
Speculative Privacy Tracking (SPT): Leaking Information From
Speculative Execution Without Compromising Privacy

Rutvik Choudhary

UIUC, USA

Jiyong Yu

UIUC, USA

Christopher W. Fletcher

UIUC, USA

Adam Morrison

Tel Aviv University, Israel

ABSTRACT

Speculative execution attacks put a dangerous new twist on infor-

mation leakage through microarchitectural side channels. Ordinar-

ily, programmers can reason about leakage based on the program’s

semantics, and prevent said leakage by carefully writing the pro-

gram to not pass secrets to covert channel-creating “transmitter”

instructions, such as branches and loads. Speculative execution

breaks this defense, because a transmitter might mis-speculatively

execute with a secret operand even if it can never execute with said

operand in valid executions.

This paper proposes a new security definition that enables hard-

ware to provide comprehensive, low-overhead and transparent-to-

software protection against these attacks. The key idea is that it is
safe to speculatively execute a transmitter without any protection if
its operands were already leaked by the non-speculative execution.
Based on this definition we design Speculative Privacy Tracking

(SPT), a hardware protection that delays execution of every trans-

mitter until it can prove that the transmitter’s operands leak during

the program’s non-speculative execution. Using a novel dynamic

information flow analysis microarchitecture, SPT efficiently proves

when such an operand declassification implies that other data be-

comes declassified, which enables other delayed transmitters to be

executed safely.

We evaluate SPT on SPEC2017 and constant-time code bench-

marks, and find that it adds only 45%/11% overhead on average

(depending on the attack model) relative to an insecure processor.

Compared to a secure baseline with the same protection scope, SPT

reduces overhead by an average 3.6×/3×.

1 INTRODUCTION

Speculative execution attacks [16, 22, 37, 41–43, 47, 62] have shaken

the foundations of processor security. These attacks coerce tran-
sient, i.e., doomed-to-squash, instructions to leak secret program

data over microarchitectural covert channels (e.g., cache state [78]).

In the worst case, these attacks can leak all of program memory.

For example, the now-famous Spectre V1 bounds-bypass exploit—

if (i<N) transmit(A[i]);—leaks data at an attacker-controlled

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MICRO ’21, October 18–22, 2021, Virtual Event, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00

https://doi.org/10.1145/3466752.3480068

address &A[i] by mis-training the directional branch predictor and

passing out-of-bounds data to a transmit instruction (or transmitter).
The transmitter’s execution creates operand-dependent hardware

resource changes that can be observed by an attacker through a

microarchitectural covert channel, e.g., cache contention [45, 78].

Ideally, a hardware defense for speculative execution attacks

should prevent all secret data (whether in registers and data mem-

ory) from leaking through speculative execution with low over-
head, and do so while being transparent to software. Here, all prior
work runs into a difficult problem. Since hardware alone does not

understand program semantics, it does not know what program

data is secret and is forced to have incomplete protection or to be

conservative. For example, prior work STT [83] reduces protec-

tion scope, treating only “speculatively-accessed data” as secret;

prior work NDA [74] delays all transmitters until they are non-

speculative—regardless of what program data actually is secret.

This leads to high overhead, as protection has to be applied where

it is not needed [2, 11, 39, 58, 59, 69, 74, 82, 83].

To address these problems, software can explicitly specify what

is secret and information flow tracking mechanisms can enable

protection only for that secret data [61, 80]. But such an approach

creates other issues, such as requiring software/ISA changes which

break backwards compatibility.

This paper addresses the above challenge by proposing a new,

more precise, definition for what registers and data memory are

secret, that hardware can enforce in a software-transparent fashion.

The key idea is that any data that can leak through the program’s
non-speculative execution should not be treated as secret during the
program’s speculative execution. In other words, there is no need

to protect what can inherently leak anyway. Among other use

cases, this idea enables seamless protection for existing constant-

time/data-oblivious code. Such code works around existing ISAs’

lack of support for specifying secrets by avoiding passing secrets

to transmit instructions [13, 14, 20, 23, 81]. Currently, however,

constant-time code only prevents non-speculative leakage and is

vulnerable to speculative leakage, because a transmitter might mis-

speculatively execute with a secret operand even if it can never

execute with said operand in valid executions [16, 19, 81].

We show a motivating example of our idea in Figure 1. Re-

call, transmit(...) leaks its operands. Hence, val leaks non-

speculatively because the code on Line 2 eventually retires. Thus,

our definition allows for disabling protection when the program’s

speculative execution reaches Line 4. For concreteness, suppose

we apply our definition on top of NDA. Normally, NDA would be

forced to delay the execution of Line 4 until the branch resolves. Our

607

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3466752.3480068

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Rutvik Choudhary, Jiyong Yu, Christopher W. Fletcher, and Adam Morrison

1 val = ...

2 transmit(val);

3 if (p) {

4 transmit(val);

5 }
Figure 1: transmit(...) refers

to any transmit instruction,

one whose execution creates

a covert channel as a function

of its operands. The data val is

leaked non-speculatively.

definition would allow Line 4 to

execute without delay, since val
leaked earlier in the program’s

non-speculative execution. Im-

portantly, the hardware can de-

termine what data can leak non-

speculatively, without software

assistance, by recording which

transmit instructions retire and

conceptually “untainting” those

transmit instructions’ operands.

We extend and generalize this idea into a complete frame-

work that aggressively disables protection for data that can be

inferred based on non-speculative leakage and the attacker’s other

prior knowledge. For example, given a simple AND instruction

out = AND(in1, in2), if the attacker learns out = 1 because out is
leaked non-speculatively and the attacker can deduce from its prior

(public) knowledge that the AND operator was executed, it can

deduce that in1 = in2 = 1 because the only way the output of AND

can be 1 is if the inputs are both 1. This implies it is safe to disable

protection for both in1 and in2 since the attacker can now infer

them anyway. This is akin to applying GLIFT-like [70] ideas in the

backwards direction. It similarly generalizes to other types of oper-

ations (e.g., OR, XOR, ADD) and can be applied compositionally to

more complex dataflow graphs.

Putting it all together, we propose Speculative Privacy Tracking
(SPT), a microarchitectural implementation of our framework that

is optimized to prevent data from being leaked due to speculative

execution. At a high level, SPT maintains taint for registers and

applies a protection policy for transmitters with tainted operands,

e.g., delaying their execution [11, 74, 83] or performing their exe-

cution in a fashion that does not create operand-dependent covert

channels [82]. We add logic in hardware that tracks when data is

transmitted over non-speculative covert channels and apply our

novel “untaint” algebra to aggressively disable protection for other

data in both registers and memory—whenever we can prove that

such data can now be inferred by the attacker, given its prior knowl-

edge and previous non-speculatively transmitted data. Last but not

least, SPT provides a strong security property: data that does not

leak in a non-speculative execution does not leak in a specula-

tive execution. This enables software to more easily reason about

what data it leaks, i.e., without having to worry about speculative

execution.

This paper makes the following contributions:

(1) We propose a novel framework for tracking information

flows when data becomes declassified (in our setting: leaked

non-speculatively).

(2) We propose SPT, a novel hardware defense that applies the

above framework to efficiently and comprehensively miti-

gate speculative execution attacks.

(3) We evaluate SPT on SPEC2017 and constant-time code bench-

marks, and find that it adds only 45%/11% overhead on aver-

age (depending on the attack model) relative to an insecure

processor. Compared to a secure baseline with the same pro-

tection scope, SPT reduces overhead by an average 3.6×/3×.

2 BACKGROUND

2.1 Non-speculative Side/Covert Channels

There is significant literature on how non-speculative execution

creates covert/side channels in microarchitecture. For example, at-

tacks have been demonstrated that create program data-dependent

contention on structures ranging from caches [53, 77–79, 79], to

TLBs [29], to page tables [73, 75], to the DRAM [54], to branch

predictors [5, 27], and others [8, 10, 23, 26, 30, 31, 50, 66]. From

a side channel perspective, these can be grouped into three cate-

gories: those that leak a function of the program’s memory address

pattern [23, 29, 50, 53, 54, 66, 73, 75, 77–79, 79], control-flow deci-

sions [5, 8, 27], and operands of so-called “variable time” instruc-

tions [10, 23, 30]. In our terminology, this is equivalent to saying

that memory, control-flow and variable time arithmetic instructions

are all considered transmitter instructions.
1

2.2 Speculative Taint Tracking

We build SPT on top of Speculative Taint Tracking (STT) [83], and

hence describe STT here. We note that it is possible to build SPT

on top of other schemes. However, whichever scheme is used must

satisfy an important security property with respect to what data

is contained in the ROB in any given clock cycle (which STT does

satisfy). We elaborate in Section 2.2.2.

Speculative Taint Tracking (STT) is a framework that protects

speculatively-accessed data—defined to be data read by transient,

i.e., doomed-to-squash, loads (known as access instructions)—from
being leaked over any possible microarchitectural covert channel.
By contrast, STT does not protect non-speculatively-accessed data,
which is defined to be data that is non-speculatively written to the

register file. Section 3 expands on this limitation.

2.2.1 STT Details. STT monitors how speculatively-accessed data

flows through the pipeline and applies protections when that data

is at risk of getting transmitted to an attacker. At a high level, STT

implements two policies. First, that transmit instructions (Section 1)

should not execute until their operands are only a function of non-

speculative-accessed data. Second, that the program counter should

only be a function of non-speculatively-accessed data. We now

discuss these in more detail.

Covert Channels. STT classifies covert channels into two classes:

explicit and implicit channels.
2
In an explicit channel, data is di-

rectly passed to a transmitter instruction. For example, loads are

transmitters, as their execution makes address-dependent changes

to the cache state; hence, passing an address to, and executing, a

load forms an explicit channel. In an implicit channel, data indi-
rectly influences how (or that) an instruction or several instructions

execute, and these changes in resource usage reveal the data. For

example, a branch instruction, whose outcome determines subse-

quent instructions and thus whether some functional unit is used.

Such branch-based implicit channels are used by NetSpectre [62]

1
To be consistent with terminology used in prior work—see Section 2.2—we will not

refer to branches as transmitters, but they conceptually can be viewed that way.

2
Fundamentally, a microarchitectural covert channel can communicate a value when

explicit information flow at the gate level changes as a function of that value [70, 81].

The abstraction proposed by STT provides a way to reason about when this will occur

due to different instructions and microarchitectural optimizations.

608

Speculative Privacy Tracking (SPT) MICRO ’21, October 18–22, 2021, Virtual Event, Greece

and SmotherSpectre [16] to trigger SIMD unit usage and port con-

tention, respectively.

STT further characterizes implicit channels by when they leak

data and what type of “branch” operation they feature. An implicit

channel can leak either when a prediction is made (e.g., a branch

prediction) or when a resolution occurs (e.g., when a branch re-

solves). An implicit channel can feature either an explicit branch,
which is a control-flow instruction, or an implicit branch, which
is a conceptual branch that occurs due to hardware mechanisms

that change how instructions execute. For example, store-to-load

forwarding can be viewed as an implicit branch that checks for an

address alias to determine if a load will access the cache.

Tracking S-Taint. At a high level, STT features a taint propaga-

tion mechanism similar to prior work (e.g., [68]), and proposes a

novel “untaint” mechanism to disable protection as soon as doing

so is safe. For the rest of the paper, we refer to STT’s taint as s-taint
(for speculative taint) to differentiate it from the distinct tainting

mechanism proposed in this work. Specifically: STT s-taints the
output register of a speculative access instruction. The microar-

chitecture defines when to s-untaint the output of a speculative

access instruction. This point in time depends on the attack model:

in the Spectre model (which covers control-flow speculation), it

is when all older control-flow instructions have resolved, and in

the Futuristic model (which covers all forms of speculation), it is

when the access instruction cannot be squashed. STT propagates

s-taint/s-untaint information: the output register of a non-access in-

struction is s-tainted if and only if it has an s-tainted input register.

S-Taint propagation piggybacks on the existing register renaming

logic in an out-of-order core, and is therefore fast. S-Untainting all

dependencies of an access instruction that becomes non-speculative

is more difficult, but STT has a fast mechanism to s-untaint in a

single cycle. STT does not maintain s-taint/s-untaint information

in the cache/memory system, only in the physical (non-architected)

register file.

Implications of S-Untainting. S-Untainting the output of an ac-

cess instruction (i.e., a load) occurs only if the execution of that

instruction corresponds to a correct speculation for the given at-

tack model. Consequently, once all inputs of a transmitter are

s-untainted, the transmitter becomes safe and its inputs can be

revealed, as they are guaranteed not to originate from a mis-

speculated execution.

Protection Policies. Based on s-taint information, STT blocks

all covert channels by applying a uniform rule across each type,

illustrated in the following table:

Explicit Channels are blocked by delaying the execution of

transmit instructions until their operands are s-untainted.

Prediction-based Implicit Channels are eliminated by pre-

venting s-tainted data from affecting the state of any predictor

structure.

Resolution-based Implicit Channels are eliminated by delay-

ing the effects of branch resolution until the (explicit or implicit)

branch’s predicate becomes s-untainted.

2.2.2 Key requirement: ROB contents are independent of tainted
data. STT’s implicit channel rules imply a powerful property,

namely that the program counter register (PC), and by extension

the ROB contents, does not depend on speculatively-accessed data.

More generally, STT ensures that the PC and ROB contents are in-

dependent of s-tainted data. STT enforces this invariant efficiently,

without needing to delay execution of instructions following an

s-tainted branch.

3 MOTIVATION: PROTECTING

NON-SPECULATIVE SECRETS

Efficient comprehensive defenses from speculative execution at-

tacks [11, 74, 82, 83] block all leakage of speculatively-accessed data,

i.e., data produced (written to a register) by a speculative instruc-

tion. This approach blocks universal read gadgets [48]—i.e., leakage

of arbitrary program memory accessed by a transient instruction

such as an out-of-bounds array access. This approach does not,

however, protect data once the instruction that produced it be-

comes non-speculative—that is, non-speculatively-accessed data. For

instance, STT allows speculative transmitters whose operands are

non-speculative to execute without protection. This precludes pro-

tecting important classes of privacy-critical programs, as discussed

next.

Motivating example: constant-time code. Constant-time (or

data-oblivious) code [9, 23, 81] is a pervasive coding discipline for

computing over secret data without leaks. Constant-time code reads

secrets (plaintext, cipher keys, personal information, etc.) from

memory into non-speculative state and performs its computation

without passing said secrets as arguments to control-flow or trans-

mit instructions [6, 10, 13, 14, 25, 28, 35, 49, 51, 52, 55, 60, 63, 71, 85].

Unfortunately, the constant-time technique assumes correct ex-

ecution semantics and does not prevent speculative leakage [16,

19, 81]. For instance, consider a static transmit(rX) instruction in

constant-time code. Although the transmitter’s operand would

never contain secret data in a correct execution, mis-speculation

from a state in which rX architecturally (non-speculatively) holds

a secret can cause execution to jump to the transmitter’s address,

resulting in the transmitter executing and leaking the secret. This

can happen due to misprediction of loop branches [81], function

returns [19], indirect calls [16], etc.

Schemes like STT do not block such attacks on constant-time

code, because the leaked data was accessed non-speculatively. A

sufficient approach to block these attacks is to expand protection

to all non-speculatively-accessed data. But this leads to high over-

head, e.g., due to delaying every transmitter until it becomes non-

speculative [74]—even if that transmitter leaks what is semantically

public data. Software could alternatively specify what data requires

protection, but this would require software and ISA changes, which

breaks backwards compatibility.

SPT’s core observation is that program semantics implicitly pro-

vide information about what data should be protected speculatively.

These are non-speculative secrets, defined as non-speculatively-

accessed data that is never transmitted over a non-speculative

covert channel. SPT’s goal is to transparently—without modify-

ing the software or ISA—infer what is non-speculatively secret and

to only apply protection to non-speculative secrets as opposed to

all non-speculatively-accessed data.

609

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Rutvik Choudhary, Jiyong Yu, Christopher W. Fletcher, and Adam Morrison

4 ATTACK/THREAT MODEL

We assume an adversary that can monitor any speculative or non-

speculative microarchitectural side/covert channel and arbitrarily

induce speculative execution from anywhere in the system. For

instance, the adversarymay operate fromwithin the victim program

(SameThread [62]), an SMT sibling (SMT), or another processor core
(CrossCore), and can monitor the channels described in Section 2.1,

plus carry out any Spectre attack.

We protect both speculatively-accessed data and non-speculative

secrets (Section 3). That is, our protection scope is broader than

STT’s. We explicitly do not protect any data transmitted over a

non-speculative covert/side channel, and use information regarding

what data leaks in this way to dramatically improve performance.

5 IMPLICATIONS OF DECLASSIFICATION

As discussed in Section 1, the key idea in this paper is that when

data is leaked over a non-speculative covert channel, it should also

be allowed to leak over speculative covert channels (i.e., its protec-

tion should be disabled). This is related to a more general concept

in information flow called declassification [57], which provides a

framework for explicitly downgrading (leaking) certain values and

analyzing the resulting security implications. Using this framework,

the first transmitter in Figure 1 (Line 2) can be conceptualized as

declassify(val), indicating that—due to non-speculative leakage

being out of scope—we have explicitly downgraded the security

level of val from private to public.
3

We make a key observation that when a value becomes declassi-

fied, it often results in a ripple effect where the attacker can deduce

additional values while not actually learning any “new” information

beyond the declassified value. As a very simple example, suppose

we run the public program r2 = r1; declassify(r2); and r1 is private.
Because r2 was declassified and the program was public, i.e., the

attacker knows r2 is just a copy of r1, the attacker can now deduce

r1. In short, when an attacker learns something new, it can use

that new information plus its prior knowledge to try and deduce

additional information.

The above has important implications for efficient defenses. For

example, if the defense is aware that the declassification occurred, it

can stop trying to protect other information that it knows can now

be inferred by the attacker. In short, there is no reason to protect

r1 once r2 has been declassified.

The rest of this section develops a novel “untaint” algebra that

expands on this idea. Note, this taint is distinct from STT’s s-taint

(Section 2.2). We will implement this algebra in hardware, in the

context of mitigating speculative execution attacks, in the later

sections of the paper.

To explain ideas, we consider examples in terms of how infor-

mation flows through boolean operations. (Later in the paper, we

will replace boolean operations with dynamic instructions.) Similar

to other dynamic information flow schemes [70, 81], we assume

data is either public (untainted) or private (tainted), representing

“tainted” as logic 1. We use the terms value and taint to represent a

data value and its taint, respectively.

3
Note that declassify(...) is shown in the style of a software function to make de-

classifications clear in the exposition. All declassifications will be performed by the

hardware, transparent to the software.

in1 in2

out

out outt

0 0

0 1

1 0

1 1

in1 in2

? ?

? ?

1 1

? ?

Figure 2: (Left) AND gate example. (Right) Truth table for informa-

tion flow in the backwards direction, using the AND gate as an ex-

ample. outt denotes the taint on out. The key takeaway is that when

the output becomes untainted, e.g., due to a declassification event,

we can deduce in1 = in2 = 1 if out = 1.

5.1 Forward Information Flow

To start, consider a simple 2-input AND gate, with input bits in1
and in2, output bit out as shown in Figure 2. The question is: under

what circumstances is the output tainted? The goal is to mark

the output untainted whenever possible, to “improve performance”

(akin to disabling protection) but without revealing any information

about tainted data beyond what can be inferred using prior (public)

information.

The generic answer is: the output is untainted iff the OR of the

input taint bits is 0, i.e., neither input is tainted. Prior work on

GLIFT [70] recognized that when the semantics of the AND opera-

tion are taken into account (what we refer to as the attacker’s “prior

knowledge”, in the above discussion), the output can be untainted

more aggressively.

For example, suppose input in2 is tainted. If the other input in1
is 0 and untainted, it is “public knowledge” that the output will

be 0 (because 0 & in2 = 0). Hence, it is safe to untaint the output.

However, if in1 is 1 and untainted, the output becomes a function

of in2 (because 1 & in2 = in2). Hence, we must keep the output

tainted. Finally, in the case where both inputs are tainted, we clearly

have to mark the output tainted.

Now, suppose we add support for declassification. This enables

us to re-apply the GLIFT rules dynamically. For example, if in1 and
in2 are initially tainted and in1 is later declassified and its value

is 0, we can dynamically re-apply the above rules and untaint the

output.

5.2 Backward Information Flow

Even more interestingly, the above observation about declassifica-

tion also works in the backwards direction, enabling a novel untaint

operation that flows backwards. Consider the AND gate as before.

Suppose the output of the AND gate is 1 and tainted. If the output

becomes declassified/untainted, we can use that information plus

our knowledge of AND gate semantics to infer that in1 = in2 = 1.

Cases where the attacker can deduce inputs from outputs in this

way are shown in Figure 2 (note, when the output is tainted, we

cannot use/know its value to deduce information about the inputs).

This idea can also simultaneously take into account information

about both inputs and outputs. For example, suppose in1 and in2
are tainted and in1 = 0, in2 = 1. If the output becomes untainted,

we cannot untaint the inputs because it could have been the case

that either (or both) of in1 or in2were 0. On the other hand, suppose
that both the output and in2 become untainted. In that case, we can

610

Speculative Privacy Tracking (SPT) MICRO ’21, October 18–22, 2021, Virtual Event, Greece

in2 = (1, 0)

in0 = (0, 1 0)
t0 = (0, 1 0)

out = (0, 1 0)

1

2
3

in1 = (0, 1 0)

Figure 3: Backwards information flow through a composition of op-

erators. Each wire is a tuple (value, taint). Strikethrough on taint in-

dicates a declassification or that the value can now be inferred due

to operator semantics and declassifications. The flow of untaint is

given by the red backwards arrow.

now untaint in1 because out = 0 ∧ in2 = 1 → in1 = 0 due to the

semantics of AND.

The above concepts generalize to the other boolean operations

such as OR, XOR, NOT, etc., enabling a new untaint algebra in the

backwards direction.

5.3 Composition to complex dataflow graphs

Beyond the simple AND operator, the above concepts extend to

compositions of operators. For example, Figure 3 shows our AND

gate example, where one of the inputs to the AND gate is the output

of an OR gate. The same ideas in propagating untaint forwards and

backwards apply. For example, suppose t0 is initially tainted, in2
is initially untainted and out is initially tainted. If out becomes

untainted due to a declassification 1○, we can now infer that t0 = 0

because in2 = 1 ∧ out = 0 ∧ outt = in2t = 0 and thus untaint t0 2○.

Now that t0 is untainted, we can further back-propagate untaint

through the OR gate because if the output of OR is 0, it must be the

case that the inputs to the OR are 0 3○.

6 SPECULATIVE PRIVACY TRACKING

Building off the novel taint algebra introduced in the previous sec-

tion, Speculative Privacy Tracking (SPT) is a hardware protection

scheme that comprehensively, transparently, and efficiently elimi-

nates novel microarchitectural leakage from speculative execution—

i.e., leakage of data which the non-speculative program execution

does not leak. SPT’s security guarantee is detailed in Section 6.2.

SPT “taints” data considered secret and tracks information flow

from tainted data to transmit and control flow instructions (Sec-

tion 6.3). Speculative transmit instructions with tainted operands

are considered unsafe and SPT applies a protection policy to them,

e.g., delaying their execution. Speculative control-flow instructions

are protected using STT’s principles for blocking implicit channels

(Section 6.4). SPT treats a transmit/branch instruction becoming

non-speculative—and thus non-speculatively leaking its operands—

as a declassification of the operands, which allows SPT to apply

the ideas of Section 5 to untaint the operands and data that can be

inferred from them (Sections 6.4–6.7). Speculative transmit instruc-

tions whose operands become untainted as a result of this process

can execute without protection, thereby improving performance.

6.1 Baseline Microarchitecture Requirements

As with prior schemes that block all microarhictectural covert chan-

nels [11, 74, 83], SPT requires themicroarchitecture to identify trans-

mit and control-flow instructions, and for each such instruction

type, which of its operands get “leaked” as a result of its execution.

That is, which operands cause operand-dependent resource usage

that can reveal the operand (partially or fully) when the instruction

executes. Like STT, SPT requires the microarchitecture to identify

implicit branches and their predicates.

6.2 Security Property

SPT’s goal is to prevent any program data—whether in memory

or registers—that is not leaked by the non-speculative execution

from leaking as a result of mis-speculated execution. We consider

data to have leaked if some function of it is transmitted over a

microarchitectural covert channel—i.e., gets passed as an operand to

a transmit or control-flow instruction (Section 2.1). In the following,

we formally define SPT’s security guarantee.

Given an execution E of a microarchitecture, we define data as

secret if there is no dataflow from it to an operand of a transmit or

control-flow instruction, whose execution leaks that operand, either

partially or fully. (By “dataflow” we refer to flow through registers,

memory (across loads and stores), or a combination of both.) This

definition of “secret” can be applied to a microarchitecture’s non-
speculative and speculative executions, i.e., the executions induced
by retired instructions or by all (including transient) instructions,

respectively. Based on these definitions, we define the security

property provided by SPT:

Definition 1 (Security). If data D is secret with respect to
the non-speculative execution, then D is secret with respect to the
speculative execution.

Because SPT’s security property guarantees that any data which

is secret with respect to the non-speculative execution does not

get leaked as a result of speculative execution, it encompasses com-

prehensive protection [11, 74, 83] (against any microarchitectural

channel) of both speculatively-accessed data and non-speculative

secrets (Section 3) from all leakage introduced by speculative ex-

ecution. Speculatively-accessed data (STT’s focus) is “secret with

respect to the non-speculative execution” because it is not even

accessed, let alone leaked, by the non-speculative execution. Non-

speculative secrets, which are additionally not leaked by the non-

speculative execution, are by definition “secret with respect to the

non-speculative execution.” Both types of data are thus covered by

SPT’s security guarantee.

Software does not specify what is secret. SPT and its security

definition do not require software to explicitly identify secrets to

the hardware. All that SPT requires to block data from being leaked

as a result of mis-speculation is for that data to not be leaked by

the non-speculative execution of the program. This property has

several important implications.

First, it means that SPT can seamlessly protect existing constant-

time programs that were written to not leak specific data over

non-speculative covert channels (Section 3). SPT provides the guar-

antee that standard reasoning, without considering invalid mis-

speculated executions, can be used to protect secrets even from

speculative leakage.

Second, SPT’s security definition implies that future mechanisms

for annotating data as secret by software are orthogonal and com-

plementary to SPT. On one hand, if the software can define certain

611

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Rutvik Choudhary, Jiyong Yu, Christopher W. Fletcher, and Adam Morrison

data as public to the hardware, then SPT can use that information

to disable protection of such data even if it does not leak through

the program’s non-speculative execution. On the other hand, if the

software defines certain data to be secret and the hardware imple-

ments mechanisms to prevent it from leaking over non-speculative

covert channels, SPT will ensure that it, additionally, does not leak

over speculative covert channels.

Section 6.9 discusses additional aspects of our security property.

6.3 Taint Tracking, Propagation, & Protection

SPT tracks whether data is used as an argument for a trans-

mit/branch instruction in the program’s non-speculative execution,

so that it can determine whether that data should be protected.

Following Definition 1, data that has not been leaked by a non-

speculative transmitter/branch is tainted. Thus, all program data

(memory and architectural registers) starts off as tainted. As data

gets leaked over non-speculativemicroarchitectural covert channels,

it is declassified (untainted). SPT’s notion of taint is thus concep-

tually different than STT’s s-taint (Section 2.2), which only taints

data brought into the pipeline by a speculative instruction and

automatically untaints data once the instruction that accessed it

becomes non-speculative. In contrast, SPT may never untaint data;
in particular, data satisying the definition of non-speculative secret

(Section 6.2) is never untainted.

Taint Tracking. Conceptually, SPT tracks the taint of data in reg-

isters and the memory system. In practice, however, taint tracking

throughout the memory system is expensive [24, 68]. To trade off

hardware complexity and precision, an implementation of SPT can

opt to not track taint below a certain cache level. In this case, all

data read from lower levels is conservatively considered tainted.

Here, for concreteness, we describe an implementation that tracks

taint in registers and in the L1 D-cache (L1D) (see Section 7 for

the microarchitectural implementation). For simplicity, we first de-

scribe SPT assuming it only tracks whether registers are tainted.

Later sections extend taint tracking to the L1D (Section 6.8) and to

byte (instead of register-level) granularity (Section 7.2).

Taint/Untaint Propagation. SPT propagates taint across in-flight

instructions using standard taint tracking rules, similar to STT.

When an instruction enters the frontend and its registers are re-

named, the instruction’s output (physical) register is tainted if any

of its operand (physical) registers are tainted. Output registers of

loads are always (conservatively) tainted at rename, since the loaded

data’s taint status is not yet known.

Crucially, registers may get untainted dynamically. First, due to

declassification events: the operands of transmitters/branches are

untainted when the instruction becomes non-speculative. Second,

in the case of loads, a load’s output may become untainted if the

load later reads data which is untainted (Sections 6.7–6.8).

To further exploit untaint event information, SPT implements a

novel untaint propagation mechanism, which uses the rules from

Section 5 to untaint additional registers whenever some register

gets untainted. We detail this process in Sections 6.4–6.7.

Protection Policy. SPT prevents speculative transmit instructions

whose operands are tainted from leaking these operands by apply-

ing a protection policy. In this paper, we use a “delayed execution”

policy [11, 74, 83] that delays a transmitter’s execution until its

operands become untainted or it becomes non-speculative (accord-

ing to the attack model, see Section 2.2.1). However, SPT can use

other comprehensive policies such as executing a transmitter in a

data-oblivious fashion that does not leak its operands [82].

6.4 Implicit Channel Protection via

Secret-Independent PC

SPT reuses STT’smechanisms for blocking implicit channels.We ob-

serve that given a notion of “taint” for registers, STT’s mechanisms

make the sequence of instructions fetched/executed/squashed inde-

pendent of tainted data (Section 2.2.1). These mechanisms consist

of preventing tainted data from affecting the state of any predictor

and delaying the effects of (explicit/implicit) branch resolution until

its predicate becomes untainted. This “PC is independent of tainted

data” property blocks all implicit channels from leaking tainted

data.

Since SPT ensures that secret data is tainted, the above design

guarantees the following property:

Property 1 (PC is independent of secrets). The sequence
of instructions fetched/executed/squashed does not depend on secret
data.

Property 1 is the foundation for SPT’s analysis of the implica-

tions of declassifying data. Property 1 implies that the contents

of the ROB at every cycle does not depend on secret data. Con-

sequently, we can assume that the attacker knows the dataflow

between in-flight instructions (through registers) and the oper-

ations they perform, as this information is obtainable from the

ROB contents plus knowledge of the program being executed. Im-

portantly, however, the attacker may not know dataflow through

memory, which depends on tainted store/load address operands.

6.5 Untainting via Secret-Independent PC

An implication of Property 1 is that the output of an instruction

can be untainted if it is determined only by the content of the ROB.

Specifically, SPT untaints the output register of “load immediate”

instructions such as r1 = 17, where the immediate constant is en-

coded into the instruction and does not reside in a register operand.

Another example (which we do not currently exploit) is to untaint

the output of instructions such as r1 = r1 − r1 (which are often used
to zero-initialize registers) regardless of their inputs’ taint.

6.6 Untaint Propagation Over Instructions

SPT treats a transmit/branch instruction becoming non-speculative

as a declassification of any operand that would have been leaked by

the instruction’s execution. In response, SPT dynamically untaints
these operands when the transmit/branch instruction becomes

non-speculative. SPT then dynamically and continuously applies a

generalized untaint algebra (based on Section 5) to further untaint

data that can be inferred from the now-declassified operands. (This

is in contrast to prior work (except STT) where, once a physical

register’s taint is set, that taint does not change until the register is

overwritten.)

SPT propagates register untaint events in each cycle by applying

untaint algebra rules to each in-flight instruction. Evaluation of the

612

Speculative Privacy Tracking (SPT) MICRO ’21, October 18–22, 2021, Virtual Event, Greece

(a) untaint prop r0->r6
S0: store r0 -> (r1)
S1: store r2 -> (r3)
S2: store r4 -> (r5)
M1: load r6 <- (r7)

M2: transmit(r6)

(b) Squash dep. (new):
if (secret)
 rX += 64
load rY <- (rZ)

(c) Alias dep. (new):
store rX -> (secret)
load rY <- (rZ)

(a) Control dependency:
if (secret)
 load rX <- (rY)

B predicts
not taken

B predicts
taken

Load
issues

secret
== 0

secret
== 1

Time

Repeated
experiments

B predicts
not taken

B predicts
taken

r2 == 0

(a) Implicit channel:
 r0 = 17
B1: if (r1 < size) { // mispredict
M1: load r2 <- (&X[r1]) // access
B2: if (r2)
M2: load r3 <- (&Y[r0]) // transmit
 }

r2 == 1

Br predicts
taken

Load
issues

B resolves
taken

secret
== 0

secret
== 1

Time

Br predicts
taken

Load
issues

B resolves
 not taken

outer mispeculation
resolves

Squash!

Br predicts
not taken

Load
issues

B resolves
 taken

secret
== 1

Time

outer mispeculation
resolves

Squash!

outer
speculation

outer speculation
resolves

secret
untainted

(b) untaint prop
store r0 -> (r1)
store r2 -> (r3)
store r4 -> (r5)
load r6 <- (r7)

transmit(r6)

(c) transmit exec
store r0 -> (r1)
store r2 -> (r3)
store r4 -> (r5)
load r6 <- (r7)

transmit(r6)

Leak!

(a) forward untaint
I1: r0 = r1 + r2

I2: load r3 <- (r0)

I3: r4 = r0 + r2

(b) backward untaint
I1: r0 = r1 + r2

I2: load r3 <- (r0)

I3: r4 = r0 + r2

(c) final state
I1: r0 = r1 + r2

I2: load r3 <- (r0)

I3: r4 = r0 + r2

Figure 4: Untaint propagation (green registers are tainted). Suppose
I1, I2, and I3 are in the ROB and we consider the clock cycle when I2
becomes non-speculative. This means r0 becomes untainted, which

triggers the following forward (a) and backward (b) untaint events,

resulting in a final state (c) with r1 and r4 untainted.

rules may untaint more registers, and the process continues in the

next cycle. Importantly, the fact that SPT continuously re-evaluates

the taint induced by every instruction means that untainting of a

register by instruction I can cause instructions both younger and

older than I to untaint registers in the next cycle(s). We detail the

implementation of the untaint mechanism in Section 7.

Untaint rules consist of forward and backward untaint rules,

which untaint an instruction’s output or inputs, respectively, based

on untainting of its inputs or output, respectively. To allow a single-

cycle implementation, each rule is a function of the instruction’s

type and the taint of its registers. For example, we do not consider

rules that require executing the instruction (e.g., comparing num-

bers). This paper describes the rules used in our evaluation, which

we do not claim to be exhaustive; in fact, they are conservative, e.g.,

do not apply the GLIFT [70] insights.

The rules described in this section are based on the attacker’s

knowledge of the contents of the ROB, i.e., the type of each in-flight

instruction and the dataflow graph induced by instruction register

dependencies. In Section 6.7, we describe untainting mechanisms

that leverage what the attacker learns about dataflow between

instructions through memory.

Forward (Output) Untainting. We use the conservative taint

propagation rules. For each instruction whose output is only a

function of its operands (e.g., not loads, whose output also depends

on memory): if all of the instruction’s operands are untainted, then

its output register becomes untainted. Figure 4(a) shows an exam-

ple. The output of load instructions is untainted when and only

when the data they read becomes untainted through other rules

(Sections 6.7–6.8).

Backward (Input) Untainting. We use backward untaint rules

for several instruction types: 1○ For register MOV instructions

(r2 = r1): if the output is untainted, then the operand is untainted.

2○ For invertible arithmetic instructions (e.g., ADD): if the output
is untainted and all but one of the inputs are untainted, then the re-

maining input is untainted. Figure 4(b) shows an example, in which

r0 and r2 get untainted, so the instruction r0 = r1 + r2 untaints r1,
because the attacker can learn r1’s value (r1 = r0 − r2).

Convergence. By repeatedly applying the above forward/back-

ward rules after a register becomes untainted/declassified, the un-

taint status of all other registers will eventually converge. An im-

portant property of SPT’s taint algebra is that the taint of an instruc-

tion’s registers can change from tainted to untainted, but never

back. This property implies that SPT’s untaint process examines

each in-flight instruction at most 3 times (assuming instructions

have ≤ 2 operands).

6.7 Untaint Propagation Through Memory

Dataflow between instructions extends into memory through stores

and loads. SPT propagates untaint across memory dataflow edges

created by store-to-load forwarding (this section) and by L1D ac-

cesses (Section 6.8). The challenge here is that whether there is a

memory dataflow edge may itself be a secret, if one of the store/load

address operands is tainted. Untaint propagation must not leak the

existence of such secret edges (i.e., address aliases) to the attacker,

as that leaks information about tainted (secret) data.

For store-to-load forwarding, our goal is to support two untaint

rules for a store/load pair S,L in which L reads the data written by

S : 1○ If S’s data operand gets untainted, then L’s output register
should be untainted (forward untaint). 2○ If L’s output register gets
untainted, then S’s data operand should be untainted (backward

untaint).

SPT builds on STT’s store-to-load forwarding security mecha-

nism (described below). However, STT’s mechanism is designed

only to hide the fact that store-to-load forwarding occurs. It does

not support propagating untaint in the above manner, which is

what SPT adds.

Our starting point is when a load’s address becomes untainted,

and so can execute. At this point, the load/store queue (LSQ) checks

for possible forwarding. We note that the forwarding decision is

made based on the virtual addresses of instructions in the LSQ,

and so can consider tainted store addresses, i.e., before the relevant

stores execute and perform address-dependent TLB lookups, page

walks, or cache state changes.
4
Following STT, secret-dependent

store-to-load forwarding can then be hidden as follows: when a

load’s address becomes untainted, it always accesses the cache.

Once the cache access completes, the load’s output register is writ-

ten with the forwarded value (ignoring the memory data) if for-

warding should occur, otherwise it is written with the memory data.

The only exception, in which a load does not access the cache, is

when the fact that store-to-load forwarding should occur is known

to the attacker, as described later.

Adding untaint propagation to STT’s mechanism requires care,

because STT’s mechanism makes the “forwarding” and “no for-

warding” cases indistinguishable to the attacker as long as the load’s
output remains tainted. Figure 5 shows how adding untaint propa-

gation can reveal the forwarding decision and thereby leak infor-

mation about tainted data. In the figure, there are several stores

with tainted addresses but untainted values. Propagating untaint

across store-to-load forwarding allows a younger transmitter to

leak the untainted value, which reveals which store forwarded the

data and thus its tainted address.

To address this problem, SPT delays propagating untaint between

a store-to-load forwarding pair (S,L) until the implicit branch con-

dition of the forwarding becomes untainted. We denote this event

by the condition STLPublic(S,L) which is defined over the LSQ.

STLPublic(S,L) holds if and only if 1○ S’s data is forwarded to L,
2○ L’s address is untainted, and 3○ the addresses of all stores older

than L and younger than S (including S) are untainted. Thus, when

4
If it later turns out that an incorrect decision was made, because a younger store

whose virtual address does not alias with the load’s address does alias with it physically,

the load is squashed. This is handled as usual with STT’s principles, and the squash

is performed only once the relevant implicit branch—involving the addresses of the

store, the load, and all stores in between them in the LSQ—becomes untainted [83].

613

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Rutvik Choudhary, Jiyong Yu, Christopher W. Fletcher, and Adam Morrison

(a) untaint prop r0->r6
S0: store r0 -> (r1)
S1: store r2 -> (r3)
S2: store r4 -> (r5)
M1: load r6 <- (r7)

M2: transmit(r6)

(b) Squash dep. (new):
if (secret)
 rX += 64
load rY <- (rZ)

(c) Alias dep. (new):
store rX -> (secret)
load rY <- (rZ)

(a) Control dependency:
if (secret)
 load rX <- (rY)

B predicts
not taken

B predicts
taken

Load
issues

secret
== 0

secret
== 1

Time

Repeated
experiments

B predicts
not taken

Load
issues

B resolves
taken

Squash!

Load
issues

secret
== 0

secret
== 1

Time

B predicts
not taken

B predicts
taken

r2 == 0

(a) Implicit channel:
 r0 = 17
B1: if (r1 < size) { // mispredict
M1: load r2 <- (&X[r1]) // access
B2: if (r2)
M2: load r3 <- (&Y[r0]) // transmit
 }

r2 == 1

B resolves
not taken

Br resolves
some Br

mispredicts

Squash!

B predicts
not taken

Load
issues

B resolves
 not taken

Br resolves
some Br

mispredicts

Squash!

Br predicts
taken

Load
issues

B resolves
taken

secret
== 0

secret
== 1

Time

Br predicts
taken

Load
issues

B resolves
 not taken

outer mispeculation
resolves

Squash!

Br predicts
not taken

Load
issues

B resolves
 taken

secret
== 1

Time

outer mispeculation
resolves

Squash!

outer
speculation

outer speculation
resolves

secret
untainted

(b) untaint prop
store r0 -> (r1)
store r2 -> (r3)
store r4 -> (r5)
load r6 <- (r7)

transmit(r6)

(c) transmit exec
store r0 -> (r1)
store r2 -> (r3)
store r4 -> (r5)
load r6 <- (r7)

transmit(r6)

Leak!

Figure 5: Naive untaint propagation over store-to-load forwarding

leaks tainted data. Suppose r1= r7: (a) propagating r0’s taint un-

taints M1’s output, (b) propagating r6’s taint untaints transmitter

M2’s input, (c) M2 leaks r6, revealing r6 = r0 and thus that r1= r7.

STLPublic(S,L) holds, the attacker knows based on non-secret in-

formation that L obtains its data via forwarding from store S (and

no other store).

Memory dependence speculation. A load L can be specula-

tively issued to memory before older store addresses are com-

puted [56]. If it later turns out that store-to-load forwarding from

some store S was required, L gets squashed. Again, STT’s implicit

channel protection handles this securely by delaying the squash

until STLPublic(S,L) holds, at which point SPT can also propagate

untaint (if needed).

6.8 Tracking Taint for L1D Data

We describe an implementation of SPT that tracks L1D taint at

byte-granularity for each line. For this purpose, the L1D taint bits

are stored in a shadow L1 structure inside the core, so that SPT does

not require out-of-core modifications to the L1D itself. (We detail

the implementation in Section 7.) When a cache line is brought into

the L1D, all of its bytes are tainted. When a load accesses the L1D,

the taint of its output register is set according to the taint of the

data read (i.e., we also track taint at byte granularity in the register

file).

SPT uses two untaint rules for the L1D: 1○ Stores. When un-

tainted store data is written to the L1D, the L1D taint of the writ-

ten address range is cleared. The untainting occurs after the L1D

allocates a cache line for the stored data, at which point the corre-

sponding taint bits in SPT’s shadow L1 are cleared. 2○ Loads. If a

load receives data from the L1D and its output register is already

untainted, the L1D taint of the read address range is cleared.
5

6.9 Discussion

SPT allows data to be leaked by speculative execution at a later time

than when it was leaked by the non-speculative execution and/or

through a different type of transmit instruction. This provides a

meaningful, precise security guarantee because (1) SPT never allows

speculatively-accessed data to leak, thereby blocking leakage of

arbitrary program memory [48], and (2) SPT reduces leakage to

that which is implied by program semantics. The latter property

means that unmodified constant-time programs can regain their

security in the context of speculative execution.

7 MICROARCHITECTURE

We now describe the core microarchitecture changes required for

SPT. These consists of taint storage for registers (Section 7.2) and

5
This case can happen only if the load becomes non-speculative while waiting for the

data (Section 8), so the fact that it accessed memory is no longer secret, as all older

stores have also become non-speculative.

RAT

Fetch +
Decode

Rename

ROB

Unified
Reservation

Station

Taint Status Shadow L1 L1D
Cache

untaint
broadcast

reached VP

issued ld/st

address

data

taint status

RS entry

ROB
entry

Inside
Core

Outside
Core

Taint Status

VP Logic

LSQ

NumStUntaintPending
FwdingSt
STLPublic

other issued
insts

(to other EUs)

Reg Ids + Taint Status

Figure 6: SPT microarchitecture. Blue wires and boxes represent

added hardware. For simplicity,most logic changes are not depicted.

L1D data (Section 7.5), taint/untaint propagation (Section 7.3), and

handling of loads and stores (Section 7.4). Figure 6 shows the base-

line architecture and the modifications made for SPT.

7.1 Baseline Processor

We assume a baseline out-of-order (OoO) core design [36, 64]. In-

structions are fetched and renamed in-order. Renaming maps an

instruction’s architectural register specifiers to physical registers.

Renaming relies on a register alias table (RAT) that maps archi-

tectural to physical registers. After renaming, instructions are dis-
patched to a unified reservation station (RS) for scheduling and

queued in a reorder buffer (ROB) [38] in program order. The RS

issues instructions to execution units (EUs), possibly out-of-order.

(Loads and stores are issued to a load/store unit, which contains

the LSQ.) Executed instructions that reach the head of the ROB are

retired, committing their results to architectural state in-order.

7.2 Register Taint Storage

We replicate register taint storage across the frontend and back-

end. (Section 7.3 explains how the replicas are synchronized and

Section 7.6 provides the design’s rationale.)

In the frontend, we add taint status bits to the entries in the RAT.

We use them to determine the taint status of currently renamed-to-

physical registers. In the backend, we extend every entry in the RS

with taint status bits for each source and destination, which track

the taint of the registers of the instruction occupying the slot. We

similarly extend each LSQ entry with taint status for the address

operand of the entry’s instruction (Section 7.4).

By default, the “taint status” of registers is a single bit, indicating

if the register is tainted. For registers with partial access modes (e.g.,

the x86 register EBX corresponds to the lower 32 bits of RAX), the
taint status consists of multiple bits that combined can describe the

taint of every access mode. For example, for a 64-bit register R, x86
has partial access modes of R[7 : 0],R[15 : 8],R[15 : 0],R[31 : 0],

where R[x : y] denotes bits x–y in R. To describe the taint status of

such a register, we maintain four taint status bits, corresponding to

R[7 : 0],R[15 : 8],R[31 : 16], and R[63 : 32].

614

Speculative Privacy Tracking (SPT) MICRO ’21, October 18–22, 2021, Virtual Event, Greece

7.3 Taint/Untaint Propagation

Tainting. Taint status is computed when an instruction is renamed.

For loads, the output register is marked tainted at this point (Sec-

tion 6.3). For other instructions, if any of the operand registers

are tainted then the output register is tainted. Lookup of the taint

statuses of the operands and writing the taint status of the renamed

outputs happens while accessing their RAT entries during renam-

ing.

Untainting. The ROB is augmented with logic to detect when

instructions have reached the visibility point (VP), which is the

point at which an instruction is considered non-speculative with

respect to the threat model. The ROB broadcasts the index of the

youngest instruction that has reached the VP. In response, RS slots

of older transmit instructions mark their sources as untainted.

Propagation. Untaint propagation consists of two phases which

occur every cycle in the RS. The first phase applies the untaint rules

from Section 6.6, in parallel, to every entry in the RS. The second

phase propagates the untaint event of physical registers untainted

in the first phase to the RS slots that share these registers (as an

operand or destination). Untaint rules in the first phase are applied

locally at each RS slot, so that the taint status computation for one

RS slot does not affect the taint status of other slots.

The propagation phase is accomplished by broadcasting the

IDs of newly untainted registers on a dedicated bus, akin to the

broadcast of ready registers for instruction wakeup. Every RS slot

listens to this broadcast, and if the IDs of any of its registers matches

a broadcasted ID, it sets its taint status of that register to untainted.

(The broadcast only affects the first (untaint) phase of the next
cycle.) Untaint broadcasts are also sent to the RAT and LSQ to

synchronize their taint status.

We limit the number of untaint events broadcast each cycle,

referred to as the untaint broadcast width. (Otherwise, we would
have to support cases of every RS slot broadcasting, which requires

wiring on the order of the size of the RS, which is too costly.) The

RS choice of untaint events to broadcast prioritizes destination

registers over source registers within each RS slot, and RS slots

corresponding to older instructions over slots corresponding to

younger ones. RS slots track which untainted registers have been

broadcast by adding a untaint broadcast flag to each taint status.

When an RS slot untaints a register—including as a result of a VP

changes—it sets the corresponding untaint broadcast flag. Only

registers with the broadcast flag set are considered for untaint

broadcast, and once broadcast, their flag is reset.

7.4 Loads and Stores

For non-load/store transmitters, delayed execution is achieved

by the RS delaying issuing of the transmitter to the EU until its

operands are untainted. For loads/stores, delaying execution (in-

cluding TLB accesses, etc.) until the address operands are untainted

is handled by the load/store unit, to which loads/stores are issued

once their operands become ready. To detect untainting of load-

/store addresses, we augment LSQ entries with the IDs of their

address operand registers as well as their taint status at the time

of issue. LSQ entries listen for VP broadcasts as well as register

untainting from the RS, and update their taint status accordingly.

To keep track of STLPublic conditions (Section 6.7), we augment

each LSQ entry with a bit that is 1 when the entry corresponds to a

load forwhich some STLPublic condition is true, and 0 otherwise. To
update this bit, we further augment each LSQ entry with two extra

fields. The first field, FwdingSt, holds the index of the store that is
forwarding to the load if forwarding occurs, and −1 otherwise. The

second field, NumStUntaintPending, holds the number of stores

with tainted addresses involved in the implicit branch if forwarding

occurs but STLPublic is initially false; otherwise, it is set to −1.

Every cycle, if a store’s address becomes untainted, it broadcasts its

LSQ index. Every load in the LSQ listens to this broadcast, and if the

broadcast index is between (inclusive) FwdingSt and the LSQ index

of the load, then it decrement its NumStUntaintPending counter.
When this counter reaches 0, the associated STLPublic bit is set
to 1.

7.5 Shadow L1 (Taint Tracking of L1D Data)

The shadow L1 is a core structure that mirrors the set-associative

geometry of the L1D. Each entry stores the taint status of the

corresponding L1D cache line at byte-level granularity and a valid

bit. Shadow L1 entries require no replacement or tag bits because

tag checking and eviction mirror L1D decisions, which are made

available to the shadow L1 by connecting the L1D tag check logic

output and the eviction decision output to the shadow L1. When a

cache line is invalidated in the L1D, all of its shadow L1 taint bits

are set. Thus, when an L1D line is filled, it is considered tainted.

When a load accesses the L1D, it (in parallel) accesses the shadow

L1 to obtain the taint status of the data, or to update it if the load’s

output register is already untainted. Thus, the logic ANDs the two
taint statuses and updates both to the result. To convert the 1-bit-

per-byte taint status of the shadow L1 to a 4-bit taint status for the

register, we conservatively OR the taint of the bytes. When a store

writes to the L1D, the taint status of its data operand overwrites

the written bytes’ taint status in the shadow L1.

7.6 Performance and Cost Considerations

We eschewed the idea of centralizing the taint status storage since

it would require unnecessary exchanges between the hardware that

stores the taint status and the hardware that needs it, driving up

the clock period. Having the taint status distributed means that the

RS does not need to access other structures to compute untaint.

Similarly, two-phase untaint propagation simplifies the untaint

logic since it does not need to evaluate the entire dataflow graph

and propagate untaint through the RS in a single cycle.

Having an untaint broadcast width that is much smaller than

the size of the RS may hurt performance since it may take several

cycles for the untaint to propagate through the dataflow graph.

But keeping the broadcast width small saves a lot on hardware,

particularly on wires. Fortunately, our evaluation shows that an

untaint broadcast width of 3 is a good trade-off (Section 9.4).

8 SECURITY ANALYSIS

We sketch the proof that SPT satisfies its security guarantee (Defi-

nition 1). We prove the contrapositive of Definition 1:

Theorem 1. If data gets untainted in SPT’s speculative execution,
then it is not secret in the non-speculative execution.

615

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Rutvik Choudhary, Jiyong Yu, Christopher W. Fletcher, and Adam Morrison

We assume that if an instruction X reaches the visibility point,

then X ’s control- and dataflow are as in the non-speculative execu-

tion. This assumption holds in the Futuristic model (where the VP

is when X becomes non-squashable), in the Spectre model if the

processor performs only control-flow speculation, and in a variant

of the Spectre model where the VP is augmented to consider data

speculation (e.g., memory dependence speculation).

Our proof formally models the processor as a state machine

and reasons about the execution as a sequence of events (state

transitions), as in [19, 34, 84]. We first prove an auxiliary lemma:

that an instruction X ’s output register can get untainted before it

is ready (written to by X) only if X reaches the VP.

Lemma 1. If the (physical) output register R of X becomes un-
tainted while not ready, then X has reached the VP.

Proof. By induction over the sequence of events in the execu-

tion. The base case (empty sequence) is vacuously true. Inductive

step: Since R is an output register, it cannot be an operand or output

of older instructions. R can thus only get untainted in one of two

cases: 1○ R is the operand of a younger transmitter that has reached

the VP. 2○ R is the operand of a younger instruction X ′
performing

a backward untaint step. But since R is not ready, the output of X ′

is not ready, and so by the inductive assumption, X ′
has reached

the VP. In either case, we have an instruction younger than X that

has reached the VP, implying that X has reached the VP. □

Consider an attacker that has (a) visibility over non-speculative

side channels formed in the victim program’s execution and (b)

the program’s static code. We say that a value X is inferable by the
attacker at some point in the execution if X = f (O), where f is a

function known to the attacker and O are operands of transmitters

that have reached the VP by that point. By definition, a value infer-

able by the attacker is not a secret in the non-speculative execution.

The theorem thus follows from the lemma below.

Lemma 2. The following hold in each clock cycle:
(1) ROB state is public: The contents (instructions) of the ROB

is inferable by the attacker.
(2) Untainted data is public: If data (a register or memory lo-

cation) D gets untainted, then D is inferable by the attacker.

Proof. We prove both properties simultaneously by induction

over the sequence of events in the execution. The base case is

vacuously true. For the inductive step, assume that both properties

hold in a prefix α of the execution, and consider the next event e .
Property (1) is a generalization of STT’s “ROB contents are in-

dependent of speculatively-accessed data” property (Section 2.2.2).

Given a notion of “taint” for registers, STT’s mechanisms (inher-

ited by SPT) make the sequence of instructions fetched/execut-

ed/squashed depend only on untainted data [84]. Property (1) fol-

lows because, by the induction for (2), “untainted” in SPT corre-

sponds to non-secret data inferable by the attacker.

For proving Property (2), we need only consider untaint events.

Due to space constraints, we sketch the arguments:

• D is a register untainted because it is the operand of a transmitter

X that reaches the VP: The claim trivially holds.

• D is a register untainted due to the forward/backward untaint

rules (Section 6.6): For example, D = U + V , where U and V are

untainted. By the induction for (2) on U and V , we have D =

fU (O) + fV (O), which is known to the attacker (by the induction

for (1)).

• D is L1D data at address A that gets untainted because a load L
accessesAwhile having an untainted output register R (Section 6.8):

Inductively, A = fA(O) and R = fR (O). By Lemma 1, L has reached

the VP. Therefore, address A and all the store-to-load forwarding

implicit branches involving L are untainted. By the induction for

(1), the attacker knows when L executes and accesses the L1D. Since
the attacker monitors all covert channels, including the cache, it

therefore knows that L accesses A. Thus, the attacker knows that
the contents of R is what is stored at memory address A.
• D is L1D data at address A that gets untainted because a store S
writes to Awhile having an untainted value register R (Section 6.8):

Because stores write to the cache on retirement, S has reached the

VP and thus A is untainted. Inductively, A = fA(O) and R = fR (O).
As above, by the induction for (1), the attacker knows that the

contents of R is what is stored at memory address A.
• D is (a) an output register of a load L from address A, which read

an untainted value R from store S via store-to-load forwarding;

or (b) the value register of a store S to address A, which was for-

warded to load L and L’s output register R got untainted: As SPT

propagates untaint over store-to-load forwarding only when the

relevant implicit branch is untainted (Section 6.7), the induction for

(1) implies that the attacker knows L reads its value from S . The
claim follows, as inductively, R = fR (O).

□

9 EVALUATION

We evaluate SPT (on different attack models) relative to an insecure

baseline, a secure baseline with the same protection scope, and STT

(whose protection scope is narrower than SPT’s).

9.1 Experimental Setup

Simulation setup.We use the Gem5 [17] cycle-accurate simulator.

For SPT, we implement the equivalent of the microarchitectural

changes detailed in Section 7. Table 1 shows the simulated machine.

We use total store ordering (TSO) as the memory model. We run the

SPEC CPU2017 [1] benchmarks (using the reference input size) and
three data-oblivious code kernels: AES (bitslice [3]) and ChaCha20

(from BearSSL [4]) ciphers, and djbsort [15] sorting. For the SPEC
benchmarks, we use SimPoint analysis [65], which breaks the over-

all execution into representative phases (average of 7 SimPoints

per application). We simulate 50M instructions of each phase and

perform a weighted sum to obtain an overall execution time result.

Configurations. Table 2 lists the processor configurations eval-

uated. Transmit instructions are defined as loads and stores. We

evaluate a SecureBaseline design, which delays execution of trans-

mitters until they reach the visibility point, and thus provides the

same protection scope as SPT. We also compare to STT, which

has a narrower protection scope (i.e., only protects speculatively-

accessed data).
6
For SPT, we evaluate a series of configurations that

incrementally add the untaint mechanisms described in Section 6—

forward register untainting, backward register untainting, and the

shadow L1—to arrive at the full SPT design. These configurations

6
Following [46], and for consistency with SPT, we assume an STT configuration that

treats stores as transmitters.

616

Speculative Privacy Tracking (SPT) MICRO ’21, October 18–22, 2021, Virtual Event, Greece

HW Components Parameters

Pipeline 8 fetch/decode/issue/commit, 32/32 SQ/LQ

entries, 192 ROB, 16 MSHRs, LTAGE branch

predictor

L1 I-Cache 32 KB, 64 B line, 4-way, 2-cycle latency

L1 D-Cache 32 KB, 64 B line, 8-way, 2-cycle latency

L2 Cache 256 KB, 64 B line, 16-way, 20-cycle latency

L3 Cache 2MB, 64 B line, 16-way, 40-cycle latency

Network 4×2 mesh, 128 b link width, 1 cycle latency

per hop

Coherence Protocol Two-Level MESI protocol

DRAM 50 ns latency after L2

Untaint broadcast width

3

(SPT only)

Table 1: Simulated architecture parameters.

use an untaint broadcast width of 3 (justification in Section 9.4).

We further evaluate two idealized SPT variants, to evaluate the

limits of the individual techniques: SPT {Bwd, ShadowMem} adds

taint tracking of every byte in the entire memory to SPT. SPT

{Ideal, ShadowMem} further adds single-cycle untaint propagation

through the entire dataflow graph that is still represented in the

ROB. On each cycle, it performs forward and backward untainting

until no further data can be untainted.

Configuration Description

UnsafeBaseline An unmodified, insecure processor.

SecureBaseline Loads and stores delayed until reaching the

VP.

SPT {Fwd, NoShadowL1} Forward untainting only (in RS). No shadow

L1.

SPT {Bwd, NoShadowL1} Forward and backward untainting (in RS).

No shadow L1.

SPT {Bwd, ShadowL1} Forward and backward untainting (in RS)

= full SPT design plus shadow L1 (L1D taint tracking).

SPT {Bwd, ShadowMem} Forward and backward untainting (in RS)

plus all memory taint tracking.

SPT {Ideal, ShadowMem} Ideal forward and backward untainting (in

RS) plus all memory taint tracking.

STT Only protects speculatively-accessed data.

Table 2: Evaluated design variants.

Penetration testing.We experimentally confirm that all SPT con-

figurations protect both speculatively-accessed data (a standard

Spectre V1 attack) and non-speculative secrets.

9.2 Main Result: Performance of SPT

Figure 7 shows the performance results of all the benchmarks in

the Futuristic and Spectre attack models. Execution times shown

are normalized to the execution time of UnsafeBaseline. SPT

effectively reduces the overhead compared to SecureBaseline,

obtaining 3.6× and 3× lower average overhead in the Futuristic and

Spectre models, respectively. Compared to UnsafeBaseline, SPT

adds 45% and 11% average overhead in the Futuristic and Spectre

models, respectively.

Adding each individual SPT untainting technique results in

an overhead reduction. SPT {Fwd, NoShadowL1}, which repre-

sents our core idea of tracking and propagating untaint, already

achieves an average overhead reduction of 3.1× (Futuristic) and

1.9× (Spectre) over SecureBaseline. Backward untainting (SPT

{Bwd, NoShadowL1}) further reduces average overhead by 1.8 and

3.5 percentage points in the Futuristic and Spectre models, respec-

tively. Notice that SPT {Ideal, ShadowMem} provides negligible

improvement over SPT {Bwd, ShadowMem}, which means that the

microarchitectural constraint of limited untaint bandwidth does

not, in fact, hurt SPT’s performance.

Tracking L1D data taint (SPT {Bwd, ShadowL1}) is also effective.

It reduces average overhead over register untainting by 5.2 and 3.2

percentage points in the Futuristic and Spectre models, respectively,

and by up to 15.9 percentage points on individual benchmarks

(perlbench in the Futuristic model). Idealized taint tracking of all

memory (SPT {Bwd, ShadowMem}) reduces average overhead by ≈

1 percentage point over SPT, in both attackmodels, and has no effect

on many benchmarks. Thus, SPT’s L1D taint tracking is a good

trade-off that reduces hardware cost for almost no performance

loss.

Data-oblivious code. As mentioned previously, a key use case for

SPT is protecting constant-time (data-oblivious) programs. SPT is

particularly effective on our evaluated constant-time code kernels,

which suffer a 2.8× average slowdown when run on the Secure-

Baseline in the Futuristic model (the conservative model appropri-

ate for these security-sensitive programs). SPT reduces the overhead

to only 1.10×, an 18× reduction relative to SecureBaseline.

STT.Comparing to STT shows the cost of SPT’s comprehensive pro-

tection scope (protecting all secrets, not only speculatively-accessed

data). SPT adds an extra 3.3 and 26.1 percentage points of overhead

over STT in the Spectre and Futuristic models, respectively.

9.3 Breakdown of Untaint Events

Figure 8 shows the breakdown of untaint events—i.e. any instance

of a register being untainted—into their types. We provide the

breakdown for every benchmark for both the Futuristic and Spectre

attack models. The results were done by analyzing runs of SPT,

i.e. SPT {Bwd, ShadowL1}. Note that while the configurations

from Table 2 are inclusive—for example the mechanisms in {Fwd,

NoShadowL1} are included in {Bwd, NoShadowL1}—the untaint

events from the breakdown graph are exclusive.

One interesting observation is that, as expected, benchmarks

whose untaint events mostly consist of forward untaints (e.g.

fotonik and namd under the Futuristic model) tend to have massive

reductions in overhead occur when forward untainting is intro-

duced, but each incremental addition yields almost no additional

benefits. The intuition is that there are not enough opportunities

to be exploited for the additional hardware to provide any benefit.

In other benchmarks, such as perlbench and povray, we can see
a similar correlation between the prevalence of shadow L1 untaint

events and the amount of overhead reduction when introducing

the shadow L1. In benchmarks such as parest we see little over-
head reduction when introducing the shadow L1 due to the low

prevalence of like untaint opportunities.

617

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Rutvik Choudhary, Jiyong Yu, Christopher W. Fletcher, and Adam Morrison

1.0

1.1

1.2

1.3

1.4

1.5

1.6

bwaves_r deepsjeng_r exchange2_r fotonik3d_r gcc_r leela_r mcf_r nab_r namd_r omnetpp_r parest_r perlbench_r povray_r roms_r xalancbmk_r xz_r AES Bitslice ChaCha20 djbsort AVG

Ex
ec

ut
io

n
Ti

m
e

(R
el

at
iv

e
to

 U
ns

af
e

Ba
se

lin
e)

Secure Baseline FwdUntaint, NoShadowL1 BwdUntaint, NoShadowL1 BwdUntaint, ShadowL1 (SPT) BwdUntaint, ShadowMem IdealUntaint, ShadowMem STT

2.36 2.07

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

bwaves_r deepsjeng_r exchange2_r fotonik3d_r gcc_r leela_r mcf_r nab_r namd_r omnetpp_r parest_r perlbench_r povray_r roms_r xalancbmk_r xz_r AES Bitslice ChaCha20 djbsort AVG

Ex
ec

ut
io

n
Ti

m
e

(R
el

at
iv

e
to

 U
ns

af
e

Ba
se

lin
e)

3.65 3.25 3.94 3.77 2.59 2.67 2.57 3.39 3.19 2.653.12
2.51

2.13

Figure 7: Execution time (relative to UnsafeBaseline) of SPEC2017 and data-oblivious benchmarks of the designs from Table 2. Averages

appear on the right. (Top graph: Futuristic attack model; bottom graph: Spectre attack model.)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

F S F S F S F S F S F S F S F S F S F S F S F S F S F S F S F S F S F S F S F S

bwaves_r deepsjeng_r exchange2_r fotonik3d_r gcc_r leela_r mcf_r nab_r namd_r omnetpp_r parest_r perlbench_r povray_r roms_r xalancbmk_r xz_r AES Bitslice ChaCha20 djbsort AVG

Fwd Untaints Bwd Untaints SL1 Untaints STLFwd Untaints

Figure 8: A per-benchmark breakdown of the untaint events that occur when running the SPT {Bwd, ShadowL1} configuration. Runs under

the Futuristic model are represented by F, while runs under the Spectre model are represented by S. Note that the untaint events are exclusive

even though the configurations from Figure 7 are inclusive.

0%

20%

40%

60%

80%

100%

bwaves_r deepsjeng_r exchange2_r fotonik3d_r gcc_r leela_r mcf_r nab_r namd_r omnetpp_r parest_r perlbench_r povray_r roms_r xalancbmk_r xz_r AVG

1 Reg 2 Regs 3 Regs 4 Regs 5 Regs 6 Regs 7 Regs 8 Regs 9 Regs 10+ Regs

Figure 9: Percentage of cycles with untaint events in which the number of untainted registers is at most N = 1, . . . , 10+ when running SPT

{Ideal, ShadowMem} on the SPEC benchmarks.

Finally, we see that mcf benefits the most from backward un-

tainting. Yet the prevalence of backward untaint events is low (and

in fact is low for most benchmarks). We attribute this surprising

reduction in overhead to the fact that while a low volume of data

was untainted, the right data was untainted.
At the same time, we see more backwards untainting occurring

in the Spectre model relative to the Futuristic model. This is because

we only backwards untaint to the head of the ROB, and there is

more distance between the VP and the head of the ROB in the

Spectre model, on average. This indicates that an implementation

enabling backwards untainting to instructions older than the ROB

head may be able to exploit more opportunity.

9.4 Choosing an Untaint Broadcast Width

To choose the untaint broadcast width in our simulations, we run

the SPEC benchmarks on SPT {Ideal, ShadowMem}. For each cycle

in which registers are untainted, referred to as an untainting cycle,
we measure how many registers are untainted in the RS (this num-

ber is not bounded with ideal untainting). Figure 9 shows, for each

application, the percentage of untainting cycles in which the num-

ber of physical registers untainted is ≤ N , for various values of N .

For example, in bwaves, roughly 32% of untainting cycles untaint 1

or 2 registers. We see that on average, roughly 81% of untainting

cycles untaint at most 3 registers. Thus, a broadcast width of 3 is a

good trade-off between coverage of cases and hardware complexity.

618

Speculative Privacy Tracking (SPT) MICRO ’21, October 18–22, 2021, Virtual Event, Greece

Scheme Data protection scope Transmitter scope Receiver scope Programmer transparent?

InvisiSpec [76] Spec/Non-spec accessed data Cache-based CC, ST yes

SafeSpec [39] Spec/Non-spec accessed data Cache-based CC, ST yes

DAWG [40] Spec/Non-spec accessed data Cache-based CC, ST yes

Delay-on-miss [59] Spec/Non-spec accessed data Cache-based CC, ST yes

Cond. Spec. [44] Spec/Non-spec accessed data Cache-based CC, ST yes

MuonTrap [7] Spec/Non-spec accessed data Cache-based CC, ST yes

CleanupSpec [58] Spec/Non-spec accessed data Cache-based CC, ST yes

CSF [69] Spec/Non-spec accessed data Cache-based CC, ST no, user annotates secrets

MI6 [18] Spec/Non-spec accessed data All CC, ST yes

ConTExT [61] Spec/Non-spec accessed data All CC, ST, SMT no, user annotates secrets

OISA [81] Spec/Non-spec accessed data All CC, ST, SMT no, user annotates secrets

STT [83] Spec accessed data All CC, ST, SMT yes

SDO [82] Spec accessed data All CC, ST, SMT yes

SpecShield [11] Spec accessed data All CC, ST, SMT yes

NDA [74] Spec/Non-spec accessed data All CC, ST, SMT yes

Dolma [46] Spec/Non-spec accessed data All CC, ST yes

SPT (this work) Non-spec secrets All CC, ST, SMT yes

Table 3: Prior hardware-based mitigations for speculative execution attacks. Transmitter scope refers to what (speculative) covert channels

are blocked. Receiver scope refers to where the receiver component of the attacker [40] is allowed to run. CC, ST, SMT mean “CrossCore”,

“SameThread” and “SMT”, respectively, referring to different places the receiver can run [76].

10 RELATEDWORK

Prior hardware defenses can be categorized based on whether they

block all speculative covert channels and/or are comprehensive (pro-

tect both speculatively-accessed and non speculatively-accessed

data). Table 3 summarizes the literature along these, and several

other, dimensions. Invisible speculation schemes such as InvisiS-

pec [76], SafeSpec [39], DAWG [40], delay-on-miss [59], conditional

speculation [44] and MuonTrap [7] only block speculative covert

channels through the cache. MI6 [18] blocks all speculative covert

channels given a receiver (attacker) co-located to the same ma-

chine, but still leaks termination time to a remote receiver (i.e.,

does not block NetSpectre [62]). Dolma [46] likewise blocks more

speculative covert channels, yet does not block those that can be

monitored by a receiver that runs in a sibling SMT context.
7
Other

schemes such as STT [83], SDO [82] and SpecShield [11] block all

speculative covert channels, but only protect speculatively-accessed

data. Finally, we note that NDA [74] is capable of protecting non-

speculatively-accessed data by delaying execution of transmitters

until they become non-speculative, which incurs a prohibitive per-

formance cost (> 100% [46]).

Relative to the above, this paper’s contribution is a novel frame-

work for efficient, comprehensive protection of both speculatively-

accessed and non-speculative secrets over all speculative covert

channels. The key idea is to selectively disable protection based

on inherent declassification events that occur when the program

transmits data over non-speculative covert/side channels, i.e., to

only protect data that is non-speculatively secret (Section 3). This

7
Specifically, Dolma uses delay-on-miss [59] to issue speculative loads early. Thus, if a

load with a secret address hits or misses in the L1 cache, Dolma either forwards the

result to dependent instructions or delays forwarding. Which of these occurs can easily

be monitored by a sibling SMT context through, e.g., port contention effects [12, 16, 67].

By contrast, SPT uses a secure policy to protect such loads by delaying their execution.

definition of what is secret is compatible with speculative non-

interference [33, 34] and TPOD [21]. To our knowledge, our work

is the first to be able to enforce these security definitions in a low-

overhead/software-transparent manner.

Finally, software defenses perform program analysis that rea-

sons about mis-speculated execution flows to detect [19, 32, 33, 72]

or prevent [72] speculative leakage. Relative to SPT, these tools

typically do not scale to large code bases [33], require software

changes and, similar to prior hardware defenses, use conservative

definitions for what data is secret.

11 CONCLUSION

This paper proposed SPT, a novel mechanism to efficiently and

comprehensively block speculative execution attacks. The key idea

is that it is safe to speculatively execute a transmitter without

any protection, if its operands were already leaked by the non-

speculative execution. This enables a clean, easy to reason about

security property, which extends data-oblivious security guarantees

to speculative execution. It also enables a novel framework for

selectively disabling protection on data that SPT can prove can be

inferred over non-speculative covert/side channels.

ACKNOWLEDGMENTS

This work was funded in part by NSF under grants CNS #1942888,

#1954521 and #1816226, ISF under grant #2005/17, and by an Intel

Strategic Research Alliance (ISRA) grant. We thank the anonymous

reviewers for their insights during the review process.

REFERENCES

[1] 2017. SPEC CPU2017. https://www.spec.org/cpu2017.

[2] 2019. InvisiSpec-1.0 simulator bug fix. https://github.com/mjyan0720/InvisiSpec-

1.0/commit/f29164ba510b92397a26d8958fd87c0a2b636b0c.

[3] 2020. Bitslice AES (Bitcoin). https://github.com/bitcoin-core/ctaes.

619

https://www.spec.org/cpu2017
https://github.com/mjyan0720/InvisiSpec-1.0/commit/f29164ba510b92397a26d8958fd87c0a2b636b0c
https://github.com/mjyan0720/InvisiSpec-1.0/commit/f29164ba510b92397a26d8958fd87c0a2b636b0c
https://github.com/bitcoin-core/ctaes

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Rutvik Choudhary, Jiyong Yu, Christopher W. Fletcher, and Adam Morrison

[4] 2021. ChaCha20 (BearSSL). https://bearssl.org/gitweb/.

[5] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. Predicting Secret

Keys via Branch Prediction. In CT-RSA ’07.
[6] Adil Ahmad, KyungTae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung

Lee. 2018. Obliviate: A Data Oblivious Filesystem for Intel SGX. In NDSS ’18.
[7] Sam Ainsworth and Timothy M. Jones. 2020. MuonTrap: Preventing Cross-

Domain Spectre-Like Attacks by Capturing Speculative State. In ISCA ’20.
[8] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida

García, and Nicola Tuveri. 2019. Port Contention for Fun and Profit. IEEE S&P

’19.

[9] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and

Michael Emmi. 2016. Verifying Constant-Time Implementations. In USENIX
Security ’16.

[10] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner,

and Hovav Shacham. 2015. On Subnormal Floating Point and Abnormal Timing.

In IEEE S&P ’15.
[11] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodorescu. 2019.

SpecShield: Shielding Speculative Data from Microarchitectural Covert Channels.

In PACT ’19.
[12] Mohammad Behnia, Prateek Sahu, Riccardo Paccagnella, Jiyong Yu, Zirui Zhao,

Xiang Zou, Thomas Unterluggauer, Josep Torrellas, Carlos Rozas, AdamMorrison,

Frank Mckeen, Fangfei Liu, Ron Gabor, Christopher W. Fletcher, Abhishek Basak,

and Alaa Alameldeen. 2021. Speculative Interference Attacks: Breaking Invisible

Speculation Schemes. In ASPLOS ’21.
[13] Daniel J. Bernstein. 2005. The Poly1305-AES Message-Authentication Code. In

FSE ’05.
[14] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In

PKC ’06.
[15] Daniel J. Bernstein. 2019. djbsort. https://sorting.cr.yp.to/.

[16] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-

dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTh-

erSpectre: Exploiting Speculative Execution through Port Contention. In CCS
’19.

[17] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. 2011. The Gem5 Simulator. ACM SIGARCH Computer
Architecture News 2 (2011), 1–7.

[18] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and

Srinivas Devadas. 2019. MI6: Secure Enclaves in a Speculative Out-of-Order

Processor. In MICRO ’19.
[19] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian

Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-Time Foundations for

the New Spectre Era. In PLDI ’20.
[20] Sunjay Cauligi, Gary Soeller, Fraser Brown, Brian Johannesmeyer, Yunlu Huang,

Ranjit Jhala, and Deian Stefan. 2017. FaCT: A Flexible, Constant-Time Program-

ming Language. In IEEE SecDev ’17.
[21] Kevin Cheang, Cameron Rasmussen, Sanjit A. Seshia, and Pramod Subramanyan.

2019. A Formal Approach to Secure Speculation. In CSF’19.
[22] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and

Ten H. Lai. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves via Specu-

lative Execution. In IEEE EuroS&P ’19.
[23] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter.

2009. Practical Mitigations for Timing-Based Side-Channel Attacks on Modern

x86 Processors. In IEEE S&P’09.
[24] Michael Dalton, Hari Kannan, and Christos Kozyrakis. 2007. Raksha: A Flexible

Information Flow Architecture for Software Security. In ISCA ’07.
[25] Saba Eskandarian and Matei Zaharia. 2019. ObliDB: Oblivious Query Processing

for Secure Databases. VLDB Endowment 13, 2 (2019).
[26] Dmitry Evtyushkin and Dmitry Ponomarev. 2016. Covert Channels Through

Random Number Generator: Mechanisms, Capacity Estimation and Mitigations.

In CCS ’16.
[27] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry Ponomarev.

2018. BranchScope: A New Side-Channel Attack on Directional Branch Predictor.

In ASPLOS ’18.
[28] Ben A. Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov.

2017. Iron: Functional Encryption using Intel SGX. In CCS ’17.
[29] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation

Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.

In USENIX Security ’18.
[30] Johann Großschädl, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2009.

Side-Channel Analysis of Cryptographic Software via Early-Terminating Multi-

plications. In ICISC ’09.
[31] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and Stefan Man-

gard. 2016. Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.

In CCS ’16.
[32] Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. InSpectre: Breaking and

Fixing Microarchitectural Vulnerabilities by Formal Analysis. In CCS ’20.

[33] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez.

2020. Spectector: Principled Detection of Speculative Information Flows. In IEEE
S&P ’20.

[34] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-

Software Contracts for Secure Speculation. In IEEE S&P ’21.
[35] Shay Gueron. 2012. Efficient Software Implementations of Modular Exponentia-

tion. Journal of Cryptographic Engineering 2 (2012). Issue 1.

[36] John L. Hennessy and David A. Patterson. 2017. Computer Architecture, Sixth
Edition: A Quantitative Approach (6th ed.). Morgan Kaufmann Publishers Inc.

[37] Jann Horn. 2018. Speculative execution, variant 4: speculative store bypass.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1528.

[38] Mike Johnson. 1991. Superscalar Microprocessor Design. Prentice Hall Englewood
Cliffs, New Jersey.

[39] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu Song, Dmitry

Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh. 2019. SafeSpec:

Banishing the Spectre of a Meltdown with Leakage-Free Speculation. In DAC
’19.

[40] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas Devadas, and

Joel Emer. 2018. DAWG: A Defense Against Cache Timing Attacks in Speculative

Execution Processors. In MICRO ’18.
[41] Vladimir Kiriansky and Carl Waldspurger. 2018. Speculative Buffer Overflows:

Attacks and Defenses. arXiv:1807.03757 [cs.CR]

[42] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.

2019. Spectre Attacks: Exploiting Speculative Execution. In IEEE S&P ’19.
[43] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and

Nael Abu-Ghazaleh. 2018. Spectre Returns! Speculation Attacks using the Return

Stack Buffer. In WOOT ’18.
[44] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. 2019. Conditional

Speculation: An Effective Approach to Safeguard Out-of-Order Execution Against

Spectre Attacks. In HPCA ’19.
[45] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. 2015. Last-Level Cache Side-

Channel Attacks are Practical. In IEEE S&P ’15.
[46] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish

Narayanasamy, and Baris Kasikci. 2021. DOLMA: Securing Speculation with the

Principle of Transient Non-Observability. In USENIX Security ’21.
[47] Giorgi Maisuradze and Christian Rossow. 2018. Ret2Spec: Speculative Execution

Using Return Stack Buffers. In CCS ’18.
[48] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon Verwaest.

2019. Spectre is here to stay: An analysis of side-channels and speculative

execution. arXiv:1902.05178 [cs.PL]

[49] P. Mishra, R. Poddar, J. Chen, A. Chiesa, and R. A. Popa. 2018. Oblix: An Efficient

Oblivious Search Index. In IEEE S&P’18.
[50] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar. 2019.

MemJam: A False Dependency Attack Against Constant-Time Crypto Implemen-

tations. International Journal of Parallel Programming 47, 4 (2019).

[51] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. 2005. The

Program Counter Security Model: Automatic Detection and Removal of Control-

Flow Side Channel Attacks. ICISC ’05.
[52] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian

Nowozin, Kapil Vaswani, andManuel Costa. 2016. Oblivious Multi-Party Machine

Learning on Trusted Processors. In USENIX Security ’16.
[53] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-

termeasures: The Case of AES. In CT-RSA ’06.
[54] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan

Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.

In USENIX Security ’16.
[55] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital

Side-Channels through Obfuscated Execution. In USENIX Security ’15.
[56] Glenn Reinman and Brad Calder. 1998. Predictive Techniques for Aggressive

Load Speculation. In MICRO ’98.
[57] Andrei Sabelfeld and David Sands. 2009. Declassification: Dimensions and Prin-

ciples. J. Comput. Secur. 17, 5 (Oct. 2009), 517–548.
[58] Gururaj Saileshwar and Moinuddin K. Qureshi. 2019. CleanupSpec: An "Undo"

Approach to Safe Speculation. In MICRO ’19.
[59] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jimborean, and Mag-

nus Själander. 2019. Efficient Invisible Speculative Execution Through Selective

Delay and Value Prediction. In ISCA ’19.
[60] Sajin Sasy, Sergey Gorbunov, and Christopher W. Fletcher. 2018. ZeroTrace :

Oblivious Memory Primitives from Intel SGX. In NDSS’18.
[61] Michael Schwarz, Moritz Lipp, Claudio Canella, Robert Schilling, Florian Kargl,

and Daniel Gruss. 2020. ConTExT: A Generic Approach for Mitigating Spectre.

In NDSS ’20.
[62] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. 2019. Net-

Spectre: Read Arbitrary Memory over Network. In ESORICS ’19.
[63] Fahad Shaon, Murat Kantarcioglu, Zhiqiang Lin, and Latifur Khan. 2017. SGX-

BigMatrix: A Practical Encrypted Data Analytic Framework With Trusted Pro-

cessors. In CCS ’17.

620

https://bearssl.org/gitweb/
https://sorting.cr.yp.to/
https://bugs.chromium.org/p/project-zero/issues/ detail?id=1528
https://arxiv.org/abs/1807.03757
https://arxiv.org/abs/1902.05178

Speculative Privacy Tracking (SPT) MICRO ’21, October 18–22, 2021, Virtual Event, Greece

[64] John Paul Shen andMikkoH. Lipasti. 2005.Modern Processor Design: Fundamentals
of Superscalar Processors (1st ed.). Waveland Press, Inc.

[65] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Auto-

matically Characterizing Large Scale Program Behavior. In ASPLOS ’02.
[66] Youngjoo Shin, Hyung Chan Kim, Dokeun Kwon, Ji Hoon Jeong, and Junbeom

Hur. 2018. Unveiling Hardware-Based Data Prefetcher, a Hidden Source of

Information Leakage. In CCS ’18.
[67] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W. Fletcher.

2019. MicroScope: Enabling Microarchitectural Replay Attacks. In ISCA ’19.
[68] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. 2004. Secure

Program Execution via Dynamic Information Flow Tracking. In ASPLOS ’04.
[69] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. 2019. Context-

Sensitive Fencing : Securing Speculative Execution via Microcode Customization.

In ASPLOS ’19.
[70] Mohit Tiwari, Hassan M.G. Wassel, Bita Mazloom, Shashidhar Mysore, Frederic T.

Chong, and Timothy Sherwood. 2009. Complete Information Flow Tracking from

the Gates Up. In ASPLOS ’09.
[71] Shruti Tople and Prateek Saxena. 2017. On the Trade-Offs in Oblivious Execution

Techniques. In DIMVA ’17.
[72] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi,

Rami Gökhan Kıcı, Ranjit Jhala, Dean Tullsen, and Deian Stefan. 2021. Au-

tomatically Eliminating Speculative Leaks from Cryptographic Code with Blade.

Proceedings of the ACM on Programming Languages 5, POPL, Article 49 (2021).
[73] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,

Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017. Leaky Cauldron

on the Dark Land: Understanding Memory Side-Channel Hazards in SGX. In CCS
’17.

[74] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas Wenisch, and Baris Kasikci. 2019.

NDA: Preventing Speculative Execution Attacks at Their Source. In MICRO ’19.
[75] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel

Attacks: Deterministic Side Channels for Untrusted Operating Systems. In IEEE
S&P ’15.

[76] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher W.

Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making Speculative Execution

Invisible in the Cache Hierarchy. In MICRO ’18.
[77] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy

Campbell, and Josep Torrellas. 2019. Attack Directories, Not Caches: Side Channel

Attacks in a Non-Inclusive World. In IEEE S&P ’19.
[78] Yuval Yarom and Katrina Falkner. 2014. Flush+Reload: A high resolution, low

noise, L3 cache side-channel attack. In USENIX Security ’14.
[79] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: A Timing

Attack on OpenSSL Constant Time RSA. Journal of Cryptographic Engineering 7

(2017). Issue 2.

[80] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W. Fletcher. 2018.

Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance

Computing. In IACR ’18.
[81] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W. Fletcher. 2019.

Data Oblivious ISA Extensions for Side Channel-Resistant and High Performance

Computing. In NDSS ’19. https://eprint.iacr.org/2018/808.
[82] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and Christopher W.

Fletcher. 2020. Speculative Data-Oblivious Execution: Mobilizing Safe Prediction

For Safe and Efficient Speculative Execution. In ISCA ’20.
[83] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and

Christopher W. Fletcher. 2019. Speculative Taint Tracking (STT): A Comprehen-

sive Protection for Speculatively Accessed Data. In MICRO’19.
[84] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Torrellas, and

ChristopherW. Fletcher. 2019. Speculative Taint Tracking (STT): A Formal Analysis.
Technical Report. University of Illinois at Urbana-Champaign and Tel Aviv Uni-

versity. http://cwfletcher.net/Content/Publications/Academics/TechReport/stt-

formal-tr_micro19.pdf.

[85] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa, Joseph E.

Gonzalez, and Ion Stoica. 2017. Opaque: An Oblivious and Encrypted Distributed

Analytics Platform. In NSDI ’17.

A ARTIFACT DESCRIPTION

A.1 Abstract

We briefly describe the process of building and running our version

of Gem5. For the full description, see our repository on GitHub at

https://github.com/FPSG-UIUC/SPT.

A.2 Requirements

The following are required to build and run our version of Gem5.

Note: Ubuntu 16.04 is required; we attempted to run our repo on

Ubuntu 20.04 and were met with irresolvable issues. We advise

researchers to create a Docker container based on a base image for

Ubuntu 16.04 and install the dependencies there.

Tool Version

Ubuntu 16.04

Python 2.7

Python 3.5+

SCons 2.5.1

g++ 3.5.1

A.3 Cloning and Building

To clone the repository, first cd to whichever directory you want

your local copy to be. Then run:

> git clone https://github.com/FPSG-UIUC/SPT.git

We will refer to the folder that has just been created as $SPT. To
build, run the following commands:

> cd $SPT

> /usr/bin/scons ./build/X86_MESI_Two_Level/gem5.fast -j <# CPUs>

A.4 Running

A.4.1 Helper Script. Running the Gem5 executable directly is a

bit complicated since there are some legacy command-line options

from previous projects. Thus it is highly recommended to use the

helper script run_spt.py. Gem5 will print the actual command

when it is run. The script run_spt.py must be run with Python

version 3.5 or later. The following parameters are available to the

script:

Parameter Values Description Requirements

--executable Filesystem

Path

The executable you want to

run with gem5

Required

--enable-spt n/a Enables SPT’s protection

mechanism

Not Required

--threat
-model

spectre,
futuristic

Which threat model to simu-

late under

Required if

--enable-spt is

specified

--untaint
-method

none, fwd,
bwd, ideal

What type of untaint propaga-

tion to allow

Required if

--enable-spt is

specified

--enable
-shadow-l1

n/a Enables the shadow L1 Cannot specify

both this and

--enable
-shadow-mem

--enable
-shadow-mem

n/a Enables shadow memory Cannot specify

both this and

--enable
-shadow-l1

--track-insts n/a Makes gem5 output detailed

taint tracking information

Can only specify

if --enable-spt
is specified

--output-dir Filesystem

Path

The directory where the out-

put file stats.txtwill be gen-
erated

Not Required

A.4.2 Running Configurations from the Evaluation. Below are the

configurations from Table 2 in Section 9 and the correspond-

ing parameters. Note that --executable, --track-insts, and
--output-dir are left to the user to specify and are omitted from

the table.

621

https://eprint.iacr.org/2018/808
http://cwfletcher.net/Content/Publications/Academics/TechReport/stt-formal-tr_micro19.pdf
http://cwfletcher.net/Content/Publications/Academics/TechReport/stt-formal-tr_micro19.pdf
https://github.com/FPSG-UIUC/SPT

MICRO ’21, October 18–22, 2021, Virtual Event, Greece Rutvik Choudhary, Jiyong Yu, Christopher W. Fletcher, and Adam Morrison

Configuration Parameters

SecureBaseline --enable-spt --untaint-method=none
SPT{Fwd, NoShadowL1} --enable-spt --untaint-method=fwd
SPT{Bwd, NoShadowL1} --enable-spt --untaint-method=bwd
SPT{Bwd, ShadowL1} --enable-spt --untaint-method=bwd

--enable-shadow-l1
SPT{Bwd, ShadowMem} --enable-spt --untaint-method=bwd

--enable-shadow-mem
SPT{Ideal, ShadowMem} --enable-spt --untaint-method=ideal

--enable-shadow-mem

Note that to run InsecureBaseline, simply provide the

--executable and nothing else.

A.4.3 Getting the Results. When Gem5 is run, it will cre-

ate a file called stats.txt in the directory you specified

with --output-dir. If you did not specify --output-dir then

stats.txt will be in $SPT/m5out.
In the file are many statistics, though the one of most interest

will be numCycles, which specifies how many cycles the program

took to execute. There are many other statistics provided by Gem5

that have comments next to them briefly describing what they are.

On top of the statistics provided by Gem5, we provide some

custom statistics as well. See the README in our repository for a

brief description of them.

622

	Abstract
	1 Introduction
	2 Background
	2.1 Non-speculative Side/Covert Channels
	2.2 Speculative Taint Tracking

	3 Motivation: Protecting Non-speculative Secrets
	4 Attack/Threat Model
	5 Implications of Declassification
	5.1 Forward Information Flow
	5.2 Backward Information Flow
	5.3 Composition to complex dataflow graphs

	6 Speculative Privacy Tracking
	6.1 Baseline Microarchitecture Requirements
	6.2 Security Property
	6.3 Taint Tracking, Propagation, & Protection
	6.4 Implicit Channel Protection via Secret-Independent PC
	6.5 Untainting via Secret-Independent PC
	6.6 Untaint Propagation Over Instructions
	6.7 Untaint Propagation Through Memory
	6.8 Tracking Taint for L1D Data
	6.9 Discussion

	7 Microarchitecture
	7.1 Baseline Processor
	7.2 Register Taint Storage
	7.3 Taint/Untaint Propagation
	7.4 Loads and Stores
	7.5 Shadow L1 (Taint Tracking of L1D Data)
	7.6 Performance and Cost Considerations

	8 Security Analysis
	9 Evaluation
	9.1 Experimental Setup
	9.2 Main Result: Performance of SPT
	9.3 Breakdown of Untaint Events
	9.4 Choosing an Untaint Broadcast Width

	10 Related Work
	11 Conclusion
	Acknowledgments
	References
	A Artifact Description
	A.1 Abstract
	A.2 Requirements
	A.3 Cloning and Building
	A.4 Running

