2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD) | 979-8-3503-2225-5/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICCAD57390.2023.10323843

Secure-by-Construction Design Methodology for CPUs:
Implementing Secure Speculation on the RTL

Tobias Jauch*, Alex Wezel*, Mohammad R. Fadiheh, Philipp Schmitz*, Sayak Ray?, Jason M. Fung?,
Christopher W. Fletcher®, Dominik Stoffel*, Wolfgang Kunz*

*RPTU Kaiserslautern-Landau, Germany tStanford University, USA
Hntel Corporation, USA §University of Illinois Urbana-Champaign, USA

Abstract—Spectre and Meltdown attacks proved Transient Execution
Side Channels to be a notable challenge for designing secure microarchi-
tectures. Various countermeasures against these threats were proposed
on the electronic system level. However, addressing all possible attack
scenarios requires the design and analysis of bit- and cycle-accurate
implementations.

We present a novel secure-by-construction RTL design methodology
based on a new hardware protection framework underpinned by a
generic control infrastructure that can be integrated into industry-
grade microarchitectures. The methodology uses formal verification to
systematically detect possible leakage paths and to customize the generic
infrastructure accordingly for the design. We propose an iterative flow
which semi-automatically leads to an RTL design that is guaranteed to be
secure w.r.t. transient execution attacks. A case study for the methodology
is conducted on BOOMv3, an open-source RISC-V processor with a
deep out-of-order pipeline, and the resulting secure RTL design is
benchmarked on an FPGA setup. Our design outperforms a design based
on conservative countermeasures, improving the incurred overhead by
3x / 4x (depending on the threat model) while maintaining the same
level of security.

I. INTRODUCTION

The emergence of Transient Execution Side Channel (TES) attacks,
such as Spectre [1] and Meltdown [2], brought a whole new set of
challenges to the design of secure hardware. These attacks exploit
side effects of transient execution of instructions, i.e., the instructions
are not part of the correct program flow, but are executed and
later discarded due to mis-speculation or an earlier exception. These
side effects, though not visible in the ISA-level view of a program
execution, can form microarchitectural timing side channels. TES
attacks mainly exploit high-end microarchitectural features such as
speculative and out-of-order execution. These features significantly
contribute to the performance of modern processors and mitigating
TES attacks without degrading the performance is a major challenge.

Traditionally, the response to TES attacks was using microcode
and software patches. Although being crucial for restoring trust in
legacy systems, these patches could not provide full security for future
variants in every case. The existence of TES attacks discovered after
the patching of the original Spectre and Meltdown attacks (e.g., [3],
[4]) is evidence to this.

Besides potential security gaps, given the evolution of and ad-
vances in exploit techniques, software patches primarily rely on
synchronization barriers and fence instructions, which can deteriorate
performance significantly, up to 200 % in some cases [5]. These issues
underline the need for more holistic mitigations at the microarchitec-
tural level.

Various microarchitectural schemes have been developed to address
vulnerabilities to TES attacks (e.g., [6], [7], [8]). These schemes aim
to prevent data leaks that are caused by speculative or out-of-order
execution without completely disabling these features. Although there
has been significant progress in this field regarding security guaran-
tees as well as performance overhead of the hardware countermea-
sures, the evaluation of these techniques has so far mostly been done
based on abstract models, such as gem5 [9]. These abstract models

provide a good estimate of the impact of the designed architecture
on performance. However, the lack of cycle-accurate behavior in
these models results in a semantic gap leaving out specific details
of the security, performance and design of these microarchitectural
schemes at the register transfer level (RTL). Furthermore, these
techniques rely on the designer’s expertise to manually find timing
side channels in a design. Such an ad-hoc approach could result in
errors when considering highly complex microarchitectures at the
RTL. Therefore, there is still an open challenge inbringing hardware
protection mechanisms to the RTL in a systematic way.

A. Contribution

We address these challenges by proposing a new hardware protec-
tion framework that can be integrated into industry-grade microarchi-
tectures. It is systematically customized in a secure-by-construction
design flow to achieve the defined security targets. The proposed flow
is an iterative procedure that interleaves design steps with formal
verification to create security countermeasures against TES attacks
in a semi-automated way. Our design and verification flow pinpoints
security issues at the design phase and enables the designer to
implement targeted security countermeasures rather than conservative
and expensive blanket fixes.

The proposed approach utilizes a generic dynamic information flow
tracking infrastructure to detect the flow of information from tran-
siently accessed data, building upon secure speculation approaches
such as Speculative Taint Tracking (STT) [6] and DOLMA [7].
The information flow policy, i.e., when to block propagation of
tainted information, is determined based on a formal analysis of
the microarchitecture using Unique Program Execution Checking
(UPEC) [10].

The proposed systematic design flow provides an end product
with a well-defined formal security guarantee. This formal guarantee
enables the designer to adopt more aggressive optimizations without
increasing the risk of compromising security because any security
violation is guaranteed to be detected in the design flow.

The main contributions of the paper are as follows:

o A secure-by-construction RTL design flow based on a generic
control infrastructure for security is proposed for designing
microarchitectures that are secure against TES attacks (Sec. III).
It replaces ad-hoc and error-prone patches by a holistic and
systematic approach that requires no a priori knowledge about
TES attacks and is backed by formal security guarantees.

o Implementing advanced security features, such as STT, without
gaps normally exceeds the competences of the human design
teams responsible for RTL design in state-of-the-art industrial
flows. Therefore, we propose to decompose the design problem
into standard RTL design tasks that do not require any extraordi-
nary competences and additional security-specific measures that
demand a sophisticated design analysis.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 08,2025 at 00:11:58 UTC from IEEE Xplore. Restrictions apply.

For the first part, we propose a generic and re-usable infras-
tructure including a centralized control unit (Sec. III-C). A
designer can straightforwardly extend a given RTL design using
this generic infrastructure. For the second part, we propose
a tool-guided procedure (Sec. III-D) which incorporates the
security objective into the generic infrastructure by an iterative
and automated flow. The security-specific customization of the
generic infrastructure is automated based on a formal analysis.
This ensures that the design’s sophisticated information flow
policy, i.e., when to block propagation of tainted information, is
determined automatically and implemented correctly — without
any special expertise of the designer.

o A case study of the proposed design flow is conducted on
the Berkeley Out-of-Order Machine (BOOM) [11], in which
we developed a secure RTL implementation (Sec. IV). The
secure design delivers an average performance overhead of
5.2% and 36.0 % compared to the insecure baseline design,
depending on the threat model. Our case study shows that RTL
design details can create timing variations that are not visible in
the more abstract models. Therefore, a systematic methodology
based on cycle- and bit-accurate models is necessary.

o The implemented design, to the best of our knowledge, is the
first formally verified RTL hardware implementation of a proces-
sor featuring secure speculation with competitive performance.
The design is capable of running a Linux operating system and
is comparable to medium-sized application processors used in
industry.

II. RELATED WORK
A. Mitigating TES Attacks

The emergence of transient execution attacks required immediate
countermeasures. The first mitigations, some of them still in use,
were based on software constructs augmenting vulnerable parts of
the operating system, e.g., context-sensitive fencing [12].

Apart from software countermeasures, researchers developed new
approaches to close the high-bandwidth side channels in the
cache [13], [14], [15], [16]. These approaches, however, do not
provide a holistic solution to TES vulnerabilities and do not mitigate
attacks based on channels other than cache footprints.

STT [6] and DOLMA [7] employ dynamic information flow
tracking to prevent all possible TES vulnerabilities by selectively
blocking speculative execution of certain instructions.

These approaches enforce the principle of weak speculative non-
interference [17], i.e., no transient data access interferes with the tim-
ing of the committed instructions. Dynamic information flow tracking
enables the processor to execute more instructions speculatively with-
out risking information leakage. However, the security of the design
depends on the ability of the designer to identify every instruction
capable of forming a side channel, which is not a trivial task for
a complex out-of-order microarchitecture. The mentioned strategies
were developed and published based on an abstract processor model
using the gem5 simulator [9] which simplifies certain behavioral
aspects compared to an RTL design of a processor. Implementing
a secure microarchitecture on RTL incurs several challenges that are
addressed in this paper.

Another category of patches combines hardware and software
measures to make systems more secure. Mitigations such as Spec-
treGuard [18], ConTeXT [19] or ProSpeCT [20] are based on an-
notating sensitive memory regions in software. Additional hardware
modifications then ensure that the content of an annotated region
cannot be leaked during transient execution. In addition to preventing
TES attacks, these combined approaches are also able to ensure

secure speculation for programs that comply with the constant-
time programming paradigm. On the other hand, annotations at the
software level require compiler and / or ISA support and incur
additional manual effort.

B. Detecting TES Vulnerabilities in Hardware Designs

Simulation- and fuzzing-based techniques have been developed
to detect vulnerabilities to TES attacks in hardware designs by
generating directed and randomized tests [21], [22], [23]. Due to
their non-exhaustive nature, these approaches cannot provide formal
guarantees.

Other works employ hardware taint properties to verify various
security objectives, including TES attacks [24], [25], [26]. Taint
property verification pioneered the adoption of formal methods in
hardware security. However, these techniques have limited detection
capabilities for information leakage through previously unknown side
channels or paths with large temporal length.

Unique Program Execution Checking (UPEC) [27], [10] is a formal
security verification technique capable of verifying RTL hardware
designs. UPEC aims to exhaustively verify the absence of vulnera-
bilities to TES attacks, even the ones based on previously unknown
channels. It has been demonstrated to be scalable even to deep out-
of-order processors with speculative execution [28]. UPEC has also
been extended to other security targets, such as integrity [29], data-
oblivious execution [30] and confidentiality in SoCs [31]. UPEC is
employed at the core of the proposed design methodology and is
further explained in Sec. III-B.

III. SECURE-BY-CONSTRUCTION DESIGN FLOW

This section presents the proposed secure-by-construction design
methodology in detail. First, we discuss the underlying threat model
(Sec. III-A) and the formal security analysis (Sec. III-B). Sec. III-C
introduces a generic control infrastructure for security. Sec. III-D
puts everything together and employs these concepts in our iterative
design methodology.

A. Threat Model

Our approach is based on the commonly used threat model for
TES. The security target is preventing any transient execution side
channel from leaking the content of data memory.

This threat model assumes an attacker that can measure the timing
of instruction execution with clock cycle accuracy, including the
timing of the victim software execution. The victim process has
sufficient privilege to access secret data and may transiently execute
any instruction outside its correct program flow and later discard
the results. The attacker can poison the predictors in order to trick
the victim process into executing a specific gadget. This threat model
includes any TES attack based on any microarchitectural side channel
such as cache side channels [32], port contention [3], and data-
dependent timing in functional units [33].

For this threat model we may assume that the victim does not leak
its protected data in the correct program flow under sequential se-
mantics. Hence, preventing attacks enabled by classical side channel
analysis, e.g., monitoring the instruction cache footprint of square-
and-multiply exponentiation in RSA [34], is not considered in this
paper.

Our threat model protects data that resides in the data memory
(data-at-rest), while any information in general-purpose or control
status registers is considered non-confidential. Storing confidential
information in the architectural registers must be handled responsibly
by the software developer. Physical side channels, such as power or
electromagnetic side channels, are also out of scope of this paper.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 08,2025 at 00:11:58 UTC from IEEE Xplore. Restrictions apply.

SoC,
£t other_mem, |[secret,|| 4ump CPU
g R/W 1
g% Memory,
b
‘_\
gL other_mem, [|secret. || 4mmp
ww | CPU,
SOCZ Memory,
Fig. 1: Computational Model for UPEC
assume:
at t: micro_soc_state_1 = micro_soc_state_2;
during [t, t+k]: secret_data_protected() ;
during [t, t+k]: secret_load_transient ();
prove:
at t+k: soc_state_1 = soc_state_2;

Fig. 2: UPEC property formulated as an interval property

To allow for a trade-off between performance and security, we
distinguish between two different threat models, similar to the
ones proposed in [13]: spectre and futuristic. The spectre model
covers timing side channels caused by control-flow mispredictions,
i.e., it only considers instructions after unresolved branch or jump
instructions and neglects any other form of transient execution. The
Sfuturistic model extends this to all kinds of transient execution and
includes prior exceptions, memory consistency model violations and
load/store ordering failures. Such a distinction is helpful for the
designer since the spectre model already covers the majority of known
Spectre variants and prevents all control-flow-based universal read
gadgets like Spectre-V1 and Spectre-V2. Additionally, it allows the
microarchitecture to benefit more from out-of-order execution.

B. Formal Security Analysis with UPEC

The secure-by-construction design methodology proposed in this
section employs a formal security analysis carried out by UPEC [10].
UPEC enables the methodology to deliver a design with formal secu-
rity guarantees with respect to the threat models above (Sec. III-A).

UPEC exhaustively searches for TES vulnerabilities in an RTL
design by checking whether or not transiently accessed data can
interfere with program execution as observed by the cycle-accurate
sequence of valuations to the architectural registers. In UPEC, any
transiently accessed data is considered confidential and, in the follow-
ing, referred to as secret. UPEC verifies a 2-safety hyperproperty on
a self-compositional model, depicted in Fig. 1. The model consists of
two structurally identical instances of the RTL design, and the only
difference is the content of the memory locations holding secret data.

Fig. 2 shows the UPEC property. The property, specified in the
form of an implication between an assumption and a commitment,
is an interval property [35] starting from an arbitrary state. In the
assumption part, micro_soc_state denotes the vector of all state vari-
ables in the design. The first assumption ensures that the two design
instances in the model start from an arbitrary but equal microarchitec-
tural state. The next two assumptions specify two requirements for the
execution trace considered by the property: secret_data_protected()
specifies that any user-level load instruction (i.e., a load issued by
the attacker) targeting addresses outside the user’s memory region
is blocked by an exception. secret_load_transient() ensures that any
privileged load instruction (issued by the victim) accessing the secret
is transient, depending on the threat model. This means its result
will be discarded and not committed to the architectural registers.
By the use of these assumptions, we only consider executions where

the secret is not accessed (read from memory) in the program’s
non-speculative semantics. In the commitment part, soc_state is a
vector of state variables that includes all architectural registers of
the design. Any discrepancy in the valuation of soc_state between
the two instances must originate from the secret as it is the only
difference between them. When verifying the UPEC property, the
solver explores all possible scenarios under which the secret is read
either illegally (blocked by an exception) or transiently, and checks
how the secret can propagate or leak. In [10], a verification framework
based on UPEC is presented. The verification framework yields an
unbounded security guarantee using this bounded interval property.

C. Generic Control Infrastructure for Security

STT and DOLMA showed that dynamic information flow tracking
has the potential for enabling secure speculation with low perfor-
mance overhead. This is due to the fact that it allows the microarchi-
tecture to speculate more freely as long as transiently accessed data
is not able to leak via a side channel. However, achieving maximum
performance with these approaches without compromising security
is challenging, since the designer needs to manually inspect many
scenarios to identify all possible side channels. This process can be
susceptible to errors and may lead to security gaps.

Our design methodology borrows ideas from STT and DOLMA to
build a generic control infrastructure for security. However, it replaces
the manual inspection with a formal UPEC analysis, as described in
Sec III-D. The infrastructure enables the designer to enforce different
information flow policies in a systematic way and avoids ad-hoc local
patches.

Fig. 3 shows how our methodology augments a standard out-
of-order execution pipeline with a generic control infrastructure
for security. It consists of a generic tainting infrastructure and an
information flow controller (IFC).

1) Generic Tainting Infrastructure: Every register in the general-
purpose register file is instrumented with an additional field for taint
information. In-flight instructions in the execute stage have an addi-
tional attribute for the taint information regarding their destination
register. This information includes a single bit denoting the taint
which is set and cleared based on taint and untaint rules. These rules
rely on the visibility point [6] in the Re-Order Buffer (ROB), which is
defined as the youngest non-speculative instruction, depending on the
threat model. An unsafe load instruction, i.e., a load instruction which
lies between the visibility point and the ROB tail, taints its destination
register in the register file (Fig. 3c). Subsequently, any instruction
that has a tainted operand sets the taint bit for its destination register
(Fig. 3e). Based on the taint rules, the effect of speculatively accessed
data is tracked across the pipeline over the course of instruction
execution.

For minimum performance penalty, the output of speculative load
instructions must be untainted as soon as they are proven non-
transient, i.e., when they pass the visibility point in the ROB. This can
be challenging to implement, as retracing instruction dependencies
through the ROB is difficult. Tracking the youngest root of taint
(YRoT), i.e., the youngest instruction that initiated the taint bit,
simplifies this problem by removing the chaining of dependencies [6].
Therefore, the taint information of the register file and of in-flight
instructions also have a field that stores an identifier pointing to the
YRoT. This identifier, for example, can be the index of the ROB
entry for the corresponding instruction. In case of a load instruction,
the YRoT of the destination register is set to the identifier of the load
instruction itself (Fig. 3c). For any other instruction, the YRoT of the
destination register is set as the youngest YRoT among the tainted
operands (Fig. 3e). Using the YRoTs, the register file clears the taint

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 08,2025 at 00:11:58 UTC from IEEE Xplore. Restrictions apply.

Taint interface io.FU(
@ Information input inst_opcode
Reg. File @I input rd.taint
¥ input ROB_idx
d output kill_signal
Out-of-Order Loaﬂls.:ore EEEL] 2) P g
Issue Unit L interface io.issue_unit (
Fetch, e % . output wait
Decode, > Functional |, I Write output wait_idx
. Units Back output wait_YRoT
Dispatch 0 A)
for each FU in funtional_units({
if (is_transmitter (FU.inst_opcode)
Visibility A && FU.rd.taint) {
Tail Point Head FU.kill_signal = 1
‘ l IEC issue_unit.wait = 1
issue_unit.wait_idx = FU.ROB_idx
List of Il Original Design issue_unit.wait_YRoT = FU.rd.
1S transmitters | | qgud I Added } YRoT
ROB . - HEE Modified }
unsafe safe ‘,

(a) Generic Tainting Infrastructure and IFC

(b) IFC Module

unit to write back

ers

} }
} }

/ ce C registc
if (is_unsafe(load.ROB_idx)) { if (rsl.taint || rs2.taint){ for each slot in issue_unit{
rd.taint =1 rd.taint = 1 if (IFC.wait && IFC.wait_idx ==
rd.YRoT = load.ROB_idx slot .ROB_idx) {
} if (rsl.taint && !rs2.taint) { slot.state = WAIT
rd.YRoT = rsl.YRoT slot.YRoT = IFC.wait_YRoT
} }
L if (!'rsl.taint && rs2.taint) { if (slot.state == WAIT && is_safe(
(c) Tainting rd.YRoT = rs2.YRoT slot.YRoT) {
} slot.state = READY
for each r in register_file({ if (rsl.taint && rs2.taint) { }
if (is_safe(r.YRoT)) { rd.YRoT = youngest (rsl.YRoT, rs2 }
r.taint = 0 .YROT)

(d) Untainting

(e) Taint Propagation

(f) Issue Unit

Fig. 3: Generic Control Infrastructure for Security

bit of any register as soon as its YRoT points to a safe instruction
(Fig. 3d).

It should be noted that in this paradigm, the data memory does
not need to be tainted manually since any transient memory access is
considered confidential information until the load instruction becomes
non-transient.

2) Information Flow Controller: The proposed information flow
controller (IFC) selectively inhibits execution of certain in-flight
instructions without stalling the entire pipeline. Our iterative design
methodology (Sec. III-D) utilizes the IFC to implement information
flow policies in a semi-automated way.

The pseudo code for the IFC module is described in Fig. 3b. The
IFC receives the opcode, ROB index and taint information of the in-
flight instruction in every functional unit. It is equipped with a list
of transmitters, i.e., instructions capable of forming a side channel.
The function is_transmitter() checks the opcode of every in-flight
instruction against the list of transmitters. During runtime, if there is
any tainted in-flight transmit instruction, the IFC sends a kill signal
to the corresponding functional unit to prevent the execution of the
transmitter. The IFC also notifies the issue queue with a wait signal
and sends the necessary information to re-issue the instruction if
it becomes safe. The designer does not need to set up the list of
transmitters manually, and only needs to implement the IFC with an
empty list. The list will then be generated and refined through the
iterative design methodology by formal analysis.

In case of functional units with multi-cycle execution, the IFC
kills transmit instructions at the beginning of the execution phase.
Therefore, there is no need to incorporate complex logic to abort

multi-cycle operations in the middle of their execution. This signif-
icantly simplifies the integration of the IFC into the pipeline. In the
unlikely event that transmitters exist that leak prior to the execution
stage [36], we rely on the exhaustive analysis of UPEC to detect
them. In this case, a local fix can be applied.

The issue queue processes the wait command from the IFC. Each
issue slot compares the ROB index of its instruction with the ROB
index of the instruction killed by the IFC. If they match, the slot
saves the YRoT that corresponds to this instruction and goes to the
WALIT state. As soon as the YRoT becomes safe, the slot goes back
to the READY state and re-issues the instruction according to the
existing scheduling logic (Fig. 3f).

It should be noted that the design flow is inherently robust against
design mistakes in the infrastructure. The UPEC formal analysis
can discover any bug in the introduced design instrumentation that
violates the formalized security target.

Unlike mitigations proposed in the literature [6], [7], [37], [18],
[19], [20] which require a security engineer integrating patches across
a complex pipeline, our approach creates a generic and centralized
security infrastructure. Designing this infrastructure does not require
any in-depth security knowledge since only the implementation of the
visibility point depends on the threat model. Therefore, it creates a
separation of concerns by decoupling the tool-based security analysis
from the manual design tasks which are straightforward.

D. Iterative Design Methodology

Fig. 4 shows the proposed iterative design flow for the secure-
by-construction methodology. The basic idea is to interleave formal

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 08,2025 at 00:11:58 UTC from IEEE Xplore. Restrictions apply.

Generic
Control Infrastructure for Security
¢ Tainting Infrastructure
« Information Flow Controller (IFC)

Hardware Design (RTL)

000 Processor Design

Threat Model

«» Futuristic vs. Spectre
«+ Used to refine UPEC property

¢

VI

Local Security Patches

v Formal RTL Analysis
\Y “» UPEC
Semi-Automatic Customization * Property checking
<+ Identify transmit instructions
¢ Refine list of transmitters in IFC
VII

«» Revert low-level design decisions
¢ Fix design bugs

Secure-by-Construction RTL
Hardware Design

Fig. 4: Secure-by-Construction Design Flow

security verification by UPEC with the design steps and iteratively
verify and patch the design. In each iteration, UPEC pinpoints
a vulnerability by producing an execution trace that exposes a
microarchitectural timing side channel. The trace points to a transmit
instruction whose opcode is then added to the list of transmitters
in the IFC. Through these iterations, the list of transmitters in the
IFC is refined in a semi-automatic way such that the IFC blocks any
instruction leaking tainted data. In the last iteration, UPEC certifies
the design to be secure w.r.t. the threat model. This interleaving
of incremental design and verification steps removes the need for
targeting security in a separate verification flow. The starting point
of the methodology is the RTL implementation of an out-of-order
microarchitecture (Box II in Fig. 4). The designer needs to select
the desired threat model w.r.t. TES attacks (Box III in Fig. 4), as
described in Sec. III-A. The RTL implementation is then instrumented
with the generic control infrastructure for security (Box I in Fig. 4),
according to Fig. 3. The list of transmitters in the IFC is initially
empty and the IFC does not stall any instructions. The threat model
is also used to refine the macro secret_load_transient() in the UPEC
property (cf. Fig. 2).

The iterative design flow begins with verifying the initial design
with UPEC (Box IV in Fig. 4). The proof, most likely, points to
a TES vulnerability and shows an execution trace describing the
propagation and leakage of the secret from the memory to the
architectural registers. The trace consists of a sequence of instructions
that use transiently accessed data. The designer now needs to identify
the instruction being the culprit for the side channel. This is easy
because the SAT solver always finds the shortest possible trace as
a counterexample [38] and therefore, the sequence does not contain
any irrelevant instructions. Any instruction after the transient load is
crucial for the side channel and blocking it breaks the propagation
chain. In the majority of cases, selecting the first instruction right
after the transient load is sufficient. Once the transmitter has been
identified, its opcode is added to the list of transmitters in the IFC
(Box V in Fig. 4).

In some cases, the designer may conclude from the counterexample
that a local patch can achieve security without performance overhead
(Box VI in Fig. 4). For example, if the side channel exists due
to specific RTL design decisions or even design bugs, reverting
these decisions may remove the side channel without impacting the
performance. Furthermore, the formal analysis also points out any
mistake in the implementation of the generic control infrastructure
for security. It is easy to identify counterexamples pointing to such
a bug, because the counterexample will show a trace with a transmit

instruction that is already in the list of transmitters. Such an execution
trace indicates that the taint propagation is not implemented properly
or the IFC is not integrated correctly.

Once the detected gap is patched, the design is re-verified. This
process is continued until the solver can no longer produce a
counterexample and therefore certifies the design to be secure w.r.t.
the threat model (Box VII in Fig. 4).

Thanks to the exhaustive proofs of UPEC, the final design is
enhanced to not miss any side channel, even previously unknown
ones. Furthermore, since the counterexamples only point to the in-
structions that are absolutely necessary for forming a side channel, the
design avoids blanket fixes and unnecessary performance overheads.
The process completely relieves the designer from any a priori
knowledge about side channels, and prevents any mistakes due to
misunderstanding the counterexamples. For example, if the designer
selects the wrong instruction as a transmitter, this will be detected
since the UPEC proof will return the same counterexample in the
next iteration. More importantly, the UPEC property is agnostic to
the underlying information flow infrastructure and therefore detects
any bug in this part of the design that can lead to information leakage.
This is crucial for designing a secure microarchitecture, since, as our
case study in Sec. IV shows, implementing information flow tracking
schemes can be prone to design errors.

The main advantage of the proposed flow lies in the fact that
it enables designers to embark on more aggressive optimizations
without risking the security of the design. The final product can
be benchmarked using simulation / FPGA emulation (Box VIII in
Fig. 4) and the designer can optimize different parts of the design to
achieve the desired performance. Any such design update within or
after the iterative flow is checked by UPEC to evaluate the security
implications of the optimizations. This is particularly important for
out-of-order microarchitectures, where designers need to employ a
variety of techniques to increase throughput while minimizing the
critical path of the design.

IV. CASE STUDY ON BOOM

To show the feasibility of our design methodology, we present a
proof-of-concept mitigation of all TES vulnerabilities according to
the threat models defined in Sec. ITI-A in BOOMv3 .

A. Overview on BOOM

The Berkeley Out-of-Order Machine (BOOM) [11] is an open-
source superscalar out-of-order core, designed and maintained by

Uhttps://github.com/RPTU-EIS/SecureBOOM

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 08,2025 at 00:11:58 UTC from IEEE Xplore. Restrictions apply.

the UC Berkeley Architecture Research Group. The core’s third
major release, BOOMv3, implements the RV64GC variant of the
RISC-V ISA. Since the medium configuration of BOOM used in
our work delivers performance comparable to the ARM Cortex A9
core, the case study shows that the proposed approach is feasible for
industrial-grade processor designs. Spectre-style attacks are possible
in BOOMvV3 and no mitigation has been implemented yet [39]. With
respect to Meltdown, measures have been taken in BOOMvV2 to
prevent this kind of attack.

B. Implementing the Generic Control Infrastructure for Security

Following the design flow described in Sec. III, we begin the
case study with implementing the generic control infrastructure for
security (Fig. 3) in the existing BOOMv3 design. We created two
different versions of BOOMVv3, one for the futuristic and one for
the spectre threat model. For the visibility point in the futuristic
model, we need to identify the youngest non-transient instruction
in the ROB, i.e., the youngest instruction that is bound to commit.
The straightforward solution would be to simply consider the ROB
head as the visibility point. However, this is overly conservative
and incurs high performance overhead. The other possibility is to
utilize the Point of No Return (PNR) pointer existing in the ROB of
BOOMVv3. The PNR runs ahead of the ROB head and indicates the
oldest instruction w.r.t. program order that can be squashed due to
misprediction or an exception. All the instructions between PNR and
ROB head will definitely commit and can therefore be considered as
non-transient (safe). In our design for the futuristic model, we use the
PNR for defining safe and unsafe instructions and setting and clearing
taint bits. To this end, the is_safe() and is_unsafe() functions of Fig. 3
are refined by comparing the given ROB index to the PNR. As the
PNR moves forward, the untainting logic clears the taint bit of every
register whose YRoT becomes safe (Fig. 3d).

For the spectre model, the design of BOOMV3 allows for a
different approach for defining safe and unsafe instructions. Each in-
flight instruction in BOOMvV3 has a branch mask which represents
the number of unresolved older branches or jumps. Each bit of the
branch mask corresponds to a specific in-flight branch or jump. The
BOOMVv3 design utilizes these masks to resolve the speculations as
soon as a branch is executed. If a branch is predicted correctly, the
corresponding bit in all branch mask registers is cleared. The branch
mask allows us to implicitly define the visibility point for BOOMv3
under the spectre model. Any instruction with a branch mask equal to
zero is safe under the spectre threat model and therefore the is_safe()
and is_unsafe() functions are refined by checking the corresponding
branch mask of the given ROB index. If a load instruction is on a
correctly speculated path, the core clears its branch mask bit by bit
as the older jump and branch instructions resolve. Consequently, the
untainting logic clears all the taint bits that are initiated by this load.

Re-using the branch mask and the PNR for defining safe and unsafe
instructions significantly simplifies the implementation of the generic
control infrastructure for security, since the designer does not need
to implement a separate pointer in the ROB for the visibility point.

The rest of the generic control infrastructure for security is imple-
mented in BOOM similar to Fig. 3.

C. Formal Analysis Setup

The formal security analysis by UPEC is at the core of our
presented design methodology. The first step in setting up the formal
UPEC proof is to generate the UPEC computational model for
the BOOMvV3 design, similar to Fig. 2. In this model, we soundly
blackbox [10] modules that have a large number of state bits, such
as memory banks inside the data cache, to improve the scalability
of the proofs without introducing verification gaps. Furthermore, a

copy of the secret also resides in the data cache, which enables
the solver to detect secret leakage to architectural registers with
counterexamples of shorter temporal length. The UPEC property and
its constraints and invariants are created and refined based on the
verification methodology described in [10].

Once the property and the model are set up, the formal analysis
can be started. UPEC allows to decompose the security verification
into a set of smaller proofs such that each of them analyzes secret
propagation to different microarchitectural state variables. The solver
exhaustively considers every resulting scenario and detects all state
variables to which the secret can propagate. If a propagation to
an architectural register is detected, it is marked as a leakage alert
(L-alert).

In our case study on BOOMv3 multiple leakage alerts are detected,
and they can be attributed to one of the following factors:

1) A new transmit instruction is detected that can form a transient
execution side channel. The IFC must be refined to block the
execution of this instruction when it is tainted. The designer
may also opt for a local patch, if the timing side channel is
due to a design mistake rather than a feature.

2) There is a bug in the taint logic, e.g., the taint is not set,
propagated or cleared correctly. This is the case when the
counterexample points to a transmit instruction that is already
added to the list of transmitters in the IFC. The designer has
to manually fix the information flow tracking logic.

D. Iterative Design Methodology for BOOMv3

The experiments described in this subsection evaluate the transmit
instructions for both the futuristic and the spectre threat model.
The first transmit instructions identified by our formal analysis are
the branch, jump and link register, and load instructions. These
instructions are added to the list of transmitters so that the IFC
blocks their execution unless the corresponding taint bit is zero. The
side channels through these instructions have also been previously
identified in BOOM [10] as well as in x86 processors [6], [7].
Therefore, designers may opt to consider them as transmit instructions
before the first iteration of formal analysis.

The next iteration of formal analysis on the updated design
produced a counterexample that pointed to a bug in the tainting
infrastructure. A subtle bug in the taint propagation logic caused
tainted operands not to be propagated to the destination register for
a specific type of instruction. This bug and a few other scenarios
that were pointed out by the formal analysis show that implementing
dynamic information flow tracking is highly prone to error.

The next round of formal analysis showed that address translation
of the store instructions leaks the address through the translation
lookaside buffer (TLB) and can form a transient execution side
channel. A similar attack pattern has also been reported in [7]. It
should be noted that in BOOMv3 store instructions are decomposed
into two operations, namely store address (STA) and store data (STD).
The (micro-)opcode associated with the store address operation
translating the address of the store is added to the list of transmitters
in the IFC.

Independent of our tainting infrastructure, our case study showed
that the design updates implemented with BOOMV3 re-introduced
a Meltdown vulnerability which had been securely patched in
BOOMV2 [39]. Page faults and address misalignment errors raise
exceptions (signal (1) in Fig. 5), however the corresponding load
executes and sends the data back to the core, forming a transient
execution side channel. After discovering this issue, we informed the
development team who confirmed the gap. To mitigate the detected
Meltdown vulnerability, we implemented a local patch depicted as

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 08,2025 at 00:11:58 UTC from IEEE Xplore. Restrictions apply.

LSU DCache

p. addr. | l

9 1

v. addr.

CORE

exception data resp.

—— MEM

Fig. 5: Load-Store Unit in BOOM and implemented Meltdown
mitigation

TABLE I: BOOMv3 Design Refinements

List of Transmitters Local Security Patches

LB, LBU, LH, LHU, LW,

BEQ, BNE, BGE, BGEU,

BLT, BLTU, JALR,

STA (for all store instructions),

DIV, DIVU, DIVW, DIVUW,

REM, REMU, REMW, REMUW,
FDIV.S, FDIV.D, FSQRT.S, FSQRT.D

Meltdown Patch,
bug fixes in the control
infrastructure for security

signal (2) in Fig. 5. We used the existing kill signal for the S1 stage
in the data cache to abort faulty loads from reaching the cache array
in the S2 stage. With this mechanism, given that the cache interface
is fully pipelined, killing faulty loads cannot have any effect on the
scheduling of memory requests to the data cache. Although a faulty
load occupies the data cache port for one clock cycle, the port is
available again in the following cycle regardless of whether or not
the load was aborted in the S1 stage.

Further iterations of the design methodology discovered multiple
new transmit instructions which could only be detected in the cycle-
accurate RTL implementation of the system. In BOOMv3, the Integer
Division Unit and the Floating Point Divide and Square Root Unit
have operand-dependent timing behavior. Instructions running on
these functional units may, therefore, leak their operands through
resource contention and act as transmit instructions. The opcodes of
these instructions are added to the list of transmitters in the IFC.

In addition to detecting transmit instructions and other security
vulnerabilities, our proposed design methodology also provides the
opportunity for performance optimizations without the risk of cre-
ating new side channels or weakening the implemented security
features. Through the course of this case study, we implemented two
optimizations to speed up the performance of our security infrastruc-
ture. The first measure was to bypass a buffer in the issue queues
to untaint safe instructions one clock cycle earlier. Furthermore, the
PNR implemented in the baseline BOOMvV3 design acted overly
conservative regarding load instructions. A load operation in the ROB
was only marked as safe after it received its data from the cache.
Consequently, in case of a cache miss, the PNR was stuck for a
relatively long time until this operation completed. We changed the
PNR logic to advance as soon as the address of a load has been
successfully translated and all older loads and stores in the ROB
have already been acknowledged by the data cache. At this stage the
load is no longer squashable and the PNR can be advanced safely.

Tab. I summarizes the refinements done by the proposed design
methodology in our case study on BOOMvV3. It includes the list of
transmitters in the IFC that is created by the iterative flow in a semi-
automatic manner, as well as the local patches that are guided by
the counterexamples of the formal analysis. It should be noted that
the transmitters are the same in both threat models. The difference
between the spectre and futuristic threat model lies in the visibility
point that defines when to taint and untaint information.

TABLE II: BOOMv3 Configurations

Small Medium Large Mega
Decode Width 1 2 3 4
ROB Entries 32 64 96 128
LD/ST Queue Entries 8/8 16/16 24/24 32/32
Total Issue Slots 24 48 72 96
CoreMark/MHz 2.28 3.66 4.45 4.96

In our case study the iterative design methodology rendered a
secure design after 12 iterations. If an iteration of the design flow
identified an instruction as a transmitter, other variants of the same
instruction, e.g., signed/unsigned or single-/double-precision, were
also added to the list of transmitters in the same iteration. It should
be noted that UPEC decomposed the formal analysis into several
proofs that can run in parallel. For BOOMv3 with the medium
configuration 329 properties were generated by UPEC. Certifying
the security of the core requires proving all properties. However, a
leakage alert is usually detected after checking only a small subset of
the properties. Each property check in the final iteration took 2 hours
on average. The overall runtime of the security analysis depends
heavily on the available computational resources. The memory usage
of a single proof was 25 GB on average with a maximum of 33 GB.
Each property was proven using the commercial property checker
OneSpin 360 DV, on an Intel Xeon Gold 6234 CPU at 3.3 GHz
running Ubuntu 18.04.

E. Performance Evaluation

To evaluate the impact of the implemented security features,
we synthesized our verified design for an FPGA target and ran
emulations of the secure core’s behavior. In addition to the BOOMv3
design variants created by our design methodology for the two
threat models, SecureBOOM Futuristic and SecureBOOM Spectre, we
also implemented and emulated more straightforward fixes targeting
transient execution of all load instructions. The simplest fix against
TES is to block any speculative access to the data memory. Hence, we
implement naive delay [15] delaying all load instructions until they
reach the head of the ROB. A less prohibitive version of the same
principle is referred to as eager delay [15]. In this design variant,
load instructions are only delayed until they reach the visibility point,
depending on the threat model (cf. Sec. III-A).

We evaluate CPU performance by running the
SPEC CPU 2006 [40] benchmark suite with the reference inputs.
Since running all workloads on the original BOOMvV3 design on the
FPGA takes more than two weeks of wall-clock time, we selected
the 15 benchmarks that pose the lightest workload in terms of the
runtime on the original BOOMYV3 design. These benchmarks consist
of eight integer and seven floating-point workloads. We benchmark
the standard medium configuration of BOOMv3 (cf. Tab. II) on an
AMD Virtex UltraScale+ VCU118 at 7SMHz.

The execution times normalized to the runtime on the insecure
baseline design are depicted in Fig. 6. As expected, naive delay is
the worst-performing secure design with an overhead of roughly 2x
on average for the tested benchmarks. In the futuristic threat model,
eager delay comes with an overhead of 84.6 % whereas SecureBOOM
Futuristic reduces it to 36.0 %. SecureBOOM Spectre is only 5.2 %
slower than the insecure baseline design. The overhead for eager
delay in this threat model is 20.9%.

Tab. III shows the hardware overhead of the implemented designs
in terms of FPGA utilization compared to the insecure baseline
design. SecureBOOM Spectre has a higher look-up table and flip-
flop utilization than SecureBOOM Futuristic due to the fact that in

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 08,2025 at 00:11:58 UTC from IEEE Xplore. Restrictions apply.

2,50
2,25
2,00
1,75
1,50
1,25
1,00

0,75

Normalized execution time
over insecure baseline design

W Naive Delay

Eager Delay Futuristic

B SecureBOOM Futuristic

Eager Delay Spectre W SecureBOOM Spectre

Fig. 6: SPEC CPU 2006 results for secure BOOMv3 variants in the medium configuration

Normalized average execution time
over insecure baseline design

Medium Mega

-%-Naive Delay —-%-SecureBOOM Futuristic

Eager Delay Spectre

Eager Delay Futuristic
-%-SecureBOOM Spectre

Fig. 7: SPEC CPU 2006 average normalized overheads for different
BOOMV3 configurations

TABLE III: Hardware Overhead Compared to the Baseline Design

Look-Up Tables Flip-Flops
SecureBOOM Spectre 15.7 % 6.2 %
SecureBOOM Futuristic 8.2 % 3.3%

the medium configuration of BOOMv3, the YRoT based on the 12-
bit branch mask occupies more logic elements than the YRoT based
on the 6-bit ROB index.

Fig. 7 shows the average performance overhead of the secure
design variants for different configurations of BOOMv3 as listed
in Tab. II. In this experiment, we used the test workload of the
SPEC CPU 2006 benchmark suite. The goal of this experiment
is to evaluate the performance degradation of different secure mi-
croarchitecture schemes w.r.t. the complexity of the pipeline. Our
results suggest that all examined schemes cause more performance
overhead on more complex pipelines. However, within each threat
model the gap between the simple fixes and the SecureBOOM
designs is widening with increasing pipeline complexity. Wider and
deeper pipeline designs provide higher instruction-level parallelism
(as indicated by the CoreMark [41] scores in Tab. II). This is
partly thanks to larger time windows for speculation and out-of-order
execution. As a result, conservative measures like naive and eager
delay stall more instructions for a longer time as the complexity of
the underlying pipeline grows. On the other hand, SecureBOOM, as
produced by our methodology, allows the pipeline to benefit from
the speculative execution of certain instructions that are otherwise

blocked by the naive and eager delay designs.

It should be noted that the numbers reported in this case study are
provided by FPGA emulation. In this set-up, the processor frequency
is lower compared to taped-out designs (75 MHz vs. 2 GHz), while
the DRAM runs at a much higher frequency of 1,666 MHz. Due to
this large frequency gap between core and memory, memory access
becomes less of a bottleneck and a cache miss becomes less expensive
compared to a taped-out processor. Less penalty for a cache miss
means that delaying the loads and subsequent cache refills in naive
and eager delay incur less overhead because the memory is relatively
faster in the FPGA setup. Therefore, these protection schemes may
cause an even higher overhead in a taped-out processor.

V. DISCUSSION AND CONCLUSION

This paper proposes a secure-by-construction RTL design method-
ology for out-of-order execution processors with guaranteed security
against TES attacks. The proposed design flow employs formal
analysis by UPEC to detect all instructions that can form transient
execution side channels and then blocks the information leakage
with the help of a new hardware protection framework based on a
generic control infrastructure. This approach replaces the error-prone
manual inspection of the design for identifying side channels with
a systematic formal analysis. Our methodology does not require any
drastic change to the industrial practice and works with standard and
commercially available languages and verification tools.

The extensive case study on BOOMv3 provides novel insights
for the computer architecture community. Our design flow identified
multiple new transmit instructions which were introduced by the
specific RTL implementation of the design and cannot be identified
on any more abstract model. In addition, the case study shows that
implementing secure speculation schemes tends to be susceptible
to design mistakes. These findings attest to the fact that there is a
need for a secure-by-construction design methodology. The presented
methodology provides the opportunity for aggressive and fine-grained
design optimization, which is demonstrated in Sec. IV. Furthermore,
this paper discusses the impact of various factors, such as the threat
model and the underlying pipeline complexity, on the performance
overhead.

The proposed design flow is compatible with more advanced design
optimizations, such as speculative data-oblivious execution [42] and
value prediction [15]. Future work will explore the implementation
and verification challenges of these techniques at the RTL.

ACKNOWLEDGEMENTS

The reported research was partly supported by DFG SPP Nano
Security and by the Intel Corp. Scalable Assurance Program.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 08,2025 at 00:11:58 UTC from IEEE Xplore. Restrictions apply.

[2

—

[3]

[5]

[6]

[7]

[8]

[9

—

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
Attacks: Exploiting Speculative Execution,” in 2019 IEEE Symposium
on Security and Privacy (SP), 2019.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading Kernel Memory from User Space,” in 27th USENIX
Security Symposium, 2018, pp. 973-990.

M. Behnia, P. Sahu, R. Paccagnella, J. Yu, Z. N. Zhao, X. Zou,
T. Unterluggauer, J. Torrellas, C. Rozas, A. Morrison, F. Mckeen, F. Liu,
R. Gabor, C. W. Fletcher, A. Basak, and A. Alameldeen, “Speculative
Interference Attacks: Breaking Invisible Speculation Schemes,” in Proc.
of the 26th ACM Intl. Conf. on Arch. Support for Programming Lan-
guages and Operating Systems, 2021, pp. 1046-1060.

J. S. Vicarte, M. Flanders, R. Paccagnella, G. Garrett-Grossman, A. Mor-
rison, C. W. Fletcher, and D. Kohlbrenner, “Augury: Using data memory-
dependent prefetchers to leak data at rest,” in 2022 IEEE Symp. on
Security and Privacy. 1EEE Computer Society, 2022, pp. 1518-1518.
L. Bowen and C. Lupo, “The performance cost of software-based secu-
rity mitigations,” in Proc. of the ACM/SPEC International Conference
on Performance Engineering, 2020, pp. 210-217.

J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W. Fletcher,
“Speculative Taint Tracking (STT): A Comprehensive Protection for
Speculatively Accessed Data,” in Proc. of the 52nd Annual IEEE/ACM
Intl. Symposium on Microarchitecture, 2019, pp. 954-968.

K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci, “DOLMA: Securing speculation with the principle of
transient non-observability,” in 30th USENIX Security Symposium, 2021.
O. Weisse, 1. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci, “NDA:
Preventing speculative execution attacks at their source,” in Proc. of the
52nd IEEE/ACM Intl. Symp. on Microarchitecture, 2019, pp. 572-586.
N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Comp. Arch. News, vol. 39, pp. 1-7, 2011.
M. R. Fadiheh, A. Wezel, J. Miiller, J. Bormann, S. Ray, J. M.
Fung, S. Mitra, D. Stoffel, and W. Kunz, “An Exhaustive Approach
to Detecting Transient Execution Side Channels in RTL Designs of
Processors,” IEEE Transactions on Computers, vol. 72, no. 1, pp. 222—
235, 2023.

J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “SonicBOOM: The
3rd Generation Berkeley Out-of-Order Machine,” in Fourth Workshop
on Computer Architecture Research with RISC-V, May 2020.

M. Taram, A. Venkat, and D. Tullsen, “Context-Sensitive Fencing:
Securing Speculative Execution via Microcode Customization,” in Proc.
of the 24th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 395-410.

M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “InvisiSpec: Making Speculative Execution Invisible in
the Cache Hierarchy,” in 51st Annual IEEE/ACM Intl. Symposium on
Microarchitecture, 2018, pp. 428-441.

Y. Wu and X. Qian, “ReversiSpec: Reversible Coherence Protocol for
Defending Transient Attacks,” arXiv:2006.16535, 2020.

C. Sakalis, S. Kaxiras, A. Ros, A. Jimborean, and M. Sjilander, “Effi-
cient Invisible Speculative Execution through Selective Delay and Value
Prediction,” in Proc. of the 46th Intl. Symp. on Computer Architecture,
2019, pp. 723-735.

P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng, “Conditional Spec-
ulation: An Effective Approach to Safeguard Out-of-Order Execution
Against Spectre Attacks,” in IEEE Intl. Symp. on High Performance
Computer Architecture, 2019, pp. 264-276.

M. Guarnieri, B. Kopf, J. Reineke, and P. Vila, “Hardware-Software
Contracts for Secure Speculation,” in 2021 IEEE Symposium on Security
and Privacy (SP), 2021, pp. 1868-1883.

J. Fustos, F. Farshchi, and H. Yun, “SpectreGuard: An Efficient Data-
Centric Defense Mechanism Against Spectre Attacks,” in Proc. of the
56th Annual Design Automation Conference, 2019, pp. 1-6.

M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“ConTEXT: A Generic Approach for Mitigating Spectre,” in Proc.
Network and Distributed System Security Symposium., 2020.

L.-A. Daniel, M. Bognar, J. Noorman, S. Bardin, T. Rezk, and
F. Piessens, “ProSpeCT: Provably Secure Speculation for the Constant-
Time Policy (Extended Version),” arXiv preprint: 2302.12108, 2023.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

(34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “SpecFuzz:
Bringing Spectre-Type Vulnerabilities to the Surface,” in 29th USENIX
Security Symposium, 2020, pp. 1481-1498.

M. Ghaniyoun, K. Barber, Y. Zhang, and R. Teodorescu, “INTROSPEC-
TRE: A Pre-Silicon Framework for Discovery and Analysis of Transient
Execution Vulnerabilities,” in ACM/IEEE 48th Annual Intl. Symp. on
Computer Architecture, 2021, pp. 874-887.

S. K. Muduli, G. Takhar, and P. Subramanyan, “HyperFuzzing for SoC
Security Validation,” in Proc. of the 39th Intl. Conference on Computer-
Aided Design, 2020, pp. 1-9.

P. Subramanyan and D. Arora, “Formal Verification of Taint-Propagation
Security Properties in a Commercial SoC Design,” in Design, Automa-
tion & Test in Europe Conf. (DATE), 2014, pp. 313-314.

G. Cabodi, P. Camurati, S. F. Finocchiaro, F. Savarese, and D. Ven-
draminetto, “Embedded systems secure path verification at the HW/SW
interface,” IEEE Design & Test, vol. 34, no. 5, pp. 38-46, 2017.

G. Cabodi, P. Camurati, F. Finocchiaro, and D. Vendraminetto, “Model
checking speculation-dependent security properties: Abstracting and
reducing processor models for sound and complete verification,” in Intl.
Conf. on Codes, Cryptology, & Information Security, 2019, pp. 462—479.
M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz, ‘“Processor
hardware security vulnerabilities and their detection by unique program
execution checking,” in Design, Automation & Test in Europe Conf.
(DATE), 2019, pp. 994-999.

M. R. Fadiheh, J. Miiller, R. Brinkmann, S. Mitra, D. Stoffel, and
W. Kunz, “A formal approach for detecting vulnerabilities to transient
execution attacks in out-of-order processors,” in IEEE/ACM Design
Automation Conference (DAC), 2020, pp. 1-6.

D. Mehmedagi¢, M. R. Fadiheh, J. Miiller, A. L. Duque Antén, D. Stof-
fel, and W. Kunz, “Design of Access Control Mechanisms in Systems-
on-Chip with Formal Integrity Guarantees,” in 2023 USENIX Security
Conference, 2023 (To Appear).

L. Deutschmann, J. Miiller, M. R. Fadiheh, D. Stoffel, and W. Kunz, “To-
wards a Formally Verified Hardware Root-of-Trust for Data-Oblivious
Computing,” in Proc. of the 59th ACM/IEEE Design Automation Con-
ference, 2022, pp. 727-732.

J. Miiller, M. R. Fadiheh, A. L. Duque Antén, T. Eisenbarth, D. Stoffel,
and W. Kunz, “A Formal Approach to Confidentiality Verification
in SoCs at the Register Transfer Level,” in 58th ACM/IEEE Design
Automation Conference (DAC), 2021, pp. 991-996.

P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre Attacks:
Exploiting Speculative Execution,” arXiv preprint:1801.01203, 2018.
M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner, and
H. Shacham, “On Subnormal Floating Point and Abnormal Timing,” in
IEEE Symposium on Security and Privacy, 2015, pp. 623-639.

Y. Yarom and K. Falkner, “FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack,” in 23rd USENIX Security
Symposium, 2014, pp. 22-25.

J. Urdahl, D. Stoffel, and W. Kunz, “Path predicate abstraction for sound
system-level models of RT-level circuit designs,” IEEE Trans. on Comp.-
Aided Design of Integr. Circ. & Sys., vol. 33, pp. 291-304, 2014.

J. R. S. Vicarte, P. Shome, N. Nayak, C. Trippel, A. Morrison,
D. Kohlbrenner, and C. W. Fletcher, “Opening Pandora’s Box: A
systematic study of new ways microarchitecture can leak private data,” in
ACM/IEEE 48th Intl. Symp. on Comp. Architecture, 2021, pp. 347-360.
M. Sabbagh, Y. Fei, and D. Kaeli, “Secure Speculation Execution
via RISC-V Open Hardware Design,” Fifth Workshop on RISC-V for
Computer Architecture Research, 2021.

E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” Form. Methods Syst. Des., vol. 19, no. 1,
pp. 7-34, 2001.

C. Celio, J. Zhao, A. Gonzalez, B. Korpan, K. Asanovic, and
D. Patterson, “BOOM - An open-source out-of-order proces-
sor,” in Chisel Community Conference, 2018, URL: https://boom-
core.org/docs/boom_processor_ccc18_celio.pdf, Acc. Date: 2021/07/13.
J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” SIGARCH
Comput. Archit. News, vol. 34, pp. 1-17, 2006.

S. Gal-On and M. Levy, “Exploring CoreMark a Benchmark Maximizing
Simplicity and Efficacy,” The Embd. Microproc. Benchmark Cons., 2012.
J. Yu, N. Mantri, J. Torrellas, A. Morrison, and C. W. Fletcher,
“Speculative Data-Oblivious Execution: Mobilizing safe prediction for
safe and efficient speculative execution,” in ACM/IEEE 47th Intl. Symp.
on Computer Architecture, 2020, pp. 707-720.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 08,2025 at 00:11:58 UTC from IEEE Xplore. Restrictions apply.

