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Abstract—Code disclosure remains a huge threat to the in-
tellectual property (IP) of any software that is deployed in a
remote, untrusted environment. In this threat model, attackers
have complete control over the software stack, so software-only
solutions for preventing code disclosure have been doomed to
fail. A natural alternative is to employ trusted hardware, e.g., an
enclave-based architecture such as Intel SGX. However, existing
SGX frameworks assume the target application is in the trusted
computing base, i.e., free of vulnerabilities which can be exploited
to leak code. Making matters worse, simply porting to an enclave-
based paradigm is impractical for enterprise-scale applications,
incurring large performance overheads and compatibility issues.

In this paper, we take a first step towards building a practical,
SGX-based code privacy enforcement framework called Pagoda
that supports unmodified applications with minimal performance
overhead. The key insight of Pagoda is that placing only applica-
tion code within the enclave prevents arbitrary code accesses, and
at the same time avoids the usual performance and compatibility
issues stemming from protecting data within enclaves. Pagoda
achieves code privacy throughout the application’s lifetime, by
loading and decrypting encrypted binaries into the enclave,
and enforcing eXecute-Only-Memory (XOM) to block arbitrary
accesses to the private code during its execution.

We have built a prototype of Pagoda for Linux-based systems
on Intel SGX. The performance evaluation on SPEC CPU2017
benchmarks shows that Pagoda incurs an average of 2.1% perfor-
mance overhead when compared to native runs. To demonstrate
its compatibility, we show that Pagoda can run a wide range of
applications, from common server applications such as Lighttpd
and Memcached, to complicated graphical applications such as
Quake without any source code modification.

I. INTRODUCTION

Today’s enterprise-scale applications are rife with intel-

lectual property, such as proprietary business logic, analytic

functions and algorithms [4]. This has made code disclosure
attacks a huge industry-wide problem. For example, software

piracy [47] whereby a user (pirate) purchases and creates unau-

thorized copies of proprietary software, causes the software

industry to lose billions of dollars every year [3], [9]. In the

server space, many small businesses rely on third-party cloud

service providers (CSPs) to host their cloud applications, again

putting their proprietary code at risk in the face of untrusted

cloud providers [14], [52].

At the same time, enforcing code privacy for enterprise-

scale applications is non-trivial given that the software in

*The work was done while the author worked at Microsoft Research.

question is often used remotely, and on potentially untrusted

platforms. In such a setting, the attacker typically has complete

control of the software stack including OS, peripherals, etc.

This renders software-only solutions (such as code obfusca-

tion [2], [25], [29], [44]) ineffective, and seemingly neces-

sitates a hardware-based approach to achieve high assurance.

For example, Intel SGX [41] provides an enclave abstraction to

enforce confidentiality/integrity of sensitive code/data from an

otherwise untrusted stack. This seemingly solves the problem:

to hide sensitive code, run it inside an enclave.

Despite their strong security guarantees, however, enclave-

based architectures such as SGX face difficulties in being

applied to the code disclosure problem. To start, the enclave

programming model often necessitates significant software

refactoring, which makes it impractical to use in conjunction

with existing large-scale applications. Although several en-

clave/SGX frameworks have been proposed to support existing

applications with no/slight modifications [20], [46], [51], [53],

those frameworks are mainly designed for protecting data

(not code), suffer from performance issues [50], and are only

compatible with applications that require very limited system

service support (e.g., command-line applications). In addition,

existing frameworks assume that enclave code is a part of

the trusted computing base. In other words, the application

must be free of bugs and latent vulnerabilities that could

be exploited to undermine code privacy. Given the nature of

the applications needing protection, this is not realistic [42].

Further, existing attacks such as DarkROP [21], [38] show how

it is indeed realistic to launch code disclosure attacks in the

enclave-based private-code setting.

A. This Paper

We take a first step towards building a practical, high-

performance enclave-based framework that focuses on code

privacy enforcement. We call this framework Pagoda and

implement it on top of Intel SGX. Our key observation is

that, while enclave-based architectures such as SGX were

designed to defend both code and data, there are significant

performance- and compatibility-related advantages in protect-

ing code alone. Since our goal is code privacy, we can reap

these benefits without suffering the usual and obvious pitfalls

of not protecting data.
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Based on this observation, and contrary to every prior

proposal built on SGX, we design Pagoda to load only
the application code into the enclave while leaving all the

application data, including globals, the heap and even the

stack, outside of the enclave. This design allows Pagoda to

support all system calls and user-mode DMA natively because

the data memory is accessible to the host OS in the same

manner as an ordinary user-mode process. Further, this design

also avoids I/O performance overheads as the communication

between the application and the host OS no longer requires

expensive data copying across the enclave boundary. Finally,

this design avoids enclave memory paging overheads, since the

(large) application data memory is not loaded into the (small)

enclave protected memory.

Pagoda uses SGX to isolate the private binary code inside

the enclave, and ensures that the private binary code is always

encrypted while outside the enclave (the latter is similar

to [19], [35], [36], [54]). Beyond these base protections,

Pagoda must address several challenges to achieve code pri-

vacy in the face of program bugs and memory-safety vulnera-

bilities. For example, prior work such as DarkROP [38] shows

how an adversary can leak enclave code using ROP without

prior knowledge of that code. Conceptually, this amounts to

the adversary controlling the parameters of, and calling, a

memcpy gadget so as to trick the enclave into dumping itself

into non-enclave memory. That Pagoda maps application data

outside the enclave further simplifies such attacks.

Pagoda blocks this direct disclosure of plaintext private

code inside an enclave by changing the enclave code page

permissions to execute-only immediately after the encrypted

private code is loaded into the enclave and decrypted. The

code privacy of Pagoda therefore reduces to maintaining

said execute-only memory (XOM) protection throughout the

application’s execution. To revert the execute-only protec-

tion of code pages, the adversary must execute a special

enclave operation EMODPE. Pagoda prohibits EMODPE with

a software-only defense for single-threaded applications. For

multi-threaded applications, a race condition could enable ad-

versary to bypass the software-only defense. So, for that case,

we propose a simple hardware change to SGX (implementable

as a microcode update).

We evaluate a prototype of Pagoda on Ubuntu 18.04 running

on a SGXv2-capable Intel CPU. To demonstrate its compati-

bility, we show that Pagoda is able to run different types of

applications, including complex graphical applications such as

games without any source-code modification. The performance

evaluation shows that Pagoda only adds 2.1% overhead over a

native run for SPEC CPU2017. We also evaluate Lighttpd and

Memcached and show Pagoda decreases the peak throughput

by around 60% over vanilla Linux. For the evaluated games,

Pagoda causes the average frames-per-second (FPS) rate to

drop 8.4% compared to the native runs.

II. BACKGROUND

A. Intel Software Guard Extensions (SGX)

Intel SGX [16], [41] provides protection for the integrity

and confidentiality of (a portion of) a user-level application

even when the privileged system software such as the OS/hy-

pervisor is malicious. This is achieved via a trusted execution

environment called enclave. Enclaves have exclusive access to

their memory content, which can also be attested to verify the

authenticity of both the enclave application and the underlying

hardware. Other hardware vendors have proposed enclave

variants with similar security guarantees (e.g., AMD SEV [49],

ARM TrustZone [15], RISC-V Keystone [37]), but we focus

on Intel SGX because of its wide commercial availability.

Enclave Operations SGX is exposed to software developers

through two instructions: ENCLS for kernel-level enclave

operations, and ENCLU for user-level enclave operations. The

actual enclave operation performed by the two instructions

depends on the “leaf index” stored in the rax register. The

SGX programming model requires the host OS to allocate

resources and initialize each enclave. Each enclave has one

pre-defined, immutable entry point named OENTRY. The user-

mode code can then enter (EENTER) the enclave, execute code

within the enclave starting from the instruction at OENTRY,

and exit (EEXIT) the enclave.

Hardware-based Isolation Enclaves are isolated from non-

enclave software with a dedicated DRAM region, a subset of

which—the Enclave Page Cache (EPC)—stores the enclave

code and data. Enclave software can allocate enclave code

and data inside a contiguous region in its virtual address space

called ELRANGE, which gets mapped to the EPC. Code and

data within an enclave is encrypted and integrity protected

from the rest of the system.

Remote Attestation Remote attestation proves to a trusted

remote party that the enclave is initialized in an expected state

on a legitimate SGX hardware. To perform remote attestation,

the enclave software invokes the EREPORT operation (ENCLU
with rax=0) to generate a report. A report contains a measure-

ment of the entire enclave state when the enclave is initialized,

and a signature. The report is sent to the remote party by the

non-enclave software.

Enclave Exceptions An Asynchronous Enclave eXit (AEX)

occurs when an interrupt/exception happens during the en-

clave execution. Executing enclave-prohibited instructions like

system calls, or instructions outside the enclave memory are

common causes of AEX. Upon an AEX, SGX hardware saves

the current processor context (including the current instruction

pointer rip) into a per-thread, in-enclave data structure, called

the State Save Area (SSA), and then transfers the control

to the system’s exception/interrupt handler with a non-secret,

synthetic register context. The addresses of the SSAs are stored

in the thread control structure (TCS) inside the enclave. Each

enclave thread has its own TCS. The enclave execution can be

resumed from AEX with a user-mode ERESUME operation.
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Configuring Enclave Page Permission at Runtime While

set prior to enclave initialization, enclave page permissions

can be adjusted at runtime (only on SGXv2). An OS kernel

can restrict enclave page permissions with EMODPR (ENCLS
with rax=14). For security, SGX only allows the enclave to

relax its own page permissions, by invoking EMODPE (ENCLU
with rax=6) during the enclave execution.

B. Deploying Encrypted Code Using SGX

Earlier work [19], [35], [36], [54] uses encryption to protect

secrets in enclave binaries. Since Pagoda also benefits from

code encryption to partially fulfill the code privacy goal, we

describe the procedure of deploying SGX applications with

encrypted code introduced by the earlier work.

The software developer encrypts the code binary before

distributing the application to end users. An SGX machine

is necessary for the end user to validate (through remote

attestation) and use the application. A special in-enclave

loader is responsible for loading the binary into the enclave,

and performing the remote attestation, as described in §II-A,

to attest to a remote trusted verification platform (e.g., the

software developers themselves) that the enclave is initialized

in the correct state on a certified SGX platform. Once the

remote attestation succeeds, the in-enclave loader establishes

a secure communication channel with the remote platform to

receive the decryption key, and decrypts the encrypted code

inside the enclave. With the code now decrypted, the loader

can finalize the program loading and transfer control to the

application.

III. THREAT MODEL

Pagoda assumes an adversary who owns the system that

runs the application. Such an adversary can be a desktop user

who purchases and uses the application on their own machine,

or a third-party cloud provider who hosts proprietary cloud

software for other companies. The adversary has arbitrary con-

trol of the system, including the BIOS settings, the hardware

peripherals, any privileged software such as the OS or the

hypervisor, and any unprivileged software components without

the SGX enclave protection.

Pagoda aims to provide code privacy for existing appli-

cations with no source code changes. Specifically, Pagoda

prevents the adversary from accessing (reading/writing) in-

structions in the private code binary in plaintext form. Prevent-

ing reading/writing private code must be guaranteed through-

out the binary’s lifetime, including when code is in transit
(transferred from the developer to the untrusted platform),

at rest (stored in the storage of the untrusted platform), and

in use (executed on the untrusted platform). Other types of

code leakage, such as indirectly inferring executed instructions

via observing their impact on the process state or micro-

architectural state, which we discuss in §VII-A, or breaking

the schemes used for code encryption, are out of scope.

Pagoda trusts SGX to operate as described in §II. Pagoda

also trusts the application developer, and the verification plat-

form involved in the SGX remote attestation process. Pagoda

does not assume that the unmodified application code is bug-

free, i.e., any attacks capable of exploiting vulnerabilities in

SGX programs are possible.

Since the goal is code privacy, Pagoda does not protect

the application’s data. We discuss how Pagoda can be further

extended for data protection in §VII-B. Pagoda also does

not guarantee the integrity of the program’s execution, nor

the absence of denial-of-service attacks. However, Pagoda

must guarantee that undermining integrity cannot lead to

unauthorized read/write access to the private code.

IV. PAGODA DESIGN

A. Key Idea

In this section, we describe the design of Pagoda by focusing

on the security mechanisms required for its code privacy

goal and how it supports unmodified applications running

within SGX enclaves. Our key observation is that, while

SGX was designed to defend both code and data, there are

significant performance- and compatibility-related advantages

in protecting code alone. Further, since our goal is code

privacy, we can reap these benefits without suffering the usual

and obvious pitfalls of not protecting data.

Putting the above together, as Figure 1 demonstrates, Pagoda

maps all application data outside of the protected enclave

memory and places only private code, including the code

from the main application and the code from any private

shared (dynamic) libraries plus a small trusted runtime, inside

the enclave memory. Since application data is visible to the

host software and the OS, this enables the entire system call

interface and user-mode operations like DMA to be supported

natively. Further, storing data outside of the enclave memory

avoids the need to copy data into/out of the enclave memory

and eliminates paging overheads stemming from the limited

enclave memory.

Based on this key idea, for the rest of the section, we

present the design of Pagoda by describing how it achieves

code privacy throughout the lifetime of an application (§IV-B),

how it maintains compatibility with unmodified applications

with the support of dynamic linking/loading for shared li-

braries (§IV-C), and how it supports communication across

the enclave boundary (§IV-D).

B. Code Privacy Protection with XOM

Figure 2 shows the important steps during the program load-

ing process of Pagoda that establish code privacy protection

for the target application. Pagoda initializes the enclave with

the enclave entry point OENTRY pointing to the Pagoda trusted

runtime. The in-enclave Pagoda loader, as part of the Pagoda

trusted runtime, performs the program loading procedure and

launches the application binary.

As a first step towards code privacy, Pagoda uses the code

encryption mechanism proposed by prior work (§II-B). That

is, all binaries with private code are distributed with the

code encrypted. After entering the enclave, the Pagoda loader

performs remote attestation, and receives all keys necessary for

decrypting encrypted binaries from the trusted remote party.
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Enclave Metadata (TCS, SSA)

Pagoda Trusted Runtime

app .text 

app .data

...

Pagoda Untrusted Runtime

...

Heap, Stack

libprivate.so .text

libprivate.so .data

Public shared libraries (e.g., libc.so)

Enclave 
Memory

Execute-Only

W ⊕ X

Fig. 1: Memory layout of application using Pagoda. Shaded gray
color indicates the enclave memory region ELRANGE, which only
covers up to the application code segments. libprivate.so represents
private dynamic libraries.

Remote 
attestation

Receive 
decryption keys

Start Pagoda

Pagoda 
Loader

En
cla

ve
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Application

Load encrypted 
binary

Decrypt encrypted 
binary

Dynamic linking 

Enforce permanent 
XOM

Start 
application

Remove 
decryption keys

Run native 
loader-linker

Private 
libraries

Run 
application Dynamic loading

Fig. 2: Different actions that Pagoda takes during program loading
for code privacy protection.

Then, the encrypted application file is copied from outside the

enclave, and decrypted into plaintext format. Private dynami-

cally libraries can be loaded and decrypted in the exact same

manner later during dynamic linking, as shown in Figure 2.

When loading the main application binary, Pagoda main-

tains its original binary memory layout (where code and data

are stored contiguously), and at the same time only places

the code segment into the enclave while leaving the data

segment outside. Pagoda calculates the base address of the

application binary image such that the end of the code segment

matches the end of the ELRANGE, as shown in Figure 1.

Dynamically linked libraries require a different (non-standard)

memory layout. Since it is not possible to layout their code and

data segments contiguously (subject to the constraint that only

the code segment is stored within enclave memory), their code

and data segments are mapped non-contiguously. We further

explain the mapping process of private libraries in §IV-C.

The solution so far is sufficient to provide basic isolation

from non-enclave software. First, encryption and remote at-

testation guarantee that code in transit/at rest is only visible

as ciphertext from outside the enclave. Non-enclave software

can neither access the decryption keys inside the enclave, nor

receive the keys from the remote party without performing the

enclave remote attestation. Second, the enclave memory iso-

lation prevents any direct accesses from non-enclave software

to the private code inside the enclave (code in use).

Code encryption/secure distribution (§II-B) is not sufficient

for code privacy, however, when the target application contains

bugs/latent memory-safety vulnerabilities [42]. These vulner-

abilities can enable non-enclave software to control enclave

execution in unintended ways. Although Pagoda by default

enforces W⊕X to block direct code injections, DarkROP [38]

and several similar attacks [21], [24] demonstrate how simple

memory vulnerabilities like stack buffer overflows can enable

the adversary to blindly search for gadgets in the enclave code,

such as ROP gadgets and arbitrary read/write gadgets, in a

way similar to the classic Blind ROP attack [22]. The fact that

Pagoda places the application’s data – including stack and heap

– outside the enclave further exacerbates such attacks, since

it enables the adversary to trivially and arbitrarily manipulate

said data.

The above introduces challenges in protecting both code in

use and code in transit/at rest, respectively. We now discuss

the problems and their solutions.

1) Protecting Code in Use: First, the privacy of code in

use is undermined as the adversary can craft code disclosure
attacks with gadgets capable of dumping any readable enclave

code pages to non-enclave memory. To mitigate those attacks,

Pagoda must prevent direct reads/writes to said pages from

even enclave instructions, which implies enforcing execute-

only memory (XOM) protection on all private enclave code

pages. Although multiple implementations of XOM have been

proposed, they either require the support from privileged

software [18], [28], [31], which is insecure under our attack

model, or use expensive code instrumentation techniques such

as software-fault isolation (SFI) [23], [48]. Luckily, SGX

provides hardware support for directly configuring enclave

pages as execute-only with negligible performance overhead.

We apply this enclave capability and mark all private enclave

code pages as execute-only before transferring control from

the trusted runtime to the application, when the adversary has

the opportunity to launch the attack.

While XOM mitigates the code disclosure attack in a

straightforward manner, enforcing the XOM property perma-

nently (i.e., throughout the lifetime of the enclave) faces an ad-

ditional problem: SGX also supports enclave page permission

relaxation through EMODPE operation, which is an ENCLU
instruction with rax=6 (§II-A). Although a genuine Pagoda

execution never uses ENCLUs as EMODPE, unfortunately, with

code reuse attacks, an adversary may abuse existing ENCLU
instructions in the enclave code. The adversary could craft a

ROP chain with an ENCLU in the end to form an EMODPE
operation and grant read/write permission to an execute-only

enclave code page. Note that Pagoda needs to enforce W⊕X ,

which also demands the absence of EMODPE.

Therefore, Pagoda must prohibit the use of EMODPE to

enforce the XOM protection permanently before starting

the application. Depending on whether the application is

single-threaded or multi-threaded, Pagoda applies different
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approaches to prohibit the use of EMODPE, before transferring

control to the application. In §V, we explain why the entire

scheme so far achieves the security goal of Pagoda, and

introduce the two approaches to eliminate EMODPE for single-

/multi-threaded applications, respectively.

2) Protecting Code in Transit/at Rest: Malicious enclave

memory accesses/gadgets also jeopardize the privacy of both

the code in transit and the code at rest if such accesses obtain

the private code decryption keys.

We adopt the following two approaches to ensure that the

decryption key is unreachable after the control is transferred to

the application. First, Pagoda erases the decryption key left in

the enclave memory after the code decryption finishes. Second,

every time Pagoda is invoked to run a protected application,

Pagoda can only receive decryption keys from the trusted

remote party once, after the remote attestation. In this way,

even if the adversary corrupts enclave execution and repeats

the remote attestation and key request process, the trusted

remote party will simply reject those requests. Consequently,

the remote party must differentiate invocations of Pagoda on

the same application. To solve this problem, Pagoda uses a

nonce at a given location in the initialized enclave memory

space. The value of the nonce varies during each invocation of

Pagoda on a given application. Since the enclave measurement

used in remote attestation also covers this nonce, the remote

party can be notified whether the key request is from a different

enclave.

Notice that the precondition for the approaches above is

that, all encrypted binaries, including the main application

and the private libraries, have to be decrypted before starting

the application. §IV-C explains how Pagoda achieves this

requirement for the private libraries.

C. Dynamic Linking/Dynamic Loading

Dynamic linking takes place during the loading of the

main application, right before Pagoda enforcing the permanent

XOM protection and disallowing accesses to decryption keys,

as shown in Figure 2. Pagoda supports dynamic linking with

both public and private libraries. After the loader identifies

a library to dynamically link to, it first checks whether the

library is private. Public libraries, such as libc, are loaded

outside the enclave by directly calling the native loader-linker

outside of the enclave. Private libraries, which Pagoda assumes

are encrypted and shipped together with the main application,

follow the same loading procedure as the main application. If

the private libraries are encrypted using the same key as the

main application, the loader can skip the remote attestation and

the key receiving steps and reuse the previous key. Otherwise,

the loader must request new keys from the remote trusted

party. The XOM enforcement is also applied to the code of

private shared libraries.

The only difference between the loading of the main ap-

plication and private libraries, as Figure 1 illustrates, is that

Pagoda splits the private library image into code half and data

half, and only maps the code half inside the enclave memory.

Such code-data split complicates the program loading, because

binaries are normally compiled with an assumption of a

contiguous memory layout. Mapping the code half and the

data half separately breaks instructions that assume a fixed

distance between the code half and the data half. In x86,

such instructions are instructions with code-to-data references

using RIP-relative addressing. Specifically, these instructions

use RIP+offset to denote the address of the data, with

RIP indicating the address of the instruction, and offset
being an immediate value representing the original distance

between the data and the instruction. Since the code-data split

expands the distance between code and data, all offset values

must be adjusted with the additional distance induced by the

code-data split. Pagoda expects the developer of the private

library to provide a file listing the addresses of all RIP-relative

offsets. The developer can either rely on the compiler to emit

the location of the offsets, or disassemble the binary file and

search for all the occurrences. The developer must encrypt and

distribute the file together with the private library files.

Unmodified applications may also opt for dynamic loading

to load shared libraries in the middle of the application

execution. However, dynamic loading for private libraries is

not supported since the decryption key is no longer obtainable

after the application starts, as mentioned in §IV-B. For private

libraries that require dynamic loading, Pagoda expects the ap-

plication developer to specify all of those libraries, and Pagoda

will locate and load them during dynamic linking. After the

private library is loaded successfully, the loader generates a

descriptor containing the information about the library, such

as its base address. When the application uses dynamic loading

to load the library (e.g., through dlopen()), this descriptor is

returned. Dynamically loading public libraries is handled by

the native loader-linker.

D. Cross-Boundary Communication

The execution of the application involves interaction with

the public libraries and the operating system outside the

enclave. However, directly calling public library functions or

making system calls will abort the enclave execution as branch

instructions are not allowed to cross the enclave boundary. This

section describes how Pagoda facilitates cross-boundary calls.

1) Enabling Cross-Boundary Calls: The upper half of Fig-

ure 3 illustrates how Pagoda transforms exceptions caused by

prohibited cross-boundary calls into successful system calls or

public library function calls. Since the procedures of enabling

system calls and public function calls are identical, we focus

on how Pagoda handles system calls as follows.

System calls are classified as illegal instructions inside the

SGX enclave. Consequently, an enclave exception (AEX) will

happen when the application makes a system call directly from

within the enclave. To achieve compatibility with unmodified

applications, Pagoda allows this AEX to occur (without any

change to the system call instructions inside the enclave) and

performs the system call outside the enclave, finally resuming

enclave execution. By design, all the data memory needed to

service a system call resides outside of the enclave and hence

is already accessible to the host, so Pagoda only needs to
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syscall OR
call printf

Exception 
Handling

ExcpHandlerUT()

ExcpHandlerT()

Exception 
Recovery

EENTER

ERESUME
OCallT()

OCallUT()

printf()

AEX

ECallUT()
ECallT()

next instr

call printf_tram

OCallT()
OCallUT()

printf()
ECallUT()

ECallT()
next instr

printf_tram

syscall

Enclave Non-Enclave
Application,

Private Libraries
Pagoda Trusted 

Runtime
Pagoda Untrusted 

Runtime
Public Library OS Kernel

Unoptimized
Optimized

Fig. 3: The upper half shows how Pagoda enables system calls and
public library functions calls based on the exception handling. The
bottom half shows the optimized public library function call handling,
with only two enclave boundary crossings.

additionally expose the parameters stored in the registers such

as the system call number stored in rax, instead of performing

a deep copy for related data structures.

When executing a system call, the enclave triggers an AEX

and is immediately trapped into the OS kernel. Next, the OS

invokes the exception handler ExcpHandlerUT registered

by Pagoda. ExcpHandlerUT recognizes the exception is

from the enclave, and forwards the exception to its counterpart

ExcpHandlerT in the enclave. ExcpHandlerT needs to

redirect the control flow of the enclave execution to an external

system call site while preserving the system call parameters

stored in the registers. To do so, ExcpHandlerT modifies

the instruction pointer saved in SGX’s state save area (SSA) to

an in-enclave stub called OCallT before resuming the enclave

execution with ERESUME. ExcpHandlerT also derives the

address of the next instruction after the system call, and saves

the address for continuing the application’s execution after

the system call handling completes. ERESUME restores the

register context back to the state when the system call is

invoked, except for the instruction pointer, which points to the

OCallT. The OCallT function and its counterpart OCallUT
form a typical OCALL procedure, allowing the program to

proactively exit the enclave via EEXIT and land on the target

address, which, in this case, is a system call instruction inside

the untrusted runtime. Once the system call completes, the

control is transferred to an ECallUT routine. ECallUT,

together with its counterpart ECallT, forms a typical ECALL

procedure that transfers the control back into the enclave. The

ECallT function eventually jumps to the previously stored

address of the next enclave instruction after the system call.

Pagoda’s handling of public library function calls follows

the same procedure as the system calls handling. Note that

the external library can also call into an enclave-protected

function, with a process symmetric to what is described above:

the direct call triggers an exception. This exception is properly

handled and leads to an ECALL process that reaches the target

enclave function. The control returns back to the non-enclave

program through an OCALL process.

2) Optimizing Public Library Function Calls: Cross-

boundary calls based on exception handling are expensive.

Specifically, a single call takes a total of six enclave boundary

crossings and four ring crossings, so the overhead can signif-

icantly impact the overall performance when calls across en-

clave boundary are frequent. Ideally, each function call should

only take two enclave crossings, one for the call and the other

for the return, with no ring crossing/exception. As Figure 3

(upper) illustrates, the exception with the subsequent exception

handling process is the culprit of the redundant boundary

crossings. To eliminate the exception and achieve the ideal

two enclave crossings, we apply the following optimization as

shown in the bottom half of Figure 3.

First, during relocation, Pagoda patches the function point-

ers for each imported library function (e.g., the global offset

table in ELF) so that they point to a trampoline function in-

stead of the actual target function in the external library. These

per-function trampolines are generated as part of the Pagoda

trusted runtime when the loader resolves the dynamically-

linked dependencies for the application. Each trampoline saves

the address of the actual target function onto the program

stack and calls the OCallT stub. The OCALL process allows

the control to reach the target function with only one enclave

boundary crossing. Once the target function returns, ECallUT
receives the control, and activates the ECALL process. Note

that since the per-function trampolines are generated by the

loader, only the function pointers known to the loader can

be patched, such as public library functions imported to

the application. Pointers to non-enclave functions that are

generated dynamically at runtime cannot benefit from this

optimization.

3) Multi-threading: Pagoda provides multi-threading sup-

port for running unmodified programs inside the enclave, in

addition to delegating the clone system call to the non-

enclave software. As mentioned in §II-A, each thread must

have its own TCS before it can enter the enclave. Pagoda

users can specify the (maximal) thread number and Pagoda

will create the TCSs before initializing the enclave. When the

application spawns a new thread, Pagoda intercepts the clone
system call and assigns a pre-allocated TCS to the new thread.

Note that Pagoda currently does not support forking child

processes for multi-process applications. We believe Pagoda

can be extended to support fork similar to prior work [51],

[53].

V. SECURITY

Pagoda’s security goal is to prevent arbitrary read/write

accesses to the private application and library code. This
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security goal is partially fulfilled by protecting the code in

transit and at rest with code encryption and carefully handling

decryption keys discussed in §IV-B. Therefore, this section

mainly focuses on how Pagoda protects private code in use, by

satisfying the following property throughout the application’s

execution:

Property 1. Private code is mapped to a fixed set of enclave
code pages and remains execute-only.

Recall that the private code pages are only readable and

writable during the program loading and before the application

starts execution. Since the loading is handled entirely by the

loader inside the trusted runtime, we carefully engineer the

loader code, such that 1) it has no exploitable vulnerability, and

2) it fully resides within the enclave memory. Therefore, it is

reasonable to assume the loader is trustworthy. Using a trusted

loader, Pagoda establishes Property 1 before the application

starts, by configuring all enclave pages as execute-only, and

all other pages as non-executable, according to §IV-B.

§IV-B highlights that the key point in enforcing Property 1

throughout the entire execution of the application is to elimi-

nate EMODPE, as SGX defines EMODPE as the only method for

relaxing any enclave page permission. Furthermore, since the

decryption key is unreachable after the execution starts, the

enclave code cannot be expanded to include more plaintext

private code.

The rest of the section explains how Pagoda eliminates

EMODPE for both single-threaded and multi-threaded appli-

cations, with two different approaches.

1) Eliminating EMODPE for Single-Threaded Applications:
The straightforward approach to eliminate EMODPE is to

remove all occurences of the ENCLU instruction in all enclave

code pages. However, this is impractical for three reasons.

First, the application/library code might accidentally include

the 3-byte sequence {0x0F,0x1,0xD7} that is interpreted as

the ENCLU opcode even when the application is not written

for SGX, i.e., due to the variable-length nature of the x86

ISA. Second, ENCLU serves multiple purposes depending on

the leaf index value specified in rax. Some uses of ENCLU,

for example EEXIT, are still required by the Pagoda trusted

runtime, meaning the ENCLU instructions in the trusted run-

time must be preserved. Third, the adversary could also abuse

existing ENCLUs as EACCEPT (with rax=5) for dynamically

allocating new enclave pages, which can contain additional

ENCLUs.

Pagoda uses a combination of software-only mechanisms to

address all issues above for single-threaded applications. At a

high level, Pagoda ensures that a) only the Pagoda trusted

runtime contains ENCLU instructions, b) any use of ENCLU
as EMODPE in the runtime is disallowed, and c) any use of

ENCLU as EACCEPT in the runtime is disallowed, thus no

new executable ENCLU can be added dynamically. For a), after

the code decryption, the trusted loader scans the application

or library code pages to ensure that the code segments do

not contain the 3-byte sequence that can be interpreted as the

ENCLU instruction. Correspondingly, Pagoda expects software

1 enclu ; enclave operation depends on rax
2 cmp rax, 6 ; checks if ENCLU is used to
3 ; extend page permissions
4 je abort
5 cmp rax, 5 ; check if ENCLU is used to
6 ; add new enclave pages
7 je abort

Fig. 4: Pagoda inserts two simple checks after every ENCLU in

the trusted runtime. This prevents the adversary from abusing

ENCLU to subvert the execute-only memory protection or

adding adversary-crafted pages.

developers to ensure that their code does not contain the 3-byte

sequence1. If this 3-byte sequence appears in the application

or library binary, the developer can leverage an existing code

rewriting technique to eliminate the occurrence of this 3-byte

sequence that does not require either source code change or re-

compilation [55]. For b), the Pagoda trusted runtime mediates

each use of the ENCLU instruction to detect the leaf index

that subverts XOM protection (when rax=6). To detect an

illegal use, the Pagoda runtime adds a check after every such

instance as shown in Figure 4. We add the check after each

ENCLU instead of before because with control of the program

data, the adversary can easily hijack control-flow to skip any

check before the ENCLU instruction. However, the adversary

cannot skip the ENCLU instruction itself, which is immediately

followed by the check to abort the application execution should

it be abused. Similarly, for c), Pagoda additionally detects the

usage of ENCLU as EACCEPT and aborts accordingly.

However, due to exceptions/interrupts, each ENCLU and its

succeeding checks are not guaranteed to execute atomically. It

is possible to interrupt the victim enclave thread right between

ENCLU and the check. With the enclave thread interrupted, the

non-enclave software can return to the enclave in two ways.

First, non-enclave software can call ERESUME to resume the

enclave execution from the check, which is the expected be-

havior under a benign interrupt (e.g., a normal context-switch).

Second, non-enclave software can call EENTER to enter the

enclave through OEENTRY and start new enclave execution

without handling the previous AEX. We recognize that this

second case allows the adversary to bypass the check after

abusing an ENCLU as EMODPE. To prevent such an attack:

Since the OENTRY is hooked to the Pagoda trusted runtime,

we carefully design the Pagoda trusted runtime to scan the

interrupted address stored in the SSA (if any) immediately at

the enclave entry point. If this scan identifies that any pending

interrupt occurred between ENCLU and the checks, the enclave

execution is immediately aborted, since a benign execution

would resolve the interrupt through ERESUME instead. In this

way, each ENCLU and its following checks are guaranteed to

be atomic from the enclave’s perspective.

2) Eliminating EMODPE for Multi-Threaded Applications:
The above approach is insufficient for multi-threading scenar-

1The probability of this 3-byte sequence appears in a binary is extremely
low. As an example, only 3 files with a total of 7 appearances of this 3-byte
sequence are present among all library files under /usr/x86 64-linux-gnu and
/usr/lib/x86 64-linux-gnu in our evaluated machine.
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ios, due to the concurrency between threads. The adversary can

suspend a thread indefinitely between an ENCLU (after it has

been used as EMODPE) and the following checks, and use other

enclave threads to arbitrarily read/write the enclave code page

with its permission relaxed. Although the classic mitigation for

such an attack is to enforce mutual exclusion between enclave

threads, the use of mutex/conditional variables in an enclave

is vulnerable to the arbitrary read/write gadgets controlled by

the adversary, and Pagoda cannot rely on the malicious OS

kernel for blocking threads.

Therefore, we propose a microcode change to eliminate the

use of EMODPE directly without any effort from §V-1. Mi-

crocode updates/patches are a means to modify the hardware in

existing Intel CPUs [33]. SGX leaf functions are implemented

with XuCode [13], which is similar to microcode and can be

modified with microcode patches.

Selective EMODPE Enabling The basic idea is to ensure

EMODPE, the instruction to extend page permissions, can be

selectively disabled after the enclave initialization (EINIT).

First, we modify the SGX Enclave Control Structure (SECS),

a data structure created by the enclave user for storing

per-enclave metadata, and the Enclave Signature Structure

(SigStruct), a data structure created and signed by enclave

developers to verify the correctness of the enclave state at

EINIT. Both SECS and SigStruct will now include a field

en_emodpe for enabling EMODPE at runtime. This design

allows enclave software developers concerned about software

piracy to define SigStruct with EMODPE disabled, whereas

other enclave developers may set en_emodpe to allow re-

configuring enclave page permissions at runtime. Second, the

workflow of EINIT additionally verifies whether the fields in

both structures match. If not, the enclave user is potentially

an adversary who wishes to perform EMODPE at execution

time. After EINIT, SGX hardware enforces the immutability

of SECS by default. Lastly, we modify the XuCode imple-

mentation of EMODPE to check en_emodpe field in SECS

and add logic to abort if en_emodpe is unset.

VI. EVALUATION

A. Pagoda Implementation

We implement a prototype of Pagoda from scratch for

Linux. Pagoda consists of a total of 10K lines of code in

C/C++ and assembly. Pagoda does not depend on Intel SGX

SDK [27] because Pagoda needs to control the memory layout

and handle all enclave events on its own. It uses an existing

SGXv2 Linux kernel driver [34] to perform enclave operations.

Pagoda currently only supports 64-bit x86 binaries.

B. Experimental Setup and Methodology

We run all experiments on an Intel NUC Kit (NUC7PJYH)

equipped with a Intel Gemini Lake processor2 (1.5GHz, quad-

core, no hyper-threading) and 8GB RAM. We reserve the

2We use this relatively low-end processor due to its support for SGXv2.
Aside from this processor, only the most recent Ice Lake processors support
SGXv2.

maximum allowed size of enclave memory of 128MB in the

BIOS. We use Ubuntu 18.04 with Linux version 5.11.0. All

benchmarks are compiled with gcc/g++ 8.4.0.

We evaluate the performance and compatibility of Pagoda

using a combination of microbenchmarks, standardized bench-

marks and real-world applications.

First, we run microbenchmarks to understand the overhead

induced by Pagoda’s handling of cross-boundary calls. The

microbenchmarks invoke different types of system calls and

library function calls.

Second, we use SPEC CPU2017 [10] with input size ref for

evaluating the performance of Pagoda on typical CPU-bound

programs. The performance is measured by the execution

time averaged over five identical experiments. All benchmarks

are statically-linked and position-independent, since Pagoda

must determine the base of the binary image at runtime.

Consequently, the result does not include several Fortran

benchmarks (e.g., bwaves) given Fortran compiler does not

support compiling static, position-independent binaries.

We use two types of real-world applications to demonstrate

the benefit of Pagoda for both cloud and desktop applications.

We evaluate two popular multi-threaded server applications,

Lighttpd [5], and memcached [7]. We compile both appli-

cations as dynamically-linked libraries, and evaluate their

performance with the libraries mapped outside the enclave

(since those libraries are in fact public) and inside the enclave

(as if the libraries are private). We test both applications with

four threads.

We also evaluate two desktop games since video games

can directly benefit from code confidentiality for anti-piracy

purpose. We choose Quake [11] because of its wide use

in research [30], [45], [56], [57]. We include another game

WitchBlast [12], to demonstrate Pagoda’s compatibility. Both

games are dynamically-linked because they have dependencies

(e.g., OpenGL) that are only distributed in the form of dynamic

libraries. The libraries are deemed public and mapped outside

the enclave, since they are publicly available in plaintext code.

We evaluate the gaming performance using frames-per-second

(FPS). Note that these games only use CPU, unlike modern

AAA games that heavily rely on GPU.

Throughout the evaluation, we do not include the overhead

of the loading process. The experiment of each workload is

sufficiently long to amortize the cost of the loading, therefore

the measured performance overhead is mainly contributed by

SGX and the Pagoda runtime.

We do not include the performance evaluation of the hard-

ware change we proposed in §V-2. This hardware change

should induce negligible runtime overhead, since it only adds

one simple lookup in the workflow of EINIT and EMODPE.

Pagoda only invokes EINIT once throughout the lifetime of

an enclave. A valid Pagoda execution never uses EMODPE.

Compatibility We demonstrate Pagoda’s compatibility by

showing no source code change (for both the main appli-

cation and dependencies) is needed to run any of the eval-

uated programs, including the two games with complicated
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Event Overhead per call
System call (§IV-D1) 54K CPU cycles
Unoptimized cross-boundary function call (§IV-D1) 54K CPU cycles
Optimized cross-boundary function call (§IV-D2) 15K CPU cycles

TABLE I: Pagoda’s overhead in handling system calls, unoptimized
(exception-based) and optimized (trampoline-based) cross-boundary
function calls.

Fig. 5: The breakdown of Pagoda’s performance overhead over native
Linux execution for SPEC2017 benchmarks.

dependencies and system service requirements. Noticeably,

Pagoda is the first work which supports GUI applications

without requiring source code modifications, as later discussed

in §VIII.

C. Measuring Cross-Boundary Call Overheads

We first measure Pagoda’s performance overhead in han-

dling system calls and public function calls, and show the

result in Table I. These numbers reflect the execution time

cost of the communication routines described in §IV. Notice

the overhead numbers are independent of the actual system/-

function calls and the parameters, since the cross-boundary

calls handling procedure does not take the system/function

call parameters into account. System calls and unoptimized

function calls have larger performance overhead compared

to optimized cross-boundary function calls due to multiple

enclave/ring boundary crossings caused by exceptions.

D. SPEC 2017

We use SPEC 2017 [10] to drive the evaluation for single-

threaded, CPU-bound applications. We show the runtime over-

head of Pagoda over the native Linux execution for each

evaluated SPEC17 benchmark in Figure 5. On average, Pagoda

adds 2.13% runtime overhead over the native execution.

The overhead comes from two major sources – the system

call overhead introduced by Pagoda, since statically-linked

binaries only communicate with non-enclave software through

system calls, as well as the inherent slowdown caused by

the SGX hardware (e.g., memory encryption engine, SGX-

specific memory access control). To compute the overhead

caused by Pagoda’s system call handling, we count the number

of requested system calls per second by each benchmark, and

show the numbers in Figure 5. This number is multiplied by

the per-system call overhead reported in Table I to measure

how much Pagoda’s system call handling contributes to the

Fig. 6: Throughput vs. Latency of Lighttpd and Memcached. We run
both applications with three configurations: bare-metal Linux, Pagoda
with all shared libraries outside the enclave (treating all libraries
as public), Pagoda with all libraries inside the enclave (treating all
libraries as private).

overall overhead. On average, Pagoda’s system call handling

only adds 0.04% performance overhead, while the remaining

2.09% is attributed to the SGX hardware. For example, in

perlbench and gcc, the overhead contributed by system call

handling is higher than other benchmarks due to more frequent

system call invocations.

E. Server Applications

We evaluate the performance of Pagoda on two common

network-heavy server applications, Lighttpd and Memcached.

We use ApacheBench [1] and Memtier [8] to increase the

concurrent requests until the throughput reaches the limit.

We also evaluate the performance implications of mapping

shared libraries inside the enclave when the libraries requiring

dynamic linking/loading are private by running two Pagoda

configurations, one with all libraries mapped inside the en-

clave, and the other leaving all libraries outside the enclave.

For Lighttpd, the peak throughput of running Lighttpd on bare-

metal Linux is 18.7K. The number becomes 1.2K when using

Pagoda with all shared libraries mapped outside the enclave,

and 5.4K when all libraries are inside the enclave3. We see

similar trend with Memcached: when running on bare-metal

Linux, the peak throughput is 47K. The peak throughput drops

to 24K when Pagoda maps libraries inside the enclave, and

further down to 16K when libraries are outside. The large per-

formance difference between Pagoda and native execution is

due to the frequent cross-boundary calls, as both applications

are IO-intensive. Mapping shared libraries inside the enclave

shows a more significant performance benefit than mapping

libraries outside, due to reduced cross-boundary calls. As an

example, when running Lighttpd with libraries outside the

enclave, each request causes about 73.5 public library function

calls. When all libraries are mapped inside the enclave, the

program invokes around 3.42 system calls per request. To

summarize, when the frequency of the main application calling

library functions is higher than the frequency of the called

3We notice that Pagoda reports a much larger throughput degradation than
other SGX systems such as GrapheneSGX [53]. We attribute the cause of
the discrepancy to that we use a mobile-class processor for our performance
evaluation. When we test GrapheneSGX on our platform, we observe worse
throughput compared to Pagoda.
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Fig. 7: Comparing the change of Frame-Per-Second over time
between native Linux execution and Pagoda.

functions making system calls, mapping shared libraries inside

the enclave can show a performance advantage due to fewer

cross-boundary calls, aside from the security benefit of pro-

tecting the privacy of library code. Future work can leverage

the asynchronous system call approach proposed by [17], [43]

to largely reduce this overhead, by processing IO requests in

batch.

F. Desktop (Gaming) Applications

We run desktop games to evaluate both the performance and

the compatibility of Pagoda on client graphical applications.

Video games demand higher compatibility because they often

depend on more complicated OS abstractions (e.g., user-mode

DMA). In our evaluation, Pagoda is able to run both games

without any source code changes. Both games are dynamically

linked with over 100 libraries mapped outside of the enclave.

For each game, we manually play it for a few minutes and

repeat it for the native execution and Pagoda.

We show the real-time FPS in Figure 7. For Quake, native

execution achieves an average FPS rate of 58.1, with standard

deviation of 1.20. When using Pagoda, the average FPS drops

to 50.1, and the standard deviation increases to 8.37. The result

of WitchBlast is similar, despite being slightly better than

Quake: Pagoda achieves an average FPS of 57.5, compared

to 59.3 with native execution, and the standard deviation is

2.56, compared to 0.57 when running on bare-metal Linux.

Pagoda causes lower and more unstable FPS rate due to the

cross-boundary calls. For Quake, Pagoda makes 1547.8 cross-

boundary function calls per frame, in which 255.7 are un-

optimized since those functions are from dynamically-loaded

libraries and cannot be optimized by the Pagoda loader. For

WitchBlast, we observe 1504 cross-boundary function calls per

frame, similar to the number of Quake. However, only 0.7 out

of all 1504.0 calls are unoptimized, which explains why the

FPS rate of WidthBlast is higher and more stable compared

to Quake.

VII. DISCUSSION

A. Indirect Attack

Pagoda enforces code privacy by preventing direct, unau-

thorized reads and writes to the private enclave code pages at

anytime. However, we recognize that there exist other ways

that an attacker can use to indirectly infer private enclave

instructions, by monitoring other information in its view of

the enclave’s execution. We classify such indirect leakage into

two categories, depending on whether the attacker monitors

program data or micro-architectural states.

First, not only can attacker control non-enclave data, with

the gadget exploration and the code reuse attack discussed

in §IV-B, we envision that attacker could also observe and

modify enclave data via its control over the arbitrary read/write

gadgets, and additionally corrupt the enclave’s control flow.

Ideally, this enables attackers to reverse-engineer an arbitrary

sequence of enclave instructions, by creating an enclave state,

jumping to the target instructions, and observing the output en-

clave state after the execution of the target instructions. Pagoda

is susceptible to this type of attack as this attack does not

require breaking the XOM protection. To mitigate this attack,

future work can leverage control-flow integrity techniques to

prevent the attacker from probing arbitrary instructions with

attacker-crafted enclave state. For example, Intel CET [26]

enhanced with fine-grained control-flow guarantee [6] can be

directly combined with SGX to provide strong control-flow

integrity even when program data is corrupted by attacker.

Likewise, microarchitectural side channels provide addi-

tional information about the executed enclave instructions.

Whether the side channels can be practically exploited is an

interesting question that we leave for future work. Importantly,

all prior side-channel attacks assume a public program (or

algorithm), and rely on this assumption in a fundamental way

for the attack to succeed. For example, cache side-channels

rely on the attacker’s knowledge of the cache access pattern

as a function of the secret data. Thus, side-channel attacks

on a private program cannot work “out of the box”. Whether

it is possible to reverse-engineer the binary starting from

a private program is a non-trivial and interesting question

that requires new techniques. For example, large classes of

instructions, such as simple arithmetic and logic operations,

result in indistinguishable micro-architectural side effects.

B. Data Protection

Data protection is outside the scope of Pagoda, as code

privacy alone is beneficial in many scenarios. However, future

work can combine the security mechanism of Pagoda with the

data protection approach adopted by prior SGX systems, such

as GrapheneSGX. While this may sacrifice the performance

and compatibility advantage of Pagoda, future work may

explore partitioning unmodified application to only include

secret-dependent data into enclaves, similar to [39], [40]. We

envision that such techniques may be employed to determine

how to configure applications prior to deployment on Pagoda

to achieve intended security.

VIII. RELATED WORK

SGX Frameworks for Unmodified Applications Several

existing SGX systems support unmodified applications by

performing system calls with an in-enclave Library OS (Li-

bOS) [20], [46], [53]. A user only needs to specify the main

binary with all dependencies, and those systems map the

executable and all libraries, together with the LibOS inside
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the enclave. The primary benefit of the LibOS-based system is

that most library functions and system calls are handled by the

LibOS alone inside the enclave, without incurring expensive

enclave-host communications. However, existing LibOS-based

systems only support applications with limited set of de-

pendencies and system call requirements (e.g., command-line

applications dependent on libc). Terminal applications such as

vim and graphical applications such as games, which require

more dependencies and system service supports, are not cur-

rently supported by any LibOS-based systems. Panoply [51]

is similar to Pagoda as it provisions a runtime interface

to delegate library calls to non-enclave software. However,

Panoply requires significant software rewriting to both the

application and the dependent libraries, which is impractical

for large legacy applications. Other systems like SCONE [17]

and Ryoan [32] are designed for specific types of applications,

so therefore do not support arbitrary Linux applications. More

importantly, all existing SGX systems focus primarily on data

protection without making code privacy their goal.

Code Protection with SGX The original Intel SGX SDK [27]

and other SGX frameworks were designed for data protection.

Later, people realized that code privacy protection is missing

in the landscape and proposed different solutions for achieving

code privacy. SGXElide [19] requires the programmer to

identify secret code, and encrypts the secret code before the

program is shipped to the untrusted users. SGXElide designs a

complete attestation and decryption process, including remote-

attestation to verify the authenticity of the enclave software,

and protecting the decryption key with SGX’s sealing. Pagoda

adopts and extends this process into its loading procedure. A

drawback of SGXElide is that it requires rewriting application

with Intel SGX SDK. Similarly, Intel SGX PCL [35], a confi-

dential code loader developed by Intel to augment the original

Intel SGX SDK, also requires code refactoring. TEEShift [36]

and SGXCrypter [54] propose similar solutions but all suffer

from the burden of code refactoring. In conclusion, none

of the prior code privacy solutions consider confidentiality

for code in-use (instead they require code refactoring to

produce vulnerability-free enclave programs), and preserve

compatibility with unmodified applications.

Memory Vulnerability Attacks on SGX As memory vulnera-

bilities are common in large applications, there is a rich line of

work exploiting vulnerabilities in enclave software for leaking

enclave code/data. DarkROP [38] leverages exception handling

to blindly search the enclave software for vulnerabilities and

different types of gadgets, including arbitrary read/write gad-

gets (memcpy), ROP-gadgets, etc. By constructing adversary-

controlled memcpy, arbitrary readable enclave content can be

leaked. Biondo et. al. recognize that enclave software usually

contains an enclave-specific runtime (especially for applica-

tions written with Intel SGX SDK), and this runtime contains

enough gadgets to mount ROP attacks [21]. TeeRex [24]

further automates the vulnerability and gadgets exploration for

enclave programs. Attackers can leverage these attacks to copy

arbitrary readable enclave content into non-enclave memory.

IX. CONCLUSION

This paper proposes Pagoda, a practical enclave-based

framework for code privacy protection of unmodified appli-

cations with a low performance overhead. Pagoda does not

follow the conventional SGX design paradigm that protects

both code and data with enclave memory. Instead, Pagoda

presents a new way of using enclaves that achieves high

performance and compatibility, and simultaneously enforces

code privacy protection by applying SGX-enforced XOM on

private code binaries.
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