights
into the robustness of CNNs to soft errors.

II. BACKGROUND AND RELATED WORK

CNN Background: CNNs are a class of deep neural networks
(DNNs) used to analyze visual imagery such as for image recog-

nition or object detection. A classification CNN takes as input an
image which propagates through many computational layers until
it arrives at a softmax layer. The softmax provides a probability for
each class the network aims to predict, indicating the confidence of
predicting a specific class. The class with the highest confidence (the
Top-1 confidence) indicates the CNN’s prediction for the image. Dur-
ing training, a cost function (such as the cross entropy loss) is com-
puted from the softmax and backpropogated to update weight values
to improve prediction accuracy. At deployment time, a classification
CNN operates in feed-forward mode only to perform an inference.

A CNN is composed of various layers between the input and the
output. The predominant layer type is the convolutional (conv) layer,
which typically constitutes 90%–97% of a CNNs total computa-
tions [36]. A neuron (or activation value) is the fundamental com-
ponent of a conv layer, computed as a dot product between a filter
of weights and an equal-sized portion of the input. Each dot product
is composed of many multiply-and-accumulate (MAC) operations.
A plane of neurons is known as a feature map (fmap). Each conv
layer in the network may have a different number of filters, which
map one-to-one with the number of output fmaps for that layer.

In this work, we target pretrained CNN models for resiliency
hardening, and avoid model retraining. In practice, retraining may
not even be an option for proprietary models and datasets.

Quantization and Resilience: In state-of-the-art systems, once
a model is trained, the neuron and weight values are mapped
to a smaller value range (e.g., from FP32 to INT8) in a process
called quantization. The use of smaller data types for storage
and computation increases energy efficiency and performance
by multiple folds [14], [59], [70], [78]. Research has shown that
these benefits can be achieved with limited loss in model accuracy.
Thus, many recent inference-targeted devices support INT8/INT4
formats [27], [48].

The dynamic range offered by the number system directly im-
pacts resilience. Research has shown that soft errors which manifest
as values significantly higher than the expected range can cause egre-
gious inference output corruptions [33]. As the fault-free neuron val-
ues use a limited part of the total range offered by the non-quantized
data type (e.g., FP32), low-cost range detectors were proposed to
detect SDC-causing soft errors [9]. They have been shown to be
effective for inferences that use data types with large value ranges.

INT8 quantization provides a natural range limiter [11], [26],
[49], [63], [64] because no values (including errors) can escape
beyond the quantized realm, which map to a limited real number
range by design. Employing additional range detection for models
that use INT8 is challenging since most neuron values use the full
range offered by INT8. Since errors within the expected dynamic
range of neurons (post quantization) can still cause SDCs, we focus
on detecting them. Such errors form the baseline for this study.

DNN Resilience and Error Model: Processors deployed in
safety-critical systems typically employ ECC/parity to protect
large storage structures such as those storing CNN weights and
intermediate data [43]. However, the level of protection offered
by that alone without logic protection is not sufficient [21],
[25], particularly as deep learning continues to become more
computationally intensive. In fact, today’s systems may employ fully
redundant computations in the form of temporal or spatial DMR

2

for resilience, such as Tesla’s Fully Self Driving (FSD) chip [74].
In this work, we focus on understanding the resilience of CNNs

in the context of transient computational errors at inference time.
Specifically, we employ a single-bit flip error model in activation
values (i.e., neurons), a commonly used abstraction for modeling
hardware faults [5], [16], [18], [33], [34]. A transient error could
either (1) have no effect on a programs output (called masked),
(2) get detected by the system using low-cost techniques [35], [55],
[62], [79], or (3) remain undetected and corrupt the program output
(a silent data corruption or SDC). In the context of CNNs, we only
consider transient errors which alter the originally correct Top-1
class of an inference as an SDC [10], [76]; we refer to this as a
classification mismatch, or simply mismatch.

Resiliency analysis techniques used to uncover SDCs can be
categorized as experimental error injection campaigns or analytical
error propagation models. An error injection emulates a hardware
error by perturbing internal program state, and then executing the
program to completion to evaluate the effect of the error [8], [19],
[39], [44], [77]. Since a program can consist of trillions of operations
and there are a plurality of errors possible for each operation, an
error injection campaign can take significant time and resources
to completely characterize the resilience of an application [10],
[17], [24], [37], [38], [44]. However, most resiliency studies either
focus on small networks (using MNIST or CIFAR10 datasets), use
a handful of input images, or perform few injection experiments
(e.g., 1000 per network) which cannot provide data with enough
granularity for effective selective protection. Analytical error
models attempt to reduce the resource intensity of error injection
campaigns by estimating the vulnerability of different operations
through higher-level models, taking into account architecture or
domain knowledge [13], [30], [34]. However, this approach is often
less accurate as it is heuristic-based. This paper primarily uses
experimental error injections to analyze the resiliency of CNNs. In
§III, we show how to leverage CNN domain knowledge to accelerate
error injection significantly without sacrificing analysis accuracy.

Related work on selective duplication: Prior work has explored
performing selective duplication in hardware and software at finer
granularities. These include kernel-level duplication in GPUs [24],
[37], layer duplication [37], fmap duplication [66], and neuron
duplication [38]. While this work is not the first to target fmaps,
we are the first to evaluate fmaps without requiring retraining.
Prior methods with retraining either redistribute vulnerability
across a network [66], [67] or introducing additional components
that require fine-tuning [38]. One goal of our work is to avoid
training altogether due to its high associated costs and sometimes
proprietary nature. Additionally, we expand our analysis to the layer
and network levels for a comprehensive evaluation (§VIII).

III. FLR DESIGN OVERVIEW

Quantifying the vulnerability at finer granularities can help avoid
full network duplication by enabling selective protection of the most
vulnerable components only, in contrast to traditional DMR tech-
niques. This section introduces a resiliency analysis and hardening
technique called feature-map level resilience (FLR). Given a pre-
trained network, FLR targets the computational component of fmaps
for fine grained analysis and protection, quantitatively estimates the

GPU

Embedded

? Future
Accelerator

SW HW

Target Granularity Vulnerability Estimation Selective Protection

Neuron

Feature Map

Layer

Network

𝑽𝒐𝒓𝒊𝒈 × 𝑷𝒑𝒓𝒐𝒑

Mismatch
Δ𝐿𝑜𝑠𝑠

Fig. 1: FLR design overview. Given a pretrained network, FLR (1) targets
fmaps for selective analysis and protection, (2) estimates vulnerability
of each fmap, and (3) selectively protects the most vulnerable fmaps in
software before deployment.

vulnerability of each fmap using a new, domain-specific metric
called ∆Loss, then selectively protects the most vulnerable fmaps
via filter duplication. FLR is a software-driven technique, enabling
a flexible analysis which can subsequently be deployed on various
hardware platform backends. Fig. 1 shows an overview of FLR.

A. FLR Target Granularity
Of the three CNN sub-components (i.e., neuron, fmap, layer),

we target feature maps as the sweet-spot for resiliency analysis
and hardening for various reasons. First, neuron-level analysis may
be too fine-grained, with many millions of neurons per CNN (see
Table I). Evaluating vulnerability of each neuron via error injection
is extremely time consuming. Additionally, neurons are not immune
to all translational effects in input images (e.g., rotation, zoom),
making this granularity less robust for reliability analysis.

Fmaps and layers, on the other hand, are much more tractable
in terms of total components, and are typically trained to exhibit the
same behavior across similar images [56], [68]. Performing fmap
analysis has the additional benefit that the results can be composed
to perform layer- and network-level vulnerability analysis. To the
best of our knowledge, this is the first work to target fmaps for
vulnerability analysis and selective protection with no retraining
and no loss in original pretrained network accuracy in the absence
of hardware errors.

B. FLR Vulnerability Estimation
FLR quantifies the vulnerability of each fmap in a CNN due to

an error by computing the likelihood that an error manifests and
propagates to the output and produces an SDC. We compute the
likelihood as the product of two components: (1) the origination
vulnerability (Vorig), which captures the likelihood a transient
hardware error corrupts the output of an fmap, and (2) the
propagation probability (Pprop), which is the probability the
fmap-level manifestation propagates to and corrupts the CNN
output. We compute the vulnerability, Vfmap, of each fmap i as:

Vfmap[i]=Vorig[i]×Pprop[i] (1)

We define the vulnerability of the CNN, VCNN , as the probability
that the CNN produces an SDC due to a transient hardware error
that occurs during inference. This vulnerability can be computed
as the sum of vulnerabilities of each of the N fmaps in the CNN as:

VCNN =
N∑
i

Vfmap[i] (2)

Using Equations 1 and 2, FLR measures the relative vulnerability,
V relfmap, of each fmap in the CNN. Intuitively, V relfmap is the

3

83%
11%

.

.
6%

CAR ✓

TRUCK 

.

.

.
BICYCLE 

Input Convolutional Neural Network Classification

SoftmaxFeature Maps

0.18

Loss
(a)

11%
83%

.

.
6%

CAR 

TRUCK ✓
.
.
.

BICYCLE 

SoftmaxFeature Maps

2.21
Loss

(b)

Δ𝐿𝑜𝑠𝑠 = 2.03

58%
36%

.

.
6%

CAR ✓

TRUCK 

.

.

.
BICYCLE 

SoftmaxFeature Maps

0.54
Loss

(c)

Δ𝐿𝑜𝑠𝑠 = 0.36

Fig. 2: ∆Loss example where (a) shows an error-free inference classifying
the car correctly, (b) shows an example of a mismatch where an error
causes the network to select truck instead of car, (c) shows an example
where an error causes a drop in confidence for car that does not lead to
a mismatch; however, the drop can be captured by measuring ∆Loss.

contribution of an fmap towards the total CNN vulnerability. This
quantity is used to identify the most vulnerable fmaps for protection.

Error Origination Vulnerability: Vorig depends on the
implementation of the architecture on which the CNN is being run
and the computation that generates a feature map (e.g., convolutions).
Assuming that the major storage structures (e.g., DRAM, caches,
and register files) are ECC/parity protected in the target hardware
platform [43], most of the errors originate from the unprotected
computations. Vorig can be computed using the hardware details,
the numerical precision of the computation, raw failure rates of the
logic and storage structures, and the computation structure.

As MAC operations are used for convolutions and generating
fmaps, we assume Vorig is directly proportional to the number
of MACs in a convolution, without loss of generality [72]. In this
work, we compute Vorig for an fmap as the fraction of the number
of MACs used to compute the fmap to the number of MACs in
the entire CNN. Our formulation can be extended to compare
VCNN across different networks, in which case Vorig should not
be normalized. A network-level vulnerability assessment would be
based on the total number of computations performed by different
networks (§VIII).

Error Propagation Probability: Pprop is the fraction of the
fmap-level error manifestations that propagate to the CNN output,
producing SDCs. While the true Pprop values for fmaps may not
be known, we can estimate them for vulnerability ordering using
statistical error injections.

Number of Mismatches: As mentioned in §II, counting mismatch
from error injections may require many observations for statistical
convergence. This metric (although commonly used for its
accuracy), suffers from two issues. (1) It is a binary metric, which
means that only error injections that change the Top-1 class can
affect the Pprop measurements. Injection experiments where the
softmax changes but not the Top-1 class are not captured by this
metric. As a result, estimating an accurate SDC probability requires
many injection experiments. (2) The Top-1 mismatch-based SDC
metric does not extend naturally to other, non-classification CNNs.
This is one of the open problems expressed in the recent survey of
DNN resiliency [76]. We address these issues with a new metric
to estimate Pprop called ∆Loss.

Average Delta Cross Entropy Loss (∆Loss): Cross entropy loss
is traditionally used during CNN training to measure how different
the predicted result is from the expected (known) result to improve

the prediction accuracy of the network. More generally, it is used in
information theory to measure the entropy between two distributions
– the true distribution and the estimated distribution. Adapting this
metric to resiliency, we can calculate the average absolute difference
between the cross entropy loss values observed during an error-free
inference and an error-injected inference. This can be expressed as:

∆Lossfmap=

∑N
i |(Lgolden−Li) |

N
(3)

where Lgolden is the cross-entropy loss for an error-free inference
and Li is the cross-entropy loss for the ith error-injected inference
across N total error injections. We use the absolute difference to
capture the magnitude of the change in cross entropy loss observed
due to an error injection. The larger the average ∆Lossfmap, the
more vulnerable the fmap. Since this method does not predict the
SDC percentage, it can be used only to estimate the relative Pprop.
Figure 2 illustrates the advantage of using this new metric.

C. FLR Selective Protection

Once the fmap vulnerabilities are quantified, FLR selects the most
vulnerable fmaps to harden them from SDCs. Individual fmap com-
putations can be protected by duplicating the filters that correspond
to them within a convolution operation. Filter duplication results in
two copies of the same logical fmap, where any mismatches between
the two copies are used to detect errors during inference and trigger
a higher-level system response. The duplicated fmaps need to be
dropped before execution of the subsequent layer. The comparison
of the two duplicate feature maps can be performed lazily to remove
it from the critical path. Furthermore, as FLR is a highly tunable
software-directed selective protection approach, the designer can
selectively control the error coverage versus computational overhead
trade-off based on the resiliency requirements of the system (§VII).

Besides selective filter duplication and comparison, other error
detection methods can also be used by FLR. For example, kernel
duplication [2], [3], feature approximations [52], algorithmic-based
error detection (ABED) [18], [51], and AN-codes [15] can be used
by FLR after fmap vulnerability estimation. On an error detection,
recovery mechanisms such as inference rerun or zero-value
propagation [53] or triple modular redundancy can be employed
to maintain forward progress.

IV. ILR DESIGN OVERVIEW

The second granularity we target for CNN resilience is an
individual inference for an image (§IV-A). In this section, we
introduce ILR, a novel, per-image inference confidence-based CNN
resiliency technique. ILR selectively reruns images for inferences
that are vulnerable to SDCs by using only information provided
after an inference is complete, namely the confidences in the
softmax. We study two confidence-based criteria, Top1Conf and
Top2Diff (§IV-B), and identify a confidence threshold to trigger
reruns during deployment (§IV-C).

A. ILR Target Granularity

The target granularity for CNN resiliency chosen for ILR
is an individual inference. While FLR targets static, structural
duplication of select fmaps before network deployment, ILR uses
dynamic information to perform selective, full network reruns. The

4

motivational insight behind ILR is that the classification confidence
of a CNN for an inference is related to the probability that a soft
error can cause a classification mismatch. Furthermore, despite
their importance, SDCs should be an exception and not the norm;
thus, to avoid incurring static overheads to have high resilience, a
dynamic anomaly detector can significantly reduce overheads while
maintaining high error coverage.

B. ILR Inference Vulnerability

To selectively identify which inferences are vulnerable and
need protection, we explore two decision functions which operate
on the softmax. The first function assesses vulnerability of an
inference based on the highest confidence value observed from
the softmax (the Top1-Conf). We select this metric to examine if
an inference with high confidence in prediction is more robust to
soft errors. In this scenario, if the Top1-Conf lies above a certain
threshold, the inference is deemed less vulnerable to perturbations,
while inferences with Top1-Conf below the threshold should be
conservatively rerun to avoid a possible SDC.

The second criterion we explore is the difference between the
top two classes in the softmax, called Top2Diff. The intuition
behind this choice is that a transient error needs only do enough
computational damage to the network to cause the CNN to classify
the image as the second highest class, rather than the (originally
correct) top class. Thus, a smaller Top2Diff is akin to a smaller
catalyst for the soft error to overcome to cause a mismatch,
compared to a large Top2Diff which is more robust to mismatches
from soft errors. For both decision functions studied, we perform
resiliency analysis using error injections to identify the operational
threshold for a target error coverage.

C. ILR Selective Protection

ILR protects against SDCs by running the vulnerable inferences
(whose output confidence is below a threshold) again and verifying
the output is same (or similar) between the two runs. For the second
run of the inference, a highly optimized (pruned and quantized)
model can be used to reduce the runtime overhead. In this paper,
we consider the overhead to determine which inference to verify
via a rerun to be negligible and focus on the reexecution overhead
incurred as a result of ILR. The ILR method is attractive due to
its simplicity in implementation, and it can be performed either in
hardware or software.

V. FILR RESILIENCY: ILR + FLR

ILR and FLR can be employed independently for CNN resiliency,
as each targets a different axis for selective resiliency analysis and
hardening. In this work, we also explore a combination of the two
techniques, to evaluate the benefits of dynamic, selective inference
duplication with static, selective fmap duplication.

To combine the two techniques, we first performs ILR analysis
to identify the coverage and overhead of different operational
thresholds. We then run FLR analysis only on the subset of
inferences not protected by ILR at a given threshold, and select the
optimal combination between ILR threshold and FLR fmaps for
protection. Effectively, this enables FLR analysis (which results
in a flat, built-in resiliency overhead by duplicating fmaps before
deployment) on the SDCs which ILR does not protect against.

TABLE I: CNNs studied with key topological parameters.

Neural Conv Total Total FP32 INT8
Network Layers Fmaps Neurons Accuracy Accuracy

AlexNet [29] 5 1,152 484,992 56.52% 56.04%
GoogleNet [73] 57 7,280 3,226,160 69.78% 69.43%
MobileNet [65] 52 17,056 6,678,112 71.87% 62.18%
ShuffleNet [40] 56 8,090 1,950,200 69.35% 67.01%
SqueezeNet [23] 26 3,944 2,589,352 58.18% 57.39%
ResNet50 [20] 53 26,560 11,113,984 76.12% 75.79%
VGG19 [69] 16 5,504 14,852,096 72.36% 72.20%

VI. EVALUATION METHODOLOGY

We perform our evaluation on 7 CNNs pre-trained on the Ima-
geNet dataset [60], each listed in Table I with a count of topological
parameters. We apply INT8 neuron quantization during infer-
ence [63], [64], since highly optimized systems typically employ
quantization prior to deploying CNNs [11], [26], [49]. Such models
run significantly faster with hardware support for reduced-precision
operations, which is prevalent in CPUs, GPUs, and accelerators.

We use the PyTorch framework v1.1 [54], and obtain pretrained
models for CNNs from the PyTorch TorchVision repository [58].
We use PyTorchFI [41] to perform error injections on the CNNs. All
experiments are run on an Amazon EC2 p3.2xlarge instance [45],
with an Intel Xeon E5-2686 v4 processor, 64GB of system memory,
and an NVIDIA V100 GPU with 16GB of device memory [48].
Our evaluation focuses on a transient, single bit-flip error model
(§II). In §VIII, we extend our analysis to a total of three error
models, evaluating the impact on fmap and network vulnerability.

A. Analysis Set (AS) and Deployment Set (DS)

ImageNet [60] provides a test set of 50,000 images, which we
randomly split into an analysis set (AS) and a deployment set (DS)
using an 80/20 ratio for evaluation. Since this work focuses on pre-
trained networks, we do not use the images from the ImageNet train-
ing set as they would already have been used for training. As in a real-
life scenario, we assume the developer only has access to the AS for
reliability analysis of the CNNs, and we validate our results on the
DS. The 40,000 images in the AS are the same across all networks
and techniques explored, and similarly for the 10,000 DS images.

During reliability analysis, we are primarily interested in identify-
ing corruptions that change a correct prediction (based on the ground
truth) into an incorrect prediction. For an inference that is originally
incorrect, the effect of a hardware error can convert the inference to a
correct or another incorrect prediction; analyzing both is not relevant
for this work as the focus is not on improving model accuracy or
analyzing the handling of different incorrect inferences. Thus, for
error coverage analysis, we perform error injections only on images
which are originally correct (i.e., the inference resulted in the same
class as the dataset label) during an error-free execution (similar
to prior work [10], [33], [66]). When measuring runtime overhead,
however, we include all images for evaluation because at runtime
we do not know apriori which input will give the correct outcome.

While the AS remains the same throughout analysis, the resiliency
analysis methodology differs for FLR and ILR since they are dif-
ferent techniques (elaborated in §VI-B and §VI-C). For validation,
however, we perform a single, unified error injection campaign on
the DS. For the DS, we perform 10 million random error injections
per network, where each error injection is performed on a single ran-

5

dom bit of a random neuron for a random image. In total, we perform
70 million error injection experiments across all networks for the DS.

B. FLR Evaluation Methodology

We partition the evaluation of FLR into two parts: 1) comparing
the accuracy and speed of the two metrics, mismatch and ∆Loss;
2) evaluating the coverage versus overhead tradeoff provided by
FLR’s selective fmap duplication. As mentioned previously in
§II, heuristics can also be used for resiliency analysis, and we
explored six heuristics from the literature including value-based
techniques [72], pruning techniques [4], [47], and gradient-based
techniques [63], [64]. An extensive analysis of heuristic evaluation
is included in [42]. We found, however, that none had significantly
high accuracy relative to our mismatch-based error injection
analysis (the golden standard). Thus, for space considerations, we
focus only on error injection evaluation in this paper.

To compare mismatch and ∆Loss, we first generate a statistical
oracle for fmap vulnerability by performing 12,288 injections per
fmap (inj/famp) for each network, which corresponds to at least
99% confidence level with less than 0.23% confidence intervals.1.
We define our statistical oracle using the number of mismatches
obtained at 12,288 inj/fmap (shorthand: Mismatch-12288). For
each individual error injection experiment, we flip a random bit
of a random neuron in the fmap for a random image. In total, we
performed a total of 855 million unique error injections across
all CNNs studied for FLR. The large campaigns help statistically
validate the effectiveness of our ∆Loss metric for vulnerability
analysis and reducing the campaign runtimes.

We generate a cumulative vulnerability distribution based on a
greedy selection algorithm for which fmap order to protect. Fmaps
are selected for protection by first sorting all fmaps in descending
order of vulnerability (based on the metric being considered)
and subsequently choosing the first several fmaps whose relative
vulnerability adds up to the targeted coverage. The error coverage
is always extracted from the oracle mismatches of each fmap. We
model the expected computational overhead as the total number
of MAC operations in those selected fmaps as a fraction of the total
MAC operations in all fmaps. We model runtime overhead with the
increase in MACs (as MACs are commonly used for performance
evaluations [72]), providing a platform-agnostic metric to estimate
and compare overheads.

The precise overhead of our technique will be platform-specific,
depending on many factors such as: the type of computational
resource (CPU, GPU, ASIC), hardware optimizations (availability
of tensor cores), device memory bandwidth/compute ratio, version
of a backend library used (e.g., cuDNN), CNN model precision,
and batch size [50]. We explore one such platform configuration in
our evaluation to simulate an embedded device on a safety critical
system: an NVIDIA Jetson Xavier with an 8-core ARM v8.2 CPU,
512-core Volta GPU with Tensor Cores, 32 GB of shared memory
running with JetPack v4.4, CUDA v10.1, cuDNN v8.0, and batch
size of 1. Real-time power-constrained systems typically employ

1We use a discrete Bernoulli distribution to compute our confidence intervals for
the oracle, using the measured observations of our error rates with the population size
of possible errors to compute confidence intervals [31]. Further, we select∼12,000
inj/fmap as a large number of samples based on our available computational
resources for 99% confidence level [71].

small low-power devices, as well as a small batch sizes since
waiting for multiple frames to create a batch may not meet real-time
constraints [50]. The additional duplicate fmaps are implemented as
additional filters in the layer (as described in §III-C). We performed
1000 runs and measured the average runtime overhead relative to
an unhardened model.

To compare the accuracy of the metrics, we measure the average
Manhattan distance between each cumulative distribution and
the oracle cumulative distribution. We perform a sweep from 64
inj/fmap to 12,288 inj/fmap for each metric, using the Manhattan
distance as a measure for how similar the vulnerability estimations
are (zero Manhattan distance implies same vulnerability estimations).
To compare the speed of each metric in performing the FLR
vulnerability analysis, we identify the number of inj/fmap required to
attain 99% similarity to the oracle. By ensuring that all infrastructure
is held constant during error injection experiments (i.e., the hardware
used, the number of images in a batch for parallelizing error injec-
tions, and the runtime of an inference), the only differentiating factor
for analysis runtime is the total number of error injections performed,
which we use to calculate speedup. Finally, we analyze the coverage
versus overhead tradeoff for different networks, and show that
the expected coverage (as indicated by the AS) is very accurate
compared to the actual coverage (as indicated by the DS) (§VII-A).

C. ILR Evaluation Methodology

For ILR evaluation, we perform 1000 error injection experiments
per image in the AS for each CNN studied. For each error injection
experiment, we flip a random bit of a random neuron in the network
at runtime. In total, we perform 184 million unique error injections
across all networks for ILR. Our experiments corresponds to a 99%
statistical confidence level with less than 0.81% confidence intervals,
which we validate on the DS and show very high accuracy (§VII-B).

We evaluate the two logical conditionals for ILR, Top1Conf
and Top2Diff, sweeping the threshold values from 0.0 to 1.0 in
increments of 0.01, and measuring the provided error coverage and
associated overhead. The error coverage indicates how many SDCs
are protected against the given Top1Conf/Top2Diff threshold for
rerun, while the overhead is the additional number of inferences
performed due to ILR reruns.

D. FILR Evaluation Methodology

We evaluate FILR using the same error injection infrastructure as
ILR described in §VI-C. For the ILR component of FILR, we select
Top2Diff as the decision criterion. Using the AS and given a target
coverage, we run ILR analysis to generate different threshold values
which provide less coverage than the target. We then run FLR on
the subset of inferences not covered by ILR at each threshold value
(i.e., SDCs which ILR does not capture at a given threshold), and
selectively duplicate the most vulnerable fmaps which bridge the
gap to the target coverage. The fmaps selected by FLR will always
be duplicated in the model to provide “built-in” redundancy for
each inference, and ILR will selectively run individual inferences
based on the defined threshold. Thus, FILR overhead is composed
of both these components, which we optimize by identifying the
right balance between FLR and ILR. We report results at a target
coverage of 100% on the AS, and validate the results by measuring
the coverage and overhead on the DS.

6

VII. RESULTS

A. FLR Results and Analysis

Mismatch versus ∆Loss Convergence: We begin by analyzing
the two metrics used to quantify fmap vulnerability. Figure 3
provides empirical evidence for the convergence of Mismatch-
based analysis and ∆Loss-based analysis as the number of inj/fmap
increases. The X-axis in the figure shows the number of inj/fmap
used for each analysis, and the Y-axis shows the Manhattan
distance between the vulnerability ranking of fmaps obtained at
each point relative to the statistical oracle (Mismatch-12288). Our
first observation is the scale on the Y-axis, which indicates that even
at 64 inj/fmap, ∆Loss differs from the Oracle by less than 7% on
average. Second, the results show that ∆Loss quickly asymptotes
to its final ordering of fmaps, and it does so sooner than Mismatch.
Table II lists the number of inj/fmap required for Mismatch and
∆Loss to arrive within 1% of the Oracle. For Mismatch, the number
of inj/fmap ranges from 640-5632 while for ∆Loss it is lower going
from 128-1536 inj/fmap. Additionally, both Mismatch and ∆Loss
converge without requiring a full 12288 inj/fmap. To attain a very
high accuracy fmap vulnerability ordering, our results show that
Mismatch requires 5.2× fewer inj/fmap on average than the Oracle,
while ∆Loss requires 16.7× fewer inj/fmap on average, resulting in
an average speedup for ∆Loss of 3.2× over Mismatch (up to 9.4×) .

One exception is VGG19, which asymptotically approaches
the 97.5% mark rather than 99% mark. While still relatively high,
we attribute this to the large average size of fmaps in VGG19. For
this network, the statistical error in the large injection campaign of
Mismatch-12288 might not be small enough. However, later sections
show that this difference is minute when considering the coverage
versus overhead trade-off, since the precise ranking of fmaps is
less important as long as it is approximately well-ordered. Thus,
while the Manhattan distance provides us with empirical evidence
for the convergence of Mismatch and ∆Loss, FLR does not suffer
from small imprecisions in the ordering. Attaining a good ordering
quickly is advantageous for faster offline resiliency analysis, and
this can be performed with ∆Loss for all networks studied.

Coverage versus Overhead: Fig. 4 shows the performance of
FLR as a selective resiliency technique for 6 networks (we exclude
AlexNet for space considerations, but the trends are the same), mea-
sured by the coverage versus overhead trade-off for selective fmap
duplication. The X-axis shows the cumulative coverage by selec-
tively protecting fmaps based on a vulnerability ordering, and the Y-
axis shows the corresponding overhead as a percentage of additional
MAC operations. We plot the trade-off for 6 vulnerability orderings:
the Oracle (Mismatch-12288), Loss-12288, mismatch and loss at
the 99% convergence points (Table II), and Mismatch and Loss at
64 inj/fmap. The inclusion of Mismatch-64 and Loss-64 help further
illustrate the the faster convergence of ∆Loss relative to Mismatch.

Fig. 4 shows that the computational overhead is always
sublinear to coverage, indicating that selective protection is in fact
advantageous to full duplication and can even provide large benefits.
For example, covering 90% of errors in SqueezeNet incurs only
29% overhead for the network, emphasizing that only a fraction of
fmaps possess most of the vulnerability for the network. Similarly,
MobileNet attains nearly 98% coverage (for 64% overhead) before
a sudden, vertical rise in overhead for the last 2%. In this case,

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

6
4

2
5

6

5
1

2

7
6

8

1
0

2
4

1
2

8
0

1
5

3
6

1
7

9
2

2
0

4
8

2
5

6
0

3
0

7
2

3
5

8
4

4
0

9
6

4
6

0
8

5
1

2
0

5
6

3
2

6
1

4
4

6
6

5
6

7
1

6
8

7
6

8
0

8
1

9
2

8
7

0
4

9
2

1
6

9
7

2
8

1
0

2
4

0

1
0

7
5

2

1
1

2
6

4

1
1

7
7

6

1
2

2
8

8

M
an

h
at

ta
n

 D
is

ta
n

ce
(R

e
la

ti
ve

 t
o

 M
is

m
at

ch
-1

2
2

8
8

)

Injections per Feature Map (Inj/Fmap)

Mismatch-AlexNet Loss-AlexNet Mismatch-VGG19 Loss-VGG19

Mismatch-SqueezeNet Loss-SqueezeNet Mismatch-ShuffleNet Loss-ShuffleNet

Mismatch-GoogleNet Loss-GoogleNet Mismatch-ResNet50 Loss-ResNet50

Mismatch-MobileNet Loss-MobileNet

Fig. 3: ∆Loss and Mismatch converge as inj/fmap increase.

TABLE II: Comparison of Mismatch and ∆Loss
Network Inj/Fmap for 99% Oracle Speedup from Oracle ∆Loss
Neural Mismatch ∆Loss Mismatch ∆Loss Speedup
AlexNet 2560 896 4.8× 13.7× 2.9×

GoogleNet 5632 1536 2.2× 8.0× 3.7×
MobileNet 640 128 19.2× 96.0× 5.0×
ResNet50 3584 384 3.4× 32.0× 9.4×
ShuffleNet 1664 1280 7.4× 9.6× 1.3×
SqueezeNet 3072 896 4.0× 13.7× 3.4×

VGG19* 2560 1536 4.8× 8.0× 1.7×
Geomean 2382 738 5.2× 16.7× 3.2×

* For 97.5% similarity to Oracle

we find that MobileNet has a unique feature: an imbalance of
fmap sizes (captured by Vorig), such that the vulnerability of larger
fmaps dominate, while a tail of smaller fmaps can be relegated in
protection. For VGG19, despite the small difference in convergence
between ∆Loss and Mismatch in fmap ordering (Table II),
using selective protection shows that an informed, approximate
ordering (as employed by FLR at fewer inj/fmap) still provides an
opportunistic coverage versus overhead tradeoff for CNN resiliency.

Validation: Figure 5 validates the use of ∆Loss as a metric
for vulnerability analysis, where we show the estimated coverage
predicted by FLR using ∆Loss on the AS (X-axis), and comparing
it to the actual coverage as measured by the number of SDCs
protected against on the DS (Y-axis). The results show that
∆Loss is representative of the actual vulnerability as measured by
mismatches in the DS. Thus, the prediction provided by ∆Loss
is an excellent alternative for system developers for error analysis
compared to Mismatch. Furthermore, FLR has no false positives
(i.e., no detection without an underlying hardware error) by design
because it uses duplication and an equality check.

B. ILR Results and Analysis

Correlation Between Inference Confidence and SDCs: We
discovered a strong correlation between inference output and the
vulnerability of the inference. Figure 6 illustrates this correlation.
We plot the number of SDCs for 1000 randomly selected images
run on AlexNet on the primary Y-axis. The secondary Y-axis shows
the image’s error-free Top1Conf and Top2Diff values. We measure
the Spearman correlation between the per-images SDC rate and
the two confidence metrics we extract. For AlexNet, the Spearman
correlations are -0.87 for Top1Conf and -0.93 for Top2Diff, where
-1.0 indicates a perfect inverse relationship. Both metrics exhibit
a very high correlation relationship between the number of SDCs
observed for an image and the image’s confidence, which we can
leverage for resiliency analysis and hardening.

7

0 20 40 60 80 100
Coverage (% Vulnerability Reduction)

0

20

40

60

80

100
Ov

er
he

ad
 (%

 A
dd

iti
on

al
 M

AC
s) Loss-64

Mismatch-64
Loss-1536
Mismatch-5632
Loss-12288
Oracle

(a) GoogleNet-ImageNet

0 20 40 60 80 100
Coverage (% Vulnerability Reduction)

0

20

40

60

80

100

Ov
er

he
ad

 (%
 A

dd
iti

on
al

 M
AC

s) Loss-64
Mismatch-64
Loss-128
Mismatch-640
Loss-12288
Oracle

(b) MobileNet-ImageNet

0 20 40 60 80 100
Coverage (% Vulnerability Reduction)

0

20

40

60

80

100

Ov
er

he
ad

 (%
 A

dd
iti

on
al

 M
AC

s) Loss-64
Mismatch-64
Loss-1280
Mismatch-1664
Loss-12288
Oracle

(c) ShuffleNet-ImageNet

0 20 40 60 80 100
Coverage (% Vulnerability Reduction)

0

20

40

60

80

100

Ov
er

he
ad

 (%
 A

dd
iti

on
al

 M
AC

s) Loss-64
Mismatch-64
Loss-896
Mismatch-3072
Loss-12288
Oracle

(d) SqueezeNet-ImageNet

0 20 40 60 80 100
Coverage (% Vulnerability Reduction)

0

20

40

60

80

100

Ov
er

he
ad

 (%
 A

dd
iti

on
al

 M
AC

s) Loss-64
Mismatch-64
Loss-384
Mismatch-3584
Loss-12288
Oracle

(e) ResNet50-ImageNet

0 20 40 60 80 100
Coverage (% Vulnerability Reduction)

0

20

40

60

80

100

Ov
er

he
ad

 (%
 A

dd
iti

on
al

 M
AC

s) Loss-64
Mismatch-64
Loss-512
Mismatch-2560
Loss-12288
Oracle

(f) VGG19-ImageNet
Fig. 4: FLR vulnerability reduction versus computational overhead.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
ct

u
al

 C
o

ve
ra

ge

Predicted Coverage

ResNet50 MobileNet
VGG19 GoogleNet
ShuffleNet SqueezeNet
AlexNet

Fig. 5: FLR validation of predicted versus actual coverage.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

100

200

300

400

500

600

4
4

3

8
6

3

3
8

0

2
3

9

4
3

7

2
6

1

1
0

0

1
4

5

2
6

1
0

0
3

3
5

5

5
2

4

8
0

5

2
6

5

4
0

7

5
9

8

4
7

8

9
1

3

4
7

1

6
2

5

7
4

3

3
7

3

5
6

1

2
8

8

7
0

2

5
2

0

9
8

3

3
7

9

9
5

6

3
7

7

3
5

1

1
2

4

C
o

n
fi

d
e

n
ce

 V
al

u
e

M
is

m
at

ch
e

s
(P

e
r

Im
ag

e
)

Image ID

Mismatches
Top1Conf
Top2Diff

Fig. 6: Correlation between an image’s confidence and SDCs (AlexNet).
Images are sorted in ascending order based on their Top2Diff.

Coverage versus Overhead: While both ILR metrics show
high correlation for SDC detection, we find that Top2Diff performs
better overall. Figure 7 illustrates this difference. Each point shows
the coverage and overhead obtained for a confidence threshold set
by ILR (as described in §VI-C). For both metrics, we find that ILR
provides a favorable trade-off in terms of obtaining high coverage
and incurring low overhead, signified by all points being below
the x=y line. More importantly, the pareto-optimal threshold values
are strictly better for Top2Diff, illustrated by a lower “knee” for
each network. ResNet50, for example, can achieve 90% coverage
at only 9% overhead using ILR with Top2Diff, while incurring
18% overhead with Top1Conf. Figure 8 summarizes this result
for all networks, showing that on average, we can obtain 90%
coverage with only 17% overhead using Top2Diff, compared to
31% overhead on average with Top1Conf. We focus on Top2Diff as
the decision criterion for ILR moving forward as it performs better.

Validation: We validate ILR by measuring the coverage versus
overhead trade-off on the DS. Figure 9 shows the tradeoff plot
for ILR using Top2Diff, showing similar trends as analyzed on
the AS (Figure 7b). Results for ILR with Top1Conf on the DS
(not shown here for space constraints) are also very similar to the
results on AS. That the AS and DS contain exclusively different

0 20 40 60 80 100
Coverage (%)

0

20

40

60

80

100

Ov
er

he
ad

 (%
) alexnet

googlenet
mobilenet
resnet50
shufflenet
squeezenet1_1
vgg19_bn

(a) Metric: Top1Conf

0 20 40 60 80 100
Coverage (%)

0

20

40

60

80

100
Ov

er
he

ad
 (%

) alexnet
googlenet
mobilenet
resnet50
shufflenet
squeezenet1_1
vgg19_bn

(b) Metric: Top2Diff
Fig. 7: ILR coverage versus overhead tradeoff at different thresholds.

0%

20%

40%

60%

AlexNet GoogleNet MobileNet ResNet50 ShuffleNet SqueezeNet VGG19 GeoMean

O
ve
rh
e
ad

Top1Conf
Top2Diff

Fig. 8: ILR overhead at 90% coverage.

0 20 40 60 80 100
Coverage (%)

0

20

40

60

80

100

Ov
er

he
ad

 (%
) alexnet

googlenet
mobilenet
resnet50
shufflenet
squeezenet1_1
vgg19_bn

Fig. 9: ILR Validation for Top2Diff on DS.

images reinforces the use of Top2Diff as a confidence-based metric
for CNN resiliency by quantitatively showing a strong correlation
between the confidence of an inference and SDCs.

Analysis: Our results show that confidence-based metrics for
SDC detection are highly effective. Top2Diff in particular helps
explain the phenomenon of a mismatch, showing that a soft error
has a higher probability of causing a mismatch if the margin

8

0

20

40

60

80

100

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

O
ve

rh
e

ad
 (

%
)

Top2Diff Threshold

AlexNet

GoogleNet

MobileNet

ResNet50

ShuffleNet

SqueezeNet

VGG19

Fig. 10: FILR overhead for 100% coverage on AS.

between the top two classes is small, which translates to a higher
probability of an SDC appearing. For example, we found that
(correctly classified) images with a Top2Diff less than 0.01 had an
SDC rate as high as 18% for ResNet50 (average of 11.9% for all
networks), which is significantly higher than the overall SDC rate
(less than 1% on average) across all networks and images.

ILR’s overhead is attributed to reruns caused by inferences that
have small Top2Diff, i.e., the inputs for which the model is confused
about the correct class. Networks that exhibit a higher classification
accuracy, such as ResNet50, suffer less from this phenomenon com-
pared to AlexNet. Analogously, ILR’s overhead can be high (a max-
imum of 100%) for a sequence of images that have small Top2diff,
which can be caused by operating on images that are considered out-
of-distribution (OOD). Improving model accuracy for OOD images
should improve the Top2diff for many images and hence ILR’s
overhead. An OOD detector [1] (which remains an active research
topic) can also be employed to temporarily switch to FLR to avoid
near-100% overhead, and is an interesting future direction to pursue.

C. FILR Results and Analysis
Combination of Techniques Results: Figure 10 shows the

results for FILR, which combines the two resiliency techniques of
FLR and ILR as an optimized resiliency solution. All points in the
figure represent 100% SDC coverage on the AS. The X-axis shows
the Top2Diff threshold used by ILR, which also influences the FLR
analysis as described in §VI-D. The Y-axis shows the overhead
for FILR, which is a result of both the static overhead from fmap
duplication and dynamic overhead from inference reruns.

A Top2Diff threshold of 0 corresponds to no coverage or
overhead contribution from ILR and only FLR protection. The 1.0
Top2Diff threshold corresponds to only using ILR (with FLR not
needing to protect any fmaps). The sweep of Top2Diff thresholds
in between show that there exists an optimal point for each network
below the 1.0 Top2Diff threshold, where ILR and FLR collaborate
to achieve high, 100% coverage with an overhead that is below
100% (for design points with >100% overhead, full duplication
is preferable). On average, the overhead via FILR is 48.07% across
networks, and as low as 20.78% for ResNet50.

Validation: Figure 11 shows the validation (on the DS) of the
optimal points from FILR (based on the AS), as described in §VI-D.
We find very high validation accuracy, showing 99.78% coverage
at an average of 47.66% overhead (as low as 20.47% for ResNet50).
These results show that the FILR technique is better than the sum
of its parts, where each technique individually required near 100%
overhead to obtain near 100% coverage.

Implementation Measurements: We implemented FLR at the
optimal point indicated by FILR (Figure 10) and measured the static

0

20

40

60

80

100

AlexNet GoogleNet MobileNet ResNet50 ShuffleNet SqueezeNet VGG19 Geomean

P
e

rc
e

n
ta

ge

Expected Coverage Actual Coverage Expected Overhead Actual Overhead

Fig. 11: FILR validation at optimal Top2Diff thresholds.

0

0.5

1

1.5

AlexNet GoogleNet MobileNet ResNet50 ShuffleNet SqueezeNet VGG19 Geomean

O
ve
rh
e
ad

CPU GPU
Fig. 12: Runtime overhead at optimal FILR design points (Jetson Xavier).

model runtime overhead on a Jetson AGX Xavier, on the CPU and
GPU separately. Figure 12 shows the results. We find that the mea-
sured runtime overheads are indeed platform-specific. CPU runtime
overheads are higher on average, increasing the model runtime by
approximately 7.7% on average, while GPU runtime overhead is
much less at 1.6% on average. While many factors can influence the
exact runtime of the hardened models (as explained in §VI), our re-
sults show that depending on the platform and runtime environment,
many computations can effectively be “hidden” by the availability
of spare hardware resources, effectively providing lower overheads
than predicted by our MAC-based model. While exact runtime
overheads would require a more thorough analysis and is part of our
future work, this study shows the portability of implementing our
techniques on different hardware platforms, as well as show the dif-
fering results which may be accompanied by the platform of choice.

Analysis: FILR is effective at flattening the sharp rise observed
by ILR alone (in Figure 7b) at higher coverage points. More gener-
ally, FILR combines the benefits of each technique, by providing a
low overhead starting point via ILR, followed by a shallow growth
for higher error coverage via FLR’s selective feature duplication.
The key behind this symbiotic relationship is using FLR to focus
selective protection of fmaps for the subset of SDCs missed by ILR.
Furthermore, using ∆Loss as the resiliency metric for FLR has a
subtle yet important contribution in the combined analysis, since it
can help distinguish fmap vulnerabilities faster at fine granularity.

D. Errors Not Captured by INT8 Range Detectors

As discussed in §II, the error coverage of a CNN model is closely
coupled with the dynamic range of the underlying data format. In
our case, all results in §VII are for CNN models that use INT8
quantization. The 0% error coverage points in Fig. 4, 6, and 7 refer
to the baseline scenarios when the INT8 quantized models are not
equipped with FLR/ILR. In these baseline scenarios, the range
checking capabilities implicitly provided by quantizing are present.
Thus, our results demonstrate the detection coverage FLR/ILR pro-
vide beyond the range checking detection of INT8 quantization. The
corresponding network-level vulnerabilities are shown in Table III
(discussed further in §VIII). Since FLR/ILR can be tuned for a
desired coverage or overhead budget, the results in Fig. 4 and 7 show
the coverage vs. overhead graphs for FLR/ILR, respectively. For
FILR, we set the target coverage at 100% and find the lowest over-
head solution by finding an appropriate Top2Diff threshold (Fig. 10).

9

TABLE III: Network level vulnerability (smaller is better). E :=10n.
Network VCNN Network VCNN Network VCNN

AlexNet 6.21E−3 ShuffleNet 6.38E−5 MobileNet 4.33E−5
GoogleNet 1.54E−4 SqueezeNet 9.54E−5 VGG19 1.75E−4
ResNet50 3.79E−5

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

Feature Maps

0
5

10
15
20
25
30
35
40
45
50

La
ye

r N
um

be
r

0.00000000

0.00000025

0.00000050

0.00000075

0.00000100

Fig. 13: Layer level analysis. ∆Loss on ResNet50 (cutoff at 1024 fmaps).

VIII. CNN MODEL RESILIENCE ANALYSIS

Network Level Analysis: Our evaluation methods allow us to
perform a network level resilience analysis and compare total vul-
nerability values, VCNN , of different CNNs, allowing a developer
to make an informed decision about selecting a CNN that meets the
resilience, performance, and accuracy targets. We show network-
level vulnerability results in Table III. Since we use ∆Loss to
predict Pprop, the listed values are in an arbitrary unit, but allow
for relative comparison and selection (as validated by Figure 5).
A separate small experiment can be performed to calibrate the
scale to real probabilities. These results show that some models
can be orders of magnitude more resilient than others. For example,
ResNet50 can be about 164×more resilient than AlexNet, solving
the same problem and trained on the same dataset. For a given
vulnerability target, a user may select a model that meets the desired
target directly or employ selective protection (using FILR, ILR,
or FLR) to meet the target. For example, given a vulnerability
target of 7.0×10−5, selecting ResNet50, MobileNet, or ShuffleNet
would satisfy the reliability need of the system without additional
protection via any technique. Selecting SqueezeNet or GoogleNet
would require duplicating a fraction of inferences or fmaps in ILR
or FLR, respectively, to cover the difference.

Layer Level Analysis: We perform a layer level study to
understand whether vulnerable fmaps are clustered in certain layers.
Figure 13 shows a heatmap of ResNet50’s fmap vulnerabilities
(Vfmap) computed using ∆Loss. Fmaps per layer are sorted based
onVfmap values. The darker the color, the more vulnerable the fmap.
We find that on average, a small fraction of fmaps (<33%) account
for a large percentage of a CNN’s vulnerability (>76%), and that
the vulnerable fmaps are distributed across different layers. This
reinforces our selective and granular protection strategy for CNNs,
particularly since fmap granularity enables an efficient approach
to target the most vulnerable components without overprotecting.
Additionally, we find that earlier layers in general are more
vulnerable overall, which we can attribute to the cascade effect of
an earlier computation on later layers. Intuitively, this also informs
why adversarial inputs are a big concern, and additional research
identifying the precise intersection between transient computational
errors and adversarial input errors is a promising future direction.

Error Model and Relative Vulnerability: We evaluate the
effect of three error models on vulnerability estimation (Table IV),

TABLE IV: Error Models
Name Format Quantized? Description

FP-Rand 32-Bit Floating-point No Random value from [-max, max]
FxP-Rand 8-Bit Fixed-point Yes Random, multi-bit flips
FxP-Flip 8-Bit Fixed-point Yes Random, single bit flip

0

0.2

0.4

0.6

0.8

1

1
4

9
9

7
1

4
5

1
9

3
2

4
1

2
8

9
3

3
7

3
8

5
4

3
3

4
8

1
5

2
9

5
7

7
6

2
5

6
7

3
7

2
1

7
6

9
8

1
7

8
6

5
9

1
3

9
6

1
1

0
0

9
1

0
5

7
1

1
0

5

R
e

la
ti

ve
 V

u
ln

e
ra

b
ili

ty

Feature Map

FP_Rand

FxP_Rand

FxP_Flip

(𝑽𝑪𝑵𝑵 = 0.0155)

(𝑽𝑪𝑵𝑵 = 0.0116)

(𝑽𝑪𝑵𝑵 = 0.0062)

Fig. 14: V relfmap is similar across error models, even with different
VCNN (AlexNet-ImageNet).

to study the extensibility to other number formats. FP-Rand and
FxP-Rand represent multiple bit perturbations for floating and fixed
point representations, respectively, and FxP-Flip represents a single
bit flip for INT8 format (used throughout our evaluation up to
this point). For the FP-rand model, the injected neuron value is
selected to lie within a range. The max value is set by profiling the
DNN and recording the maximum observed inference value. This
range restriction is applied to model a range detector [9], [33]. FxP-
Rand injects a random 8-bit quantized value, modeling a multi-bit
perturbation. Fig. 14 shows the cumulative relative vulnerability
(V relfmap) of the fmaps in AlexNet, where the X-axis is sorted
in descending order of V relfmap using Mismatch-12288. For the
comparison, we use the same fmap order on the X-axis, based on
FxP-Flip’s V relfmap.

Results show that an fmap’s contribution towards the total
network vulnerability is practically the same for the different error
models, with less than .0001% difference. The absolute total vulner-
ability (VCNN), however, changes with the different errors models.
FP-Rand and FxP-Rand exhibit closer network vulnerabilities, as
both models have the same dynamic range and multi-bit perturbation
error model. The VCNN is slightly lower for FxP-Rand due to the
influence of the numerical precision of the MACs (INT8) on Vorig.
FxP-Flip shows even lower VCNN , which we attribute to the less
egregious error model, i.e., a single-bit perturbation, compared to
a multi-bit perturbation with a max-value cutoff. While a limited
study, this promising result shows that our technique can be used
with various error models, as well as provide a new insight into the
granularity of protection for domain-specific resilience of CNNs.

Range Detector vs. selective replication-based protection:
The advantage of using a range detector is its very low cost. For
CNN inferences that use data formats with a large value range (e.g.,
FP32 or FP16), range detectors are highly effective in reducing
SDCs. A disadvantage of range checking is that it is ineffective
for highly quantized, state-of-the-art models that use data types
whose dynamic range is small and the neuron values span the entire
range in fault-free operations by design. The advantage of selective
protection-based techniques (e.g., FLR and ILR) is that they can
be used to mitigate errors regardless of data format and dynamic
range. A disadvantage of these techniques is that they can incur
higher overheads but can be tuned based on desired coverage or
performance overhead target as described in §VII.

10

IX. CONCLUSION

We introduce and evaluate three software-driven, tunable,
selective protection techniques for CNN resilience: feature
map level resiliency (FLR), inference level resilience (ILR),
and a combined optimization technique (FILR). We leverage
domain-specific insights to speed up resiliency analysis with the
introduction of ∆Loss as a metric, and apply our insights to mitigate
hardware error propagation in CNNs. Our results show that our
FILR can achieve very high error coverage of 99.78% for quantized
inferences. We use MAC operations for fast and portable overhead
trade-off analysis (e.g., ResNet50 requires 20.8% additional MACs),
while showing low implementation overhead on a Jetson Xavier
GPU (4.6% for ResNet50).

ACKNOWLEDGEMENTS

This work was supported in part by the ADA and C-BRIC
research centers, JUMP centers co-sponsored by SRC and DARPA.
This work is also supported by the National Science Foundation
under grants CCF 19-56374 and CCF 17-04834 and by the DAPRA
Domain-Specific System-on-Chip (DSSOC) program. This work
was largely performed while Abdulrahman Mahmoud was a grad-
uate student at the University of Illinois and an intern at NVIDIA.

REFERENCES

[1] V. Abdelzad, K. Czarnecki, R. Salay, T. Denouden, S. Vernekar, and B. Phan,
“Detecting out-of-distribution inputs in deep neural networks using an
early-layer output,” ArXiv, vol. abs/1910.10307, 2019.

[2] K. Adam, I. I. Mohamed, and Y. Ibrahim, “Analyzing the resilience of
convolutional neural networks implemented on gpus: Alexnet as a case
study,” International Journal of Electrical and Computer Engineering Systems
(IJECES), vol. 12, no. 2, 2021.

[3] ——, “A selective mitigation technique of soft errors for dnn models used
in healthcare applications: Densenet201 case study,” IEEE Access, vol. 9, pp.
65 803–65 823, 2021.

[4] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional
neural networks,” J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, Feb. 2017.

[5] R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C. Cher, and P. Bose,
“Understanding the propagation of transient errors in hpc applications,” in
SC ’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2015, pp. 1–12.

[6] F. Cappello, G. Al, W. Gropp, S. Kale, B. Kramer, and M. Snir, “Toward
Exascale Resilience: 2014 Update,” Supercomput. Front. Innov.: Int. J., 2014.

[7] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir, “Toward
exascale resilience,” Int. J. High Perform. Comput. Appl., vol. 23, no. 4, p.
374–388, Nov. 2009.

[8] C.-K. Chang, S. Lym, N. Kelly, M. B. Sullivan, and M. Erez, “Hamartia: A fast
and accurate error injection framework,” in Proceedings of the International
Conference on Dependable Systems and Networks Workshops (DSN-W).
IEEE, 2018, pp. 101–108.

[9] Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for deep
neural networks through range restriction,” in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), 2021,
pp. 1–13.

[10] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardelenben, “Binfi: An efficient
fault injector for safety-critical machine learning systems,” in Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’19, 2019.

[11] F. Conti, “Technical report: Nemo dnn quantization for deployment model,”
ArXiv, vol. abs/2004.05930, 2020.

[12] S. Di, H. Guo, R. Gupta, E. R. Pershey, M. Snir, and F. Cappello, “Exploring
properties and correlations of fatal events in a large-scale hpc system,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, no. 2, 2019.

[13] S. Feng, S. Gupta, A. Ansari, and S. Mahlke, “Shoestring: Probabilistic
soft error reliability on the cheap,” in Proceedings of the the International
Symposium on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2010, pp. 385–396.

[14] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. Mahoney, and K. Keutzer, “A survey
of quantization methods for efficient neural network inference,” ArXiv, vol.
abs/2103.13630, 2021.

[15] B. F. Goldstein, V. C. Ferreira, S. Srinivasan, D. Das, A. S. Nery, S. Kundu,
and F. M. G. França, “A lightweight error-resiliency mechanism for deep
neural networks,” in 2021 22nd International Symposium on Quality Electronic
Design (ISQED), 2021, pp. 311–316.

[16] H. Guan, L. Ning, Z. Lin, X. Shen, H. Zhou, and S.-H. Lim, “In-place
zero-space memory protection for cnn,” ArXiv, vol. abs/1910.14479, 2019.

[17] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Exploiting application-level fault equivalence to analyze application resiliency
to transient faults,” in Proceedings of the International Symposium on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2012, pp. 123–134.

[18] S. K. S. Hari, M. Sullivan, T. Tsai, and S. W. Keckler, “Making convolutions
resilient via algorithm-based error detection techniques,” IEEE Transactions
on Dependable and Secure Computing, pp. 1–1, 2021.

[19] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. Emer, “Sassifi: An
architecture-level fault injection tool for gpu application resilience evaluation,”
in 2017 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 2017, pp. 249–258.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

[21] Y. He, P. Balaprakash, and Y. Li, “Fidelity: Efficient resilience analysis
framework for deep learning accelerators,” in 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2020, pp. 270–281.

[22] S. Hong, P. Frigo, Y. Kaya, C. Giuffrida, and T. Dumitras, “Terminal brain
damage: Exposing the graceless degradation in deep neural networks under
hardware fault attacks,” in 28th USENIX Security Symposium (USENIX
Security 19), Santa Clara, CA, Aug. 2019, pp. 497–514.

[23] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and
K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters
and<1mb model size,” CoRR, vol. abs/1602.07360, 2016. [Online]. Available:
http://arxiv.org/abs/1602.07360

[24] Y. Ibrahim, H. Wang, M. Bai, Z. Liu, J. Wang, Z. Yang, and Z. Chen, “Soft error
resilience of deep residual networks for object recognition,” IEEE Access, 2020.

[25] International Organization for Standardization, “Road vehicles – Functional
safety,” https://www.iso.org/standard/43464.html, 2011.

[26] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient
integer-arithmetic-only inference,” 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713, 2018.

[27] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian,
J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young,
Z. Zhou, and D. Patterson, “Ten lessons from three generations shaped google’s
tpuv4i : Industrial product,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021, pp. 1–14.

[28] P. Kogge, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, J. Hiller, S. Keckler, D. Klein, and R. Lucas, “Exascale
computing study: Technology challenges in achieving exascale systems,”
Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), Techinal Representative, vol. 15, 01 2008.

[29] A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” CoRR, vol. abs/1404.5997, 2014. [Online]. Available:
http://arxiv.org/abs/1404.5997

[30] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson, “Ipas:
Intelligent protection against silent output corruption in scientific applications,”
in Proceedings of the International Symposium on Code Generation and
Optimization (CGO). IEEE, 2016, pp. 227–238.

[31] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2009, pp. 502–506.

[32] S. Levy, K. B. Ferreira, N. DeBardeleben, T. Siddiqua, V. Sridharan, and
E. Baseman, “Lessons learned from memory errors observed over the lifetime
of cielo,” in SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis, 2018, pp. 554–565.

[33] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W.
Keckler, “Understanding Error Propagation in Deep Learning Neural Network
(DNN) Accelerators and Applications,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’17. New York, NY, USA: ACM, 2017, pp. 8:1–8:12.

[34] G. Li, K. Pattabiraman, S. K. S. Hari, M. Sullivan, and T. Tsai, “Modeling
soft-error propagation in programs,” in Proceedings of the International
Conference on Dependable Systems and Networks (DSN), 2018.

11

[35] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou,
“Understanding the Propagation of Hard Errors to Software and Implications
for Resilient Systems Design,” in Proc. of International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), 2008.

[36] S. R. Li, J. Park, and P. T. P. Tang, “Enabling sparse winograd convolution
by native pruning,” ArXiv, vol. abs/1702.08597, 2017.

[37] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga, C. Frost, and
P. Rech, “Selective hardening for neural networks in fpgas,” IEEE Transactions
on Nuclear Science, vol. 66, no. 1, pp. 216–222, 2019.

[38] L. Liu and J. Deng, “Dynamic deep neural networks: Optimizing
accuracy-efficiency trade-offs by selective execution,” CoRR, vol.
abs/1701.00299, 2017. [Online]. Available: http://arxiv.org/abs/1701.00299

[39] Q. Lu, M. Farahani, J. Wei, A. Thomas, and K. Pattabiraman, “Llfi: An
intermediate code-level fault injection tool for hardware faults,” in 2015 IEEE
International Conference on Software Quality, Reliability and Security. IEEE,
2015, pp. 11–16.

[40] N. Ma, X. Zhang, H. Zheng, and J. Sun, “Shufflenet V2: practical guidelines
for efficient CNN architecture design,” CoRR, vol. abs/1807.11164, 2018.
[Online]. Available: http://arxiv.org/abs/1807.11164

[41] A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari, “Pytorchfi: A runtime perturbation
tool for dnns,” in 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), 2020, pp. 25–31.

[42] A. Mahmoud, S. Hari, C. W. Fletcher, S. Adve, C. Sakr, N. R. Shanbhag,
P. Molchanov, M. B. Sullivan, T. Tsai, and S. Keckler, “Hardnn: Feature map
vulnerability evaluation in cnns,” ArXiv, vol. abs/2002.09786, 2020.

[43] A. Mahmoud, S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Optimizing software-directed instruction replication for gpu error detection,” in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis, ser. SC ’18, 2018.

[44] A. Mahmoud, R. Venkatagiri, K. Ahmed, S. Misailovic, D. Marinov, C. W.
Fletcher, and S. V. Adve, “Minotaur: Adapting software testing techniques for
hardware errors,” in Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ser. ASPLOS ’19, New York, NY, USA, 2019, p. 1087–1103.

[45] F. P. Miller, A. F. Vandome, and J. McBrewster, Amazon Web Services. Alpha
Press, 2010.

[46] S. Mittal, “A survey on modeling and improving reliability of dnn algorithms
and accelerators,” Journal of Systems Architecture, vol. 104, p. 101689, 2020.

[47] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient transfer learning,” CoRR,
vol. abs/1611.06440, 2016. [Online]. Available: http://arxiv.org/abs/1611.06440

[48] NVIDIA, “NVIDIA Tesla V100 GPU Accelerator,”
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-
datasheet-letter-fnl-web.pdf, 2018.

[49] NVIDIA, “”Improving INT8 Accuracy Using Quantization
Aware Training and the NVIDIA Transfer Learning Toolkit”,”
https://developer.nvidia.com/blog/improving-int8-accuracy-using-
quantization-aware-training-and-the-transfer-learning-toolkit/, Aug 2020.

[50] ——, “”NVIDIA Data Center Deep Learning Product Performance”,”
https://developer.nvidia.com/deep-learning-performance-training-inference,
Nov 2020.

[51] E. Ozen and A. Orailoglu, “Low-cost error detection in deep neural network
accelerators with linear algorithmic checksums,” Journal of Electronic Testing,
pp. 1–16, 2020.

[52] ——, “Boosting bit-error resilience of dnn accelerators through median
feature selection,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 11, pp. 3250–3262, 2020.

[53] ——, “Just say zero: Containing critical bit-error propagation in deep
neural networks with anomalous feature suppression,” in 2020 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), 2020, pp. 1–9.

[54] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,”
in NIPS-W, 2017.

[55] K. Pattabiraman, G. P. Saggese, D. Chen, Z. Kalbarczyk, and R. K. Iyer,
“Dynamic Derivation of Application-Specific Error Detectors and their
Implementation in Hardware,” in Proc. of European Dependable Computing
Conference (EDCC), 2006.

[56] L. Perez and J. Wang, “The effectiveness of data augmentation in image
classification using deep learning,” CoRR, vol. abs/1712.04621, 2017. [Online].
Available: http://arxiv.org/abs/1712.04621

[57] L. Ping, J. Tan, and K. Yan, SERN: Modeling and Analyzing the Soft Error
Reliability of Convolutional Neural Networks, New York, NY, USA, 2020,
p. 445–450.

[58] PyTorch, “Pytorch classification models,” ”https://pytorch.org/docs/stable/
torchvision/models.html”, 2019.

[59] V. Rajagopal, C. K. Ramasamy, A. Vishnoi, R. N. Gadde, N. R. Miniskar, and
S. K. Pasupuleti, “Accurate and efficient fixed point inference for deep neural
networks,” in 2018 25th IEEE International Conference on Image Processing
(ICIP), 2018, pp. 1847–1851.

[60] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet
Large Scale Visual Recognition Challenge,” International Journal of Computer
Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[61] Safety Research and Strategies, Inc., “Toyota unintended acceleration
and the big bowl of ’spaghetti’ code,” ”http://www.safetyresearch.
net/blog/articles/toyota-unintended-acceleration-and-big-bowl-
%E2%80%9Cspaghetti%E2%80%9D-code”, 2013.

[62] S. Sahoo, M.-L. Li, P. Ramchandran, S. V. Adve, V. Adve, and Y. Zhou,
“Using Likely Program Invariants to Detect Hardware Errors,” in Proc. of
International Conference on Dependable Systems and Networks (DSN), 2008.

[63] C. Sakr, Y. Kim, and N. R. Shanbhag, “Analytical guarantees on numerical
precision of deep neural networks,” in ICML, 2017.

[64] C. Sakr and N. R. Shanbhag, “An analytical method to determine minimum per-
layer precision of deep neural networks,” 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1090–1094, 2018.

[65] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen, “Inverted
residuals and linear bottlenecks: Mobile networks for classification, detection
and segmentation,” CoRR, vol. abs/1801.04381, 2018.

[66] C. Schorn, A. Guntoro, and G. Ascheid, “Accurate neuron resilience prediction
for a flexible reliability management in neural network accelerators,” in 2018
Design, Automation Test in Europe Conference Exhibition (DATE), March
2018, pp. 979–984.

[67] C. Schorn, A. Guntoro, and G. Ascheid, “An efficient bit-flip resilience
optimization method for deep neural networks,” in Design, Automation & Test
in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29,
2019, 2019, pp. 1507–1512.

[68] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation
for deep learning,” Journal of Big Data, vol. 6, pp. 1–48, 2019.

[69] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[70] Z. Song, B. Fu, F. Wu, Z. Jiang, L. Jiang, N. Jing, and X. Liang, “Drq:
Dynamic region-based quantization for deep neural network acceleration,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 1010–1021.

[71] C. R. Systems. (2012) Sample size calculator. Website. [Online]. Available:
https://www.surveysystem.com/sscalc.htm

[72] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer, Efficient Processing of Deep
Neural Networks, 2020.

[73] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR,
vol. abs/1409.4842, 2014.

[74] E. Talpes, D. D. Sarma, G. Venkataramanan, P. Bannon, B. McGee, B. Floering,
A. Jalote, C. Hsiong, S. Arora, A. Gorti, and G. S. Sachdev, “Compute solution
for tesla’s full self-driving computer,” IEEE Micro, vol. 40, no. 2, pp. 25–35,
2020.

[75] L. Tan and N. DeBardeleben, “Failure analysis and quantification for
contemporary and future supercomputers,” ArXiv, vol. abs/1911.02118, 2019.

[76] C. Torres-Huitzil and B. Girau, “Fault and error tolerance in neural networks:
A review,” IEEE Access, 2017.

[77] R. Venkatagiri, A. Mahmoud, S. K. S. Hari, and S. V. Adve, “Approxilyzer:
Towards a Systematic Framework for Instruction-level Approximate
Computing and its Application to Hardware Resiliency,” in Proc. of
International Symposium on Microarchitecture (MICRO), 2016, pp. 1–14.

[78] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik, B. Keller,
A. Klinefelter, N. Pinckney, P. Raina, Y. Zhang, B. Zimmer, W. J. Dally,
J. Emer, S. W. Keckler, and B. Khailany, “Magnet: A modular accelerator
generator for neural networks,” in 2019 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2019, pp. 1–8.

[79] N. J. Wang and S. J. Patel, “ReStore: Symptom-Based Soft Error Detection in
Microprocessors,” IEEE Transactions on Dependable and Secure Computing,
vol. 3, no. 3, July-Sept 2006.

[80] WikiChip, “FSD Chip - Tesla - WikiChip,”
https://en.wikichip.org/wiki/tesla car company/fsd chip, 2019.

[81] J. . Zhang, “Towards energy-efficient and reliable deep learning inference,”
Ph.D. dissertation, 2020.

12

	Introduction
	Background and Related Work
	FLR Design Overview
	FLR Target Granularity
	FLR Vulnerability Estimation
	FLR Selective Protection

	ILR Design Overview
	ILR Target Granularity
	ILR Inference Vulnerability
	ILR Selective Protection

	FILR Resiliency: ILR + FLR
	Evaluation Methodology
	Analysis Set (AS) and Deployment Set (DS)
	FLR Evaluation Methodology
	ILR Evaluation Methodology
	FILR Evaluation Methodology

	Results
	FLR Results and Analysis
	ILR Results and Analysis
	FILR Results and Analysis
	Errors Not Captured by INT8 Range Detectors

	CNN Model Resilience Analysis
	Conclusion
	References

