
Controlled Preemption: Amplifying Side-Channel
Attacks from Userspace

Yongye Zhu
University of California, Berkeley

Berkeley, CA, USA
yongye.zhu@berkeley.edu

Boru Chen
University of California, Berkeley

Berkeley, CA, USA
boruchen@berkeley.edu

Zirui Neil Zhao
NVIDIA/The University of Texas at Austin

Austin, TX, USA
neil.zhao@utexas.edu

Christopher W. Fletcher
University of California, Berkeley

Berkeley, CA, USA
cwfletcher@berkeley.edu

Abstract
Microarchitectural side channels are an ongoing threat in
today’s systems. Yet, many side-channel methodologies suf-
fer from low temporal resolution measurement, which can
either preclude or significantly complicate an attack.
This paper introduces Controlled Preemption, an attack

primitive enabling a single unprivileged (user-level) attacker
thread to repeatedly preempt a victim thread after colocat-
ing with that victim thread on the same logical core. Be-
tween preemptions, the victim thread executes zero to sev-
eral instructions—sufficiently few to enable high-resolution
side channel measurements.

The key idea in Controlled Preemption is to exploit sched-
uler fairness heuristics. Namely, that modern thread sched-
ulers give a thread 𝐴 the ability to preempt another thread 𝐵
until a fairness tripwire (signaling that 𝐴 is starving 𝐵) fires.
We show how this idea enables hundreds of short preemp-
tions before tripping the fairness tripwire is robust to noise
and applies to both the Linux CFS and EEVDF schedulers.
We also develop a technique that helps colocate the attacker
and victim threads onto the same logical core, an attacker
capability overlooked by prior work.

Our evaluation tests Controlled Preemption in the context
of several different victim programs, victim privilege levels
(inside and outside of Intel SGX) and choices of side channel.
In each attack, we demonstrate results that are competitive
with prior work but make fewer assumptions (e.g., require

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.
© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM
ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3715985

only user-level privilege or require fewer colocated attacker
threads).

CCS Concepts: • Security and privacy→ Side-channel
analysis and countermeasures.

Keywords: Microarchitectural side-channel attacks; Attack
primitives; Temporal resolution; Completely Fair Scheduler;
Earliest Eligible Virtual Deadline First Scheduler

ACM Reference Format:
Yongye Zhu, Boru Chen, Zirui Neil Zhao, and Christopher W.
Fletcher. 2025. Controlled Preemption: Amplifying Side-Channel At-
tacks from Userspace. In Proceedings of the 30th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2 (ASPLOS ’25), March 30–April 3,
2025, Rotterdam, Netherlands. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3676641.3715985

1 Introduction
Microarchitectural side-channel attacks exploit the hard-
ware resources shared between mutually distrusting pro-
grams [8, 19, 26–28, 40, 42, 72, 73]. In such attacks, an at-
tacker program monitors a victim program’s utilization of
shared resources to infer sensitive victim information like
cryptographic keys [15, 19, 24, 26, 28, 45, 73, 74]. These at-
tacks pose a serious threat to both commercial multi-tenant
cloud environments [32, 53, 81] and local client environ-
ments [40, 42, 56].
A fundamental characteristic in any microarchitectural

side-channel attack is its temporal resolution, i.e., the num-
ber of victim instructions that execute/retire in between
attacker measurements. Higher temporal resolution enables
new attacks or otherwise significantly reduces the require-
ments of existing attacks. Consider for example the T-table
AES first-round attack [28, 48]. Given perfect temporal res-
olution, a cache-timing attack on the T-Tables can extract
the key after the AES routine runs a single time. By con-
trast, an attack with low temporal resolution (e.g., concur-
rently/continuously measuring the channel or measuring
the channel once after the AES routine completes) requires

https://orcid.org/0000-0002-6191-8187
https://orcid.org/0009-0001-8024-1116
https://orcid.org/0000-0002-7231-7416
https://orcid.org/0000-0002-9995-5995
https://doi.org/10.1145/3676641.3715985
https://doi.org/10.1145/3676641.3715985


ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yongye Zhu, Boru Chen, Zirui Neil Zhao, and Christopher W. Fletcher

……

.

.

.

Recharging

Charging

Charging

Recharging

.

.

.

.

.

.

Time

𝐴1

𝐴2

𝑉

(a) Prior work [11, 12, 28, 54]

……

……
Charging

No recharge needed

Time

𝐴1

𝑉

(b) Controlled Preemption (this paper)

Figure 1. Techniques to enable high temporal resolution
channel-agnostic side-channel analysis from userspace.

100s [52] to 1000s [75] of victim runs (due to cache pollution
from later rounds and other sources of accumulated noise).
This paper advances a line of research that enables ex-

tremely high temporal resolution side channel analysis, i.e.,
giving the attacker the ability to nearly single step the victim
program and perform side channel measurements in between
each step. This line of work is based on thread preemption.
In a nutshell, the attacker coerces the OS kernel to interleave
the attacker and victim threads’ executions onto the CPU,
giving the attacker the opportunity to monitor shared states
in between short periods of victim execution.
Existing work on malicious preemption has limitations.

For example, works targeting the Enclave threat model [29,
39, 45, 61, 62] (e.g., SGX Step [62]) enable best-case tem-
poral resolution and minimal noise, but require supervisor
privilege. While there does exist a parallel line of work that
enables similar capabilities from userspace [11, 12, 28, 54]
(that started with Cache Games [28]), it requires a large num-
ber (e.g., from 10s to 100s) of attacker threads to assist in
preemption. Requiring a large number of threads is disad-
vantageous for a number of reasons. More threads make the
attack less stealthy and may even be disallowed depending
on the system (e.g., through ulimit). Further, in practice,
attacks involving multiple threads are difficult to implement
(e.g., due to thread synchronization requirements) which
itself results in coarser-grain temporal resolution [11, 28].

This paper. We present Controlled Preemption, a technique
that enables a single unprivileged attacker thread to repeat-
edly preempt a victim thread once it has been colocated to
the victim’s logical core.

To understand Controlled Preemption, we first reviewwhy
prior work on preemption from userspace requires many
threads. See Figure 1a. Assume a single-core system for sim-
plicity. The idea in prior work is for the attacker to spawn
and then sleep a thread (say 𝐴1) so that its scheduling prior-
ity increases to the point where, on wake up, it preempts the
victim thread𝑉 . Conceptually, a thread’s scheduling priority
is set to that of the thread that gets preempted on wake up.
Thus, once an attacker thread preempts the victim, it needs
to sleep again to “recharge” its priority. If the attacker wishes
to preempt the victim multiple times, it requires multiple
threads (𝐴1,𝐴2, etc.). Once thread𝐴1 preempts𝑉 and begins
to recharge, thread𝐴2 is responsible for the next preemption,
at which point it begins to recharge, and so on.
The key observation enabling Controlled Preemption is

general and applies to multiple thread schedulers: To improve
system responsiveness, a scheduler will strive to allow a well-
slept thread 𝐴 to immediately preempt a running thread 𝑉 ,
even if𝑉 has not completed its minimum scheduling quantum.
Further, subject to fairness checks, a scheduler will allow thread
𝐴 to repeat the above process. The latter sentence is key to our
single-thread attack. Through careful inspection of current
scheduler designs, we find that scheduler fairness heuristics
create what we call a preemption budget which enables an
attacker thread to repeatedly preempt a victim up to the
point where the amount of attacker CPU time exceeds a
threshold (at which point the scheduler determines that the
attacker is starving the victim).

Based on the notion of a preemption budget, we instantiate
and thoroughly characterize a Controlled Preemption prim-
itive and show that it enables a colocated single attacker
thread to nearly single step1 a victim thread hundreds of
times without recharging, as shown in Figure 1b. We show
that the notion applies to both the Linux Completely Fair
Scheduler (CFS) [47] and the more-recent Earliest Eligible
Virtual Deadline First (EEVDF) scheduler [17, 58].

Note that in multicore systems, the attacker additionally
needs a technique to colocate the attacker thread with the
victim thread on the same logical core. Prior work ignores
this step, either limiting their attacks to a single-core sys-
tem [28] or assuming the attacker and victim threads are
pinned to the same core throughout the attack [11, 12, 54].
Both of these assumptions are unrealistic. In this work, we
develop a simple yet effective core-level colocation technique
that exploits the scheduler’s load-balancing logic.
Finally, we demonstrate three proof-of-concept attacks

leveraging Controlled Preemption. These attacks cover a
range of side channels, victim programs and victim program
privilege levels. Specifically, we show that the attacker can

1As detailed in Section 4.3.1, the victim thread executes only a few instruc-
tions between preemptions. In fact, we show that a majority of preemptions
result in the victim executing one instruction when Controlled Preemption
is combined with performance degradation.



Controlled Preemption: Amplifying Side-Channel Attacks from Userspace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

use Controlled Preemption to mount an AES T-table first-
round attack using Flush+Reload [73]. This attack achieves
the same attack efficiency as prior work [11] (leaking the
upper nibbles of each AES key byte in ∼ 5 victim runs) but
requires only one colocated attacker thread instead of 40
threads. We then use Controlled Preemption to demonstrate
an attack on an SGX victim to extract sensitive information
that can lead to full RSA key recovery using a Prime+Probe
on the last-level cache [42]. To our knowledge, this is the
first demonstration of an SGX Step-like attack mounted from
userspace. Finally, we utilize Controlled Preemption to re-
cover the secret-dependent control flow of an SGX victim
using a BTB side channel [77], providing confidence that
Controlled Preemption can be applied to multiple side chan-
nels.

In summary, this paper makes the following contributions:

• We develop Controlled Preemption, the first userspace
framework that nearly single steps a victim thread
using as few as one colocated attacker thread.
• We comprehensively characterize the Controlled Pre-
emption primitive in the context of two widely-
deployed popular thread schedulers (the Linux CFS
and EEVDF schedulers). To our knowledge, we are
the first to perform any characterization of user-level
malicious preemption using the EEVDF scheduler.
• We develop an attack technique that colocates the
attacker and victim threads onto the same logical core.
• We demonstrate three proof-of-concept attacks that
show how Controlled Preemption can improve exist-
ing attacks on multiple victim programs, inside and
outside of SGX and across multiple side channel types.

We have open sourced an implementation of Controlled
Preemption, as well as this paper’s evaluation, here: https:
//github.com/FPSG-UIUC/Controlled-Preemption.

Responsible disclosure. We disclosed our findings to the
Linux kernel security team, who confirmed our findings and
designated Controlled Preemption as a low-priority threat.
They recommended enabling NO_WAKEUP_PREEMPTION to
prevent the waking attacker thread from immediately pre-
empting the victim thread at the cost of system responsive-
ness.

2 Background
2.1 Linux Completely Fair Scheduler
In Linux, threads that are ready to execute but not scheduled
(or runnable threads) are stored in a per-logical core software
structure named the runqueue. The thread scheduler is re-
sponsible for deciding when to preempt the current thread
and switch to another in the runqueue. In this paper, we focus
on the widely used Completely Fair Scheduler (CFS) [33, 47]
and discuss the transferability of our techniques to the latest

Earliest Eligible Virtual Deadline First (EEVDF) scheduler in
Section 4.5.

In the CFS, each thread is assigned a virtual runtime (vrun-
time). When a thread executes, its vruntime is incremented
by Δ𝜏 = 𝛼Δ𝑡 , where Δ𝑡 is the thread’s real-world execution
time and 𝛼 is the increment rate determined by the thread’s
priority. 𝛼 = 1 under the default priority. A high priority
thread has a small 𝛼 value, allowing the thread to have a
longer execution time for the same amount of Δ𝜏 . In this
paper, we denote vruntime by 𝜏 and real-world time by 𝑡 .

The CFS achieves fair scheduling by ensuring that the dif-
ference between threads’ vruntimes, in the local runqueue,
does not exceed the kernel parameter sysctl_sched_latency
(𝑆𝑏𝑛𝑑 for short). We call this policy the fair scheduling invari-
ant. The exact value of 𝑆𝑏𝑛𝑑 depends on the total number
of cores in the system, and is set to 24ms in our evaluated
system (Table 1).

The CFS’s exact scheduling behavior depends onmany fac-
tors. Using Linux 6.5 as an example, we now briefly overview
the characteristics that are important for our work. Com-
plementary to the runqueue, threads that are not ready to
execute, e.g., are waiting on blocking IO events or are asleep,
are stored in a shared waitqueue.2 Then, at a high level, the
CFS can change which thread is running on a given logical
core in three circumstances:
• Scenario 1.When, within the local runqueue, a thread’s
vruntime exceeds another thread’s vruntime by 𝑆𝑏𝑛𝑑 .
• Scenario 2. When a thread wakes up, i.e., is removed
from the waitqueue and enters the local runqueue.
• Scenario 3. When a thread becomes blocked, i.e., is
removed from the local runqueue and enters the wait-
queue.

We discuss each in detail below.

Scenario 1: Runqueue stationary. First consider the case
when no threads are moving between the runqueue and the
waitqueue. Here, the CFS will select the thread with the
smallest vruntime in the runqueue and schedule the thread
onto the hardware. We call this thread 𝐴. To avoid excessive
context switching, 𝐴 is allowed to execute for a minimum
time slice configured by sysctl_sched_min_granularity (or
𝑆𝑚𝑖𝑛 for brevity). 𝑆𝑚𝑖𝑛 is 3ms in our evaluated system. Once
𝐴 runs for 𝑆𝑚𝑖𝑛 time, the CFS checks whether the fair sched-
uling invariant is violated. If so, 𝐴 is descheduled, and the
CFS chooses the thread with the smallest vruntime to sched-
ule. Otherwise, 𝐴 is scheduled again. As will be discussed in
the next scenario, this minimum time slice is only enforced
in Scenario 1. This detail will be critical for our work.

Scenario 2: A thread is waking up. Now consider when
a thread 𝐵 wakes up, 𝐵 is removed from the waitqueue and

2To simplify the presentation, we assume a single system-wide waitqueue.
In reality, the system uses different waitqueues depending on the event type
that is blocking a given thread.

https://github.com/FPSG-UIUC/Controlled-Preemption
https://github.com/FPSG-UIUC/Controlled-Preemption


ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yongye Zhu, Boru Chen, Zirui Neil Zhao, and Christopher W. Fletcher

is added to the runqueue. Since 𝐵 was blocked by an IO re-
quest or sleep, 𝐵’s vruntime can be significantly behind the
vruntime of other threads. Consequently, 𝐵 could monop-
olize the CPU for a long time before its vruntime catches
up with others. To prevent this undesirable behavior when
awakening 𝐵, the CFS assigns 𝐵 an adjusted vruntime of

𝜏𝑤𝑎𝑘𝑒𝑢𝑝 = max(𝜏𝑚𝑖𝑛 − 𝑆𝑠𝑙𝑎𝑐𝑘 , 𝜏𝑠𝑙𝑒𝑒𝑝 ), (1)
where 𝜏𝑚𝑖𝑛 is the smallest vruntime among existing threads
in the local runqueue, 𝑆𝑠𝑙𝑎𝑐𝑘 is a fixed value determined by
𝑆𝑏𝑛𝑑 , and 𝜏𝑠𝑙𝑒𝑒𝑝 is the vruntime of thread 𝐵 at the moment
when 𝐵 was blocked. This heuristic prevents 𝐵 from mo-
nopolizing the CPU and ensures that 𝐵’s vruntime strictly
increases. In the evaluated Linux kernel, 𝑆𝑠𝑙𝑎𝑐𝑘 is 12ms.
Notably, after thread 𝐵’s vruntime is adjusted to 𝜏𝑤𝑎𝑘𝑒𝑢𝑝 ,

𝐵 can preempt the current running thread𝐴 even if𝐴 has yet
to complete its minimum time slice. Our attack exploits this
preemption logic. A preemption occurs when the following
condition is true:

𝜏𝑐𝑢𝑟𝑟 − 𝜏𝑤𝑎𝑘𝑒𝑢𝑝 > 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 , (2)
where 𝜏𝑐𝑢𝑟𝑟 is the thread 𝐴’s vruntime and 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 is
a fixed threshold configured by the kernel parameter
sysctl_sched_wakeup_granularity. 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 is 4ms in our sys-
tem. Note that the CFS only decides between scheduling the
running thread 𝐴 and the waking thread 𝐵. Even if there is a
third runnable thread 𝐶 whose vruntime is smaller than the
vruntime of𝐴 and 𝐵,𝐶 will not be considered for scheduling.

Scenario 3: A thread is blocked. Finally, consider when
the current running thread is about to be blocked due to an
IO request or a voluntary sleep. In this case, the CFS will
de-schedule the current running thread and schedule the
thread with the smallest vruntime from the local runqueue.
Table 1 summarizes the CFS configurations relevant to

this paper and their default values. Note that their default
values depend on the number of cores in the system.

Table 1. Relevant CFS configurations.

Config. Default Value
(Our System) Description

𝑆𝑏𝑛𝑑 𝜆×6ms (24ms)1 Upper bound of vruntime difference
𝑆𝑚𝑖𝑛 𝜆×0.75ms (3ms) Length of the minimum time slice
𝑆𝑠𝑙𝑎𝑐𝑘 𝑆𝑏𝑛𝑑/2 (12ms)2 A waking thread’s max. vruntime lag

𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 𝜆×1ms (4ms) The vruntime threshold that the waking
thread can preempt the current thread

1 𝜆 is a system-specific scaling factor and equals min(log2 (#cores) +1, 4) .
𝜆 = 4 in our 16-core system.

2 This assumes the GENTLE_FAIR_SLEEPERS scheduler feature is set,
which is the default configuration; otherwise, 𝑆𝑠𝑙𝑎𝑐𝑘 = 𝑆𝑏𝑛𝑑 .

2.2 Microarchitectural Side-Channel Attacks
Microarchitectural side-channel attacks exploit shared hard-
ware resources to exfiltrate sensitive information. Commonly
exploited resources include CPU caches [19, 26, 42, 52, 73],

TLBs [25, 59], coherence directories [72], on-chip intercon-
nects [18, 49, 65], arithmetic ports [8], and BTBs [20, 21, 39,
77, 79].

We focus on stateful/persistent side-channel attacks [19–
21, 25, 26, 39, 42, 59, 72, 73, 77, 79] where the victim encodes
(transmits) a message into a channel/hardware structure
that can be decoded (received) later. For these attacks, the
attacker needs to interleave its execution with the victim
to monitor the channel. Consider an example where the
attacker runs on core𝐴 to perform an L1 cache Prime+Probe
attack. During the attack, the attacker (1) preconditions the
channel by priming specific L1 sets, (2) triggers the victim’s
execution on core 𝐴 and (3) recovers the victim’s memory
access behavior by probing the L1 sets. Steps (1)–(3) can be
repeated multiple times to extract more information from
the victim execution.

A major complication is how much victim code runs dur-
ing Step 2. Ideally, the attackerwould like to interleave its exe-
cution at a fine grain, ideally performing Step 1 and Step 3 be-
fore and after each of the victim’s sensitive memory accesses.
This is usually impossible, due to coarse-grain thread sched-
uling, which adds significant noise that worst-case blocks
the attack and best-case requires additional techniques to
overcome [15, 30, 48, 66].

3 Threat Model
We assume that the attacker and victim programs are colo-
cated on the same physical machine, following many prior
works [11, 28, 48]. We assume an unprivileged attacker that
can interact with the Linux kernel using standard system
calls like fork and sleep and can invoke the victim (start its
execution) [15, 23, 24, 36, 44, 45, 48, 69, 74, 75]. The victim
thread can be an unprivileged user-level thread or a thread
inside an Intel SGX enclave.

We do not make additional assumptions about the execu-
tion environment or the priority of the victim thread, beyond
that the kernel uses the Linux CFS or EEVDF schedulers to
schedule the victim thread. Finally, we do not assume the
availability of Simultaneous Multi-Threading (SMT).

4 Controlled Preemption
In this section, we introduce Controlled Preemption, a series
of techniques that enable a single unprivileged colocated
attacker thread to interleave its execution with a victim’s at
a high frequency (e.g., one to tens of victim instructions per
interleaving), enabling high-resolution side-channel obser-
vations.

Controlled Preemption is possible because thread sched-
ulers enable blocked threads to reclaim the CPU precisely
at the moment when they are due to become unblocked—
as opposed to only after the currently running thread has
exceeded some minimum scheduling quantum (e.g., 𝑆𝑚𝑖𝑛).
This is by design and enables thread schedulers to be more



Controlled Preemption: Amplifying Side-Channel Attacks from Userspace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

responsive. For example, when a thread calls sleep(𝛿), it
ideally wishes to be asleep for precisely 𝛿 time. Likewise,
when data becomes available (e.g., network packets arrive),
the thread responsible for processing that data should get
CPU time immediately.
We show how the above characteristic can be exploited

by an adversary to preempt a victim thread at a moment
of the attacker’s choosing. More subtly, we show how the
above enables a single attacker thread to repeatedly preempt
the victim at a high frequency, enabling fine-grain side chan-
nel measurements. Repeated preemption does not “come for
free”—a scheduler’s fairness heuristics (e.g., those discussed
in Section 2.1) should prevent a malicious thread from deny-
ing service through repeated preemption. We show how
schedulers’ fairness heuristics can be avoided for a long
enough period of time (enabling hundreds to thousands of
preemptions) to attack security-critical software.

4.1 Controlled Preemption on the CFS
We now show how Controlled Preemption can be imple-
mented using the CFS scheduler (Section 2.1). The key ob-
servation is that the 𝑆𝑠𝑙𝑎𝑐𝑘 > 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 characteristic in the
CFS creates an (𝑆𝑠𝑙𝑎𝑐𝑘 − 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 )-time preemption budget
within which the attacker can repeatedly preempt the vic-
tim. Echoing earlier discussion, setting 𝑆𝑠𝑙𝑎𝑐𝑘 > 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 is
deliberate and important for ensuring system responsive-
ness. By ‘preemption budget’, we mean that the attacker can
preempt the victim an arbitrary number of times, until the
vruntime difference between the attacker and victim threads
is smaller than 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 . Beyond this point, no more pre-
emptions are possible until the victim’s vruntime increases
by a sufficient amount. For the parameters we use in the
paper, 𝑆𝑠𝑙𝑎𝑐𝑘 − 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 = 8 ms which is sufficient time for
the attacker to complete its attack. In the event that this is
not sufficient, we discuss several methods to extract a longer
trace of victim activity in Section 4.3.2 and Section 5.2.2.

We now explain how the attacker thread𝐴 can repeatedly
preempt other threads in the same runqueue at a high fre-
quency. For simplicity, we consider an example illustrated
in Figure 2 where a single logical core is exclusively shared
between an attacker thread 𝐴 and a victim thread 𝑉 . We
will discuss the implications of the core being shared with
more (noisy) threads in Section 4.3.3 and how the attacker
can colocate with the victim on the same logical core in
Section 4.4.

Let 𝜏𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 and 𝜏𝑣𝑖𝑐𝑡𝑖𝑚 denote the attacker’s and victim’s
vruntimes, respectively. Let 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 denote the time it takes
for the attacker to perform a side-channel measurement. To
enable repeated preemptions, we require that 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 be
small, i.e., 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 < 𝑆𝑠𝑙𝑎𝑐𝑘 − 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 . Let 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 denote the
amount of time that the attacker wishes the victim to run for
in between preemptions. For simplicity, we consider both
the attacker and the victim have the default priority and

𝑆𝑠𝑙𝑎𝑐𝑘

Δ > 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ?

(b)

(c)

(e)

Vruntime

𝐼𝑣𝑖𝑐𝑡𝑖𝑚 (d)

𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟

Δ > 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ?

𝜏𝑣𝑖𝑐𝑡𝑖𝑚

𝜏𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟

(a)

Hibernating…

Figure 2. Detailed illustration of Controlled Preemption
where Δ = 𝜏𝑣𝑖𝑐𝑡𝑖𝑚 − 𝜏𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 .

𝛼 = 1, therefore Δ𝜏𝑣𝑖𝑐𝑡𝑖𝑚 = 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 and Δ𝜏𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 .
We will discuss the implications of priority in Section 4.3.2.

The attacker requires a method to wake up at a specific
time and be considered for scheduling. We discuss two mech-
anisms for this task in Section 4.2 and assume the first of
those methods (where the attacker uses sleep(𝛿)) here. The
attacker will use sleep in two contexts (explained in the fol-
lowing paragraphs). In the first context, it will set 𝛿 > 2∗𝑆𝑏𝑛𝑑
(any value > 2∗𝑆𝑏𝑛𝑑 will do); in this case, we say the attacker
is hibernating. In the second, it will set 𝛿 = 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 ; which we
refer to as the attacker napping.
The attack begins with the attacker hibernating (Fig-

ure 2 (a)).When the attacker thread unblocks itself and enters
the runqueue, its vruntime will be assigned to the left-hand
argument of the max function in Equation (1), i.e., 𝜏 ′

𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟
=

𝜏𝑣𝑖𝑐𝑡𝑖𝑚 − 𝑆𝑠𝑙𝑎𝑐𝑘 , where the tick mark ′ (e.g., 𝜏 ′
𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟

) denotes
a new/updated vruntime. This is shown in Figure 2 (b). Com-
bining this with the relation 𝑆𝑠𝑙𝑎𝑐𝑘 > 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 from earlier,
Equation (2) says that the attacker immediately preempts
the victim.
The attacker can now monitor and preempt the vic-

tim as follows. Once the attacker begins executing, it per-
forms a side-channel measurement (i.e., the steps to pre-
condition/receive on the channel it is measuring; c.f. Sec-
tion 2.2) and then naps. Hence, it’s vruntime increases by
𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 as shown in Figure 2 (c). This triggers the CFS to
schedule and execute instructions from the victim thread.
Once the victim runs for 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 time, the attacker wakes up.
W.l.o.g. let 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 > 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 . Then, the attacker’s vruntime
will be assigned to the right-hand argument to the max func-
tion in Equation (1), i.e., 𝜏 ′

𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟
= 𝜏𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 . Based on our



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yongye Zhu, Boru Chen, Zirui Neil Zhao, and Christopher W. Fletcher

1 // tweak timerslack
2 // to the lowest value 1ns
3 prctl(PR_SET_TIMERSLACK, 1)
4 // sleep to make
5 // vruntime lowest
6 sleep(5s)
7 while(true){
8 // sleep for interval
9 nanosleep(interval)
10 // call attacker
11 // procedure
12 attacker()
13 }

(a) Method 1: Nanosleep

1 #define SIG SIGRTMIN
2 // register signal handler
3 // as attacker procedure
4 sigaction(SIG, attacker)
5 // create a timer that
6 // sends SIG when fires
7 timer_create(SIG)
8 // set periodic interval
9 timer_settime(interval)
10 // sleep to make
11 // vruntime lowest
12 sleep(5s)
13 // pause main routine
14 while(1) pause()

(b) Method 2: Timer

Figure 3. Pseudo-code describing two methods to force the
attacker to wake up at a precise time.

earlier requirement that 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 < 𝑆𝑠𝑙𝑎𝑐𝑘 − 𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 , we fur-
ther have that Equation (2) holds, meaning that the attacker
will preempt the victim as shown in Figure 2 (d).

The above process (Figure 2 (b)-(d)) can repeat, enabling
repeated preemptions. An important detail is that because
𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 > 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 , 𝜏𝑣𝑖𝑐𝑡𝑖𝑚 − 𝜏𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 gradually shrinks and
Equation (2) will eventually return false as shown in Fig-
ure 2 (e). At this point, preemption will fail. This gives the
attacker approximately

⌈
𝑆𝑠𝑙𝑎𝑐𝑘−𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡

𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 −𝐼𝑣𝑖𝑐𝑡𝑖𝑚

⌉
preemptions to com-

plete its attack. It is possible to stretch the ‘preemption bud-
get’ by setting a larger 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 , but doing so allows the victim
to make more forward progress in between preemptions
which may aggravate the side-channel analysis.

4.2 Controlled Wake Up
Following the example from the previous section, where we
assumed only an attacker and victim thread, the attacker
needs a way to wake up at a precise time and be considered
for scheduling. We utilize high-resolution hardware timers
for this purpose. We explore two methods to program these
timers in userspace, enabling the attacker to interrupt the
victim potentially after the victim has executed only a single
instruction. Figure 3 provides pseudo-code for both methods.

4.2.1 Method 1: Nanosleep. The first method employs
the nanosleep system call with a specified sleep duration 𝛿 .
When the attacker invokes nanosleep, the operating system
removes it from the runqueue (Scenario 3 from Section 2.1)
and programs a one-shot hardware timer to trigger an in-
terrupt after 𝛿 time passes. With the attacker blocked, the
scheduler selects the victim thread to run. After the interval
𝛿 elapses, the hardware timer fires, the victim’s execution is
interrupted, and control switches to the kernel’s interrupt
handler. Finally, the kernel wakes up the attacker thread,
adds it back to the runqueue, sets its new vruntime and
performs the preemption check (as described in Section 2.1).

An additional OS parameter, called timer_slack, controls
the time allowed to pass beyond 𝛿 before the OS has to
wake up the attacker thread. By default, timer_slack is 50𝜇s,
which is too coarse for our needs. Fortunately, we can reduce
timer_slack to a small value (1 ns) using the non-privileged
prctl syscall with PR_SET_TIMERSLACK as the argument.

4.2.2 Method 2: Timers. The second method uses the
POSIX timer API to create a periodic high-resolution
timer. The attacker calls timer_create to create a timer and
timer_settime to set it with interval 𝛿 . A signal handler is
registered to handle timer expirations. After setting up the
timer, the attacker blocks itself indefinitely by calling pause
and waits for the timer signal. When the timer expires, a sig-
nal is sent to the attacker. The kernel adds the attacker back
to the runqueue, sets the attacker’s vruntime and performs
the preemption check as usual. If the preemption condition is
met, the attacker preempts the victim. The attacker’s signal
handler then executes the side-channel measurement rou-
tine. After the signal handler completes, the attacker blocks
again, awaiting the next timer signal.
We note, when using the POSIX timer API, setting an

analog to timer_slack is not necessary: timer interrupts are
handled immediately by the kernel while the execution of the
attacker’s userspace handler is still subject to the preemption
check.

4.2.3 Zero Stepping. Setting 𝛿 for both of the above meth-
ods is non-trivial because time continues to pass when the
OS is in the process of scheduling/context switching the vic-
tim onto the hardware. That is, 𝛿 must be set in a “Goldilocks”
fashion similar to SGX Step [62]:
• If 𝛿 is set to be too small, the timer fireswhen the victim
is in the process of being scheduled onto the CPU,
which interrupts and prevents the victim from making
any forward progress before the CPU is yielded back
to the attacker.
• If 𝛿 is set to be too large, the victim executes more
instructions before being preempted, which leads to
lower time resolution side-channel analysis.

The former case is called a zero step [16, 62]. We analyze the
characteristics of this Goldilocks zone in the next section.
Zero steps are benign but waste preemption budget. An

oracle can be constructed to filter out signals caused by
instructions of interest (Section 4.3.3), and hence data col-
lection when zero steps occur will be omitted. At the same
time, each zero step still costs the attacker 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝐼𝑣𝑖𝑐𝑡𝑖𝑚
time in the preemption budget.

4.3 Evaluation
We now evaluate the Controlled Preemption primitive along
multiple axes: its temporal resolution, the number of pre-
emptions, robustness to noise, techniques for colocation and
extensibility to the EEVDF scheduler.



Controlled Preemption: Amplifying Side-Channel Attacks from Userspace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

Experiment setup. For the rest of the paper, we run all of
our experiments on a desktop machine with a 16-core Intel
Core i9-9900K processor and 64 GB RAM. This machine runs
Ubuntu 22.04.1 with Linux kernel version 6.5 for CFS and
6.12-rc1 for EEVDF.

Until Section 4.3.3, we perform experiments on a quiescent
machine to minimize interference from other processes. As
required by our attack, we ensure that the attacker and victim
threads are colocated on the same logical core; we show
how to achieve this in Section 4.4. At experiment launch,
the attacker sleeps (hibernates) for 5 seconds to ensure it is
assigned the vruntime 𝜏𝑣𝑖𝑐𝑡𝑖𝑚 − 𝑆𝑠𝑙𝑎𝑐𝑘 upon wake-up.

4.3.1 Temporal resolution. We characterize how many
instructions the victim executes between interrupts using
an eBPF [6] program that records the PC of the first victim
instruction whenever the victim is scheduled. To translate
the change in the victim PC to the number of instructions
retired, we use a victim program that runs a long sequence
of same-Byte length instructions in an infinite loop.
Figure 4a and Figure 4c show histograms of the preemp-

tion resolution, in terms of how many victim instructions
retire per preemption. Each histogram is over 80,000 pre-
emptions. We show results for both wake up methods from
Section 4.2, varying the sleep and timer interval value 𝛿 .
As we increase 𝛿 , the victim executes more instructions per
preemption on average. Notably, for small 𝛿 , a majority of
preemptions occur after the victim has only executed a small
number (< 10) instructions but a sizable percentage of pre-
emptions result in zero steps (Section 4.2).

Combining Controlled Preemption with performance
degradation. To improve the ratio of single steps to zero
steps, we combine Controlled Preemption with well known
performance degradation techniques [9, 38, 50]. Specifically,
the attacker evicts the victim instruction page’s translation
from the TLB before napping. As the victim page’s transla-
tion can be cached either in the L1 instruction TLB and the
unified L2 TLB, we construct eviction sets for both TLBs
using techniques from Gras et al. [25]. Figure 4b shows
that combined with performance degradation, one can set
a higher 𝛿 while reliably making non-zero but still small
amounts of victim forward progress per preemption, as de-
sired. The cost of this technique is a small increase in 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟
for evicting the TLB entries, which is small compared to the
main attacker measurement procedure.

4.3.2 Number of preemptions. Next, we characterize
the number of consecutive preemptions that the attacker can
perform. Recall from Section 4.3, the expected number of
preemptions is

⌈
𝑆𝑠𝑙𝑎𝑐𝑘−𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡

𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 −𝐼𝑣𝑖𝑐𝑡𝑖𝑚

⌉
. Note that 𝑆𝑠𝑙𝑎𝑐𝑘 −𝑆𝑝𝑟𝑒𝑒𝑚𝑝𝑡 =

8 ms is fixed based on the system. Thus, the attacker can
increase the number of preemptions by decreasing its own
measurement time 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 or by increasing the victim time
per preemption 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 (by changing the blocking interval 𝛿).

0 1 2-10 11-50 51-100101-200
201-400

401-600
601-2k 2k-4k

0.0
0.2
0.4
0.6
0.8
1.0

Oc
cu

ra
nc

e 
Ra

tio 1225ns
1230ns
1245ns
1300ns

(a) Nanosleep (Section 4.2.1)

0 1 2-10 11-50 51-100101-200
201-400

401-600
601-2k 2k-4k

0.0
0.2
0.4
0.6
0.8
1.0

Oc
cu

ra
nc

e 
Ra

tio 1550ns
1560ns
1570ns
1600ns

(b) Nanosleep + Evict iTLB

0 1 2-10 11-50 51-100101-200
201-400

401-600
601-2k 2k-4k

Number of Instructions Retired per Execution
0.0
0.2
0.4
0.6
0.8
1.0

Oc
cu

ra
nc

e 
Ra

tio 4050ns
4250ns
4300ns
4350ns

(c) Timer (Section 4.2.2)

Figure 4. Temporal resolution of Controlled Preemption
using different wake up methods and performance degrada-
tion techniques. Data is shown as a histogram, in terms of
the number of victim instructions retired per preemption.
Different lines correspond to different values of 𝛿 .

To count preemptions, we record the vruntime and process
ID (PID) each time the kernel transfers control to userspace.
Starting from when the attacker begins launching interrupts,
we monitor until there are two consecutive kernel exits to
the victim process without interleaving with the attacker.
We vary 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 by adjusting the attacker’s execution length
using different numbers of serialized cache-miss memory
accesses, and run each experiment 50 times.

Figure 5 shows the plot of the difference between 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟
and 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 against the number of repeated interrupts
achieved by the attacker. We also include a curve indicat-
ing the expected relation (given the ratio from before). The
results demonstrate that the actual number of preemptions
achieved closely matches up to the expected number.

Varying thread priority. Since a high priority thread in-
crements its vruntime at a slower rate, we further examine
the effect of the victim’s scheduling priority. In this experi-
ment, we vary the victim’s priority by changing its nice value
while keeping the attacker’s priority at the default value of
zero.3 As shown in Figure 6, decreasing the victim’s nice
value (increasing its priority) reduces the number of consec-
utive preemptions. Remarkably, even with the smallest nice
value (highest victim priority), Controlled Preemption can
3We do not set the attacker’s nice value below zero as this requires the
attacker to be privileged. We do not set the attacker’s nice value above
zero as the attacker has no incentive to lower their priority.



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yongye Zhu, Boru Chen, Zirui Neil Zhao, and Christopher W. Fletcher

0 5000 10000 15000 20000 25000
Iattacker Ivictim(ns)

500
1000
1500
2000
2500
3000
3500
4000

Nu
m

be
r o

f C
on

se
cu

tiv
e 

Pr
ee

m
pt

io
ns

y = 8e6
x

Figure 5. The number of repeated preemptions (y-axis)
achieved by Controlled Preemption when varying 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 −
𝐼𝑣𝑖𝑐𝑡𝑖𝑚 (x-axis). The plot assumes Method 1 (Section 4.2.1)
although the result transfers to Method 2. Blue dots are ob-
servations (concrete settings of 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 and 𝐼𝑣𝑖𝑐𝑡𝑖𝑚) on our
test machine. The curve indicates the expected number of
consecutive preemptions.

20 15 10 5 0 5
Victim's Nice Value

550
600
650
700
750
800
850

Nu
m

be
r o

f 
 C

on
se

cu
tiv

e 
Pr

ee
m

pt
io

ns

Figure 6. The number of repeated preemptions (y-axis) is
a function of the victim’s nice value (x-axis). We set the
attacker to the default nice value 0. 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 ranges
between 10 µs and 15 µs.

still achieve hundreds of consecutive preemptions. This is
because 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 is near zero (regardless of nice). As a result,
𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 is always dominated by 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 .

Orthogonally, we observe that temporal resolution is also
largely unaffected by the victim nice setting.

Increasing the number of consecutive preemptions be-
yond the preemption budget. Controlled Preemption can
borrow the idea of using multiple preemption threads from
prior work [11, 28, 54] to increase the number of consecu-
tive preemptions beyond the preemption budget. Similar to
prior work, the attacker can launch 𝑛 preemption threads
𝐴1, 𝐴2, ..., 𝐴𝑛 . All these threads are well slept before the
attack. During the attack, the attacker first uses 𝐴1 to repeat-
edly preempt the victim thread. As 𝐴1 is about to run out
of preemption budget, the attacker wakes up 𝐴2 to continue
the attack, and so on. Since 𝐴1 is sleeping while subsequent
attacker threads continue the attack, it will be eligible to
interrupt the victim after 𝐴𝑛 completes its budget. With this
round-robin strategy, the attacker achieves an effectively
infinite preemption budget.

4.3.3 Measuring the impact of noise. We also test the
robustness of Controlled Preemption to noise. We character-
ize two sources of noise. First, scheduling noise refers to noise
caused by there being additional threads in the runqueue
that are not owned by the victim or attacker. Second, channel
noise refers to noise on the side channel (e.g., cache pollution).
We conduct our experiment using Method 1 (Section 4.2.1),
but the analysis is transferable to Method 2.

Scheduling noise. We study a system where the runqueue
is shared between a victim thread 𝑉 , an attacker thread 𝐴,
and a third compute-bound noise thread 𝑁 that does not
make system calls. See Figure 7 for the results of an experi-
ment that analyze how/when the three threads’ vruntimes
increase (which indicates when different threads get sched-
uled). Results generalize in a natural way for more noise
threads.

Suppose the attacker (𝐴) hibernates, i.e., has the smallest
vruntime, at the start. We analyze two cases. First, suppose
𝑉 ’s vruntime is initially less than 𝑁 ’s vruntime. In this case,
Controlled Preemption proceeds as usual between the 𝐴 and
𝑉 threads until either 𝑉 ’s and 𝐴’s vruntimes are such that
Equation (2) returns false or until 𝑉 ’s vruntime equals 𝑁 ’s
vruntime. Second, suppose 𝑁 ’s vruntime is initially less than
𝑉 ’s vruntime (not shown in Figure 7). In this case,𝑉 will not
be scheduled until, again, 𝑉 ’s and 𝑁 ’s vruntimes are equal.

Then, the remaining question is: can the attacker perform
Controlled Preemption after the victim and noise threads’
vruntimes become equal? This occurs at the dashed vertical
line in Figure 7. In this regime, we find that the attacker
gets interleaved with either the victim or noise thread in an
unpredictable fashion (see the zoom-in in the figure). That
is, scheduling follows the pattern ((𝑉 |𝑁 )𝐴)+.
To continue Controlled Preemption in this regime, we

adopt a well-known side-channel template attack (e.g., [27])
to construct a “victim ran last?” (or victim presence) oracle.
Specifically, by pre-computing the victim’s instruction trace
at cache-line granularity, the attacker can monitor specific
cache lines of interest during the measurement phase. By
probing these cache lines, the attacker gathers information
about the last executing thread, and only records data points
if the victim thread ran last. We implement this oracle for
our attack in Section 5.2.2.
We remark that the attacks we evaluate finish in several

milliseconds. Further, the attacker can choose when to run
the victim (per Section 3). Thus, it will likely be the case
that any noise threads will be preexisting in the runqueue
when the attack commences (as opposed to: are added to the
runqueue when the attack is underway). In that case, noise
thread vruntime will be higher than victim thread vruntime
and Controlled Preemption will proceed between just 𝐴 and
𝑉 without wasting preemption budget on noise threads (until
the victim’s vruntime catches up with the noise threads).



Controlled Preemption: Amplifying Side-Channel Attacks from Userspace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

53250 53500 53750 54000 54250 54500 54750 55000 55250
Sample ID

5.5

6.0

6.5

7.0

7.5

Vr
un

tim
e

1e7+4.319e11

Victim
Noise
Attacker

54045 54050 54055

45000

50000

55000

60000

+4.319754e11
Victim
Noise

Figure 7. vruntime progression in a ‘noisy’ system with a
third noise thread. The zoom-in shows the vruntimes of the
victim and noise thread at the point where they converge
(Sample 54033).

Channel noise. We identify two types of channel noise that
interfere with the attacker’s side-channel measurements. The
first type comes from the kernel’s code/data footprint during
context switches. We mitigate this noise by monitoring a
sufficiently-large structure (e.g., the L2 Cache and LLC in-
stead of the L1 cache) to not be polluted by the kernel. The
second type of noise is random (non-systematic) noise com-
ing from the other threads in other cores. To ameliorate this
noise, we adopt two strategies: 1) we run the victim several
times and take a majority vote; 2) alternatively, if possible,
we measure private core structures like the BTB and TLB
(which cannot be polluted by the activity of other cores). We
demonstrate such an attack on the BTB in Section 5.3.

4.4 Achieving Core Colocation
Our attack requires that the attacker and victim threads
reside in the same runqueue throughout the attack. Since
the runqueue is a per-logical core structure, the attacker
and victim threads need to colocate on the same logical
core. One straightforward approach would be pinning the
victim thread to an attacker-desirable logical core. However,
pinning threads owned by other users requires supervisor
privilege, which is not part of our threat model (Section 3).

We propose a simple strategy to achieve colocation with-
out pinning, that works if the system has at least one idle
logical core. We use this scheme in our evaluation (Section 5).
The idea is to exploit the load-balancing feature of the

CFS [71]. The CFS periodically checks the load on each core’s
runqueue and migrates tasks from busier cores to idle cores.
Our approach starts with the attacker launching 𝑁 − 1

compute-intensive dummy threads, where 𝑁 is the total
number of logical cores in the system. The attacker then pins
these 𝑁 − 1 dummy threads to 𝑁 − 1 logical cores, leaving

0 1 2-10 11-50 51-100101-200
201-400

400-600
601-2k 2k-4k

Number of Instructions Retired per Execution
0.0
0.2
0.4
0.6
0.8
1.0

Oc
cu

ra
nc

e 
Ra

tio 1500ns
1520ns
1540ns
1560ns

Figure 8. Temporal resolution of Controlled Preemption on
EEVDF. The figure represents the same experiment as that
shown in Figure 4b, but using EEVDF.

one core𝐶 idle. Next, the attacker invokes the victim thread,
which will be scheduled onto the idle core𝐶 to improve load
balance. Finally, the attacker can launch the attack thread
(as described previously) and pin it to 𝐶 , colocating with the
victim thread. Note that the victim is unlikely to migrate
to another core during the attack. This is because the CFS
load balancer observes that all other cores are occupied by
the attacker’s dummy threads and there are no idle cores to
migrate the victim thread to.

The above scheme requires 𝑁 threads total (𝑁 − 1 dummy
threads and 1 preemption/measurement thread) and is capa-
ble of monitoring either core-private or core-shared channels.
It is also simple to implement: It does not require synchro-
nization across attacker threads, and more generally presents
the preemption/measurement thread with the illusion of liv-
ing in a single-core system.
If the system is fully loaded, the above scheme will not

work because there is no idle logical core. This situation
is rare, and (in some cases) actively avoided. For example,
Google Cloud Run tries to keep containers’ CPU utilization
below 60% [7]. Further, since the attacker can choose when
to invoke the victim (Section 3), it can opt to run the attack
when the system is not fully loaded.

4.5 EEVDF Scheduler
In this section, we show that Controlled Preemption is trans-
ferrable to the latest EEVDF scheduler [17, 58]. Intuitively,
this is because the EEVDF scheduler also allows a well-slept
thread to immediately preempt the current running thread
for better system responsiveness.

To demonstrate the transferrability of our techniques, we
repeat the temporal resolution experiment from Section 4.3.1
on EEVDF, using the same environment except changing the
kernel version to 6.12-rc1. Figure 8 reports the temporal reso-
lution of the nanosleep method assisted by the TLB-flushing
performance degradation technique. From the figure, it is
clear that the victim retires only a few instructions between
preemptions when using a small 𝛿 , a behavior closely resem-
bling that of Figure 4b.

We now discuss the preemption budget under the EEVDF
scheduler. For simplicity, we consider the case where a single
logical core is exclusively shared between an attacker thread
𝐴 and a victim thread𝑉 . When selecting a thread to execute,
the EEVDF first identifies eligible threads whose vruntime is



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yongye Zhu, Boru Chen, Zirui Neil Zhao, and Christopher W. Fletcher

smaller than the average vruntime of all the threads from the
local runqueue. Among all the eligible threads, the EEVDF
schedules the thread has the nearest virtual deadline to run.
Since we assume only two threads in the runqueue, there is
only one eligible thread; the scheduling algorithm is reduced
to selecting the thread with the smallest vruntime. Therefore,
we omit the details of the virtual deadline and refer interested
readers to [17, 58].
Under such a scheduling policy, the attacker thread 𝐴

can preempt the victim thread 𝑉 as long as 𝐴’s vruntime
is smaller than 𝑉 ’s. As a result, the preemption budget is
simply the vruntime difference between 𝑉 and 𝐴 when 𝐴
wakes up from hibernation. We repeat the experiment from
Section 4.3.2 (that characterizes the number of preemptions)
with EEVDF. When 𝐼𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 − 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 ranges between 10,000
and 15,000 ns (i.e., the same setting in Figure 6 with default
nice value 0), we find that the attacker can repeatedly pre-
empt the victim for a median number of 219 times from 165
repeated experiments. We leave an in-depth exploration of
Controlled Preemption in the EEVDF as a future work.

5 Proof-of-Concept Exploits
We now show how Controlled Preemption can facilitate
breaking security-critical software. First, Section 5.1 char-
acterizes a standard microarchitectural attack benchmark:
Flush+Reload cache-timing attacks on the AES T-table al-
gorithm. Second, Section 5.2 demonstrates how Controlled
Preemption can also be used to conduct SGX-Step-like at-
tacks from userspace and perform Prime+Probe cache-timing
attacks. Finally, Section 5.3 demonstrates that Controlled Pre-
emption can utilize other (non cache) hardware channels
(specifically, the BTB).

All attacks follow the setup described in Section 4.3. To
colocate the attacker and victim onto the same logical core,
we spawn 𝑁 − 1 = 15 dummy threads following Section 4.4.
Then, a single attacker thread performs preemptions and
side-channel measurements.

5.1 Attacking T-Table AES
To start, we demonstrate Controlled Preemption by collect-
ing high temporal-resolution cache traces from a T-table
Advanced Encryption Standard (AES) victim, which has
been widely used to evaluate cache side-channel attack tech-
niques [11, 28, 30, 48, 54, 55, 75]. We show that Controlled
Preemption only requires 5 traces to conduct the first round
attack, which is comparable to the state of the art [11], but
only uses a single attacker thread for preemptions instead
of 40 threads.

5.1.1 Overview. AES is a widely used symmetric block
cipher with various key sizes. AES-128 uses a 16-byte secret
key k to encrypt a 16-byte plaintext p. We use the subscript
to denote the 1-byte data slice, for example, 𝑝0 is the first
byte of p, while 𝑝14..15 is the last two bytes. The AES-128

encryption procedure involves 10 rounds of computation.
Each round 𝑟 mixes a 16-byte input x(𝑟 ) with a 16-byte round
key K(𝑟 ) derived from the secret key k to generate the input
for the next round x(𝑟+1) or the final ciphertext. The first
round input x(0) is generated by x(0) = p ⊕ k. Finally, the
output of the last round x(10) is the ciphertext.

To enhance performance, the OpenSSL T-table AES imple-
mentation simplifies the mixure computation in each round
with table lookups using precomputed T-tables, denoted as
𝑇0, . . . ,𝑇3, each containing 256 4-byte entries. Using T-tables,
each round of computation can be represented as follows.

𝑥
(𝑟+1)
0..3 ← 𝑇0 [𝑥 (𝑟 )0 ] ⊕ 𝑇1 [𝑥

(𝑟 )
5 ] ⊕ 𝑇2 [𝑥

(𝑟 )
10 ] ⊕ 𝑇3 [𝑥

(𝑟 )
15 ] ⊕ 𝐾

(𝑟 )
0..3

𝑥
(𝑟+1)
4..7 ← 𝑇0 [𝑥 (𝑟 )4 ] ⊕ 𝑇1 [𝑥

(𝑟 )
9 ] ⊕ 𝑇2 [𝑥

(𝑟 )
14 ] ⊕ 𝑇3 [𝑥

(𝑟 )
3 ] ⊕ 𝐾

(𝑟 )
4..7

𝑥
(𝑟+1)
8..11 ← 𝑇0 [𝑥 (𝑟 )8 ] ⊕ 𝑇1 [𝑥

(𝑟 )
13 ] ⊕ 𝑇2 [𝑥

(𝑟 )
2 ] ⊕ 𝑇3 [𝑥

(𝑟 )
7 ] ⊕ 𝐾

(𝑟 )
8..11

𝑥
(𝑟+1)
12..15 ← 𝑇0 [𝑥 (𝑟 )12 ] ⊕ 𝑇1 [𝑥

(𝑟 )
1 ] ⊕ 𝑇2 [𝑥

(𝑟 )
6 ] ⊕ 𝑇3 [𝑥

(𝑟 )
11 ] ⊕ 𝐾

(𝑟 )
12..15

Given the equation above, it is clear that the T-table AES
implementation makes memory accesses depending on the
value of x(𝑟 ) . Since a single cache line fits 16 T-table entries,
the attacker can recover the upper 4 bits of each byte of x(𝑟 ) ,
known as the upper nibble. Now consider the first round
computation (𝑟 = 0), where x(0) = p ⊕ k. If the attacker
can learn information about x(0) with an attacker-controlled
plaintext input p, they can partially recover the secret AES
key k. This is known as the first round attack.
The main challenge of the first round attack is to distin-

guish T-table accesses made in the first round from other
rounds. This is difficult because each round of encryption
takes only about 120 cycles to complete on our system. There-
fore, we employ Controlled Preemption to monitor the vic-
tim’s execution at a fine temporal granularity.
Figure 9 shows one measurement trace of one T-table

𝑇0 over a single AES encryption execution, where the four
lookup indexes (𝑥 (0)0 , 𝑥

(0)
4 , 𝑥

(0)
8 , 𝑥

(0)
12 ) used in the first round

have upper nibbles (0, 4, 12, 8). Yellow blocks highlight the
T-table access at one cache line (y-axis) captured by one at-
tacker measurement/sample (x-axis). As seen in Figure 9, the
first four cache lines accessed by the victim are (0, 4, 12, 8),
which match the aforementioned upper nibbles of the secret
indexes. Ideally, the attacker should see a single cache ac-
cess (one yellow block) in each sample, with no overlap. In
practice, the attacker sees smears. This is due to imperfect
temporal resolution (stepping several vs. one instruction per
preemption) and speculative execution (more instructions
execute speculatively than are retired per preemption). We
follow prior work to solve this by collecting more traces.

5.1.2 Evaluation. In our evaluation, the attacker pro-
gram uses Flush+Reload [73] to monitor the victim’s secret-
dependent T-table accesses. Specifically, the attacker flushes
the entire T-table before napping and times the reload la-
tency to each entry after waking up. A short reload latency



Controlled Preemption: Amplifying Side-Channel Attacks from Userspace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

0 5 10 15 20 25 30 35 40
Sample ID

0123456789101112131415

Ca
ch

el
in

e 
In

de
x

Figure 9. Heatmap illustrating Flush+Reload results for a
single AES run. The y-axis denotes attacker measurements
for each of the 16 cache lines making up the T-table (yellow
indicates a hit during Reload; purple indicates a miss). Each
column (x-axis) denotes a sample where the attacker pre-
empts the victim. The first four accesses (those made in the
first round) are circled in red.

to an entry implies that the victim accessed the entry while
the attacker is napping.

Following the prior work [11], we collect multiple victim
traces with randomized plaintexts to determine the upper
nibble of each secret key byte and disable hardware prefetch-
ers to reduce channel noise.4
We demonstrate our exploits with both the CFS and

EEVDF schedulers. In each experiment, the victim is invoked
5 times, generating 5 side-channel traces that correspond to
the same key. When repeating the experiment 100 times on
CFS and EEVDF, where each repetition uses a different key,
the attacker can infer the upper nibble of each key byte with
an accuracy of 98.9% and 98.1%, respectively. Our recovery
accuracy and the required number of victim executions are
comparable to the state-of-the-art attack [11], which also
exploits the CFS to single step the victim AES encryption
process. But unlike Controlled Preemption, the prior attack
requires 40 colocated attacker threads.

5.2 Attacking SGX Enclaves
Next, we demonstrate how Controlled Preemption enables
high temporal resolution side-channel attacks on Intel SGX
enclaves. This is akin to SGX Step [61, 62], but does not
require the attacker to have supervisor privilege.
To start, we note that Controlled Preemption’s temporal

resolution when attacking SGX follows very similar trends
as Figure 4b but without explicit iTLB flushing (as SGX al-
ready performs TLB flushes on asynchronous enclave exit
events [16]).

5.2.1 Overview. Cryptographic keys are often stored as
base64-encoded PEM files for ease of transmission and are
decoded into internal representations before use. OpenSSL

4Note that the need of disabling hardware prefetchers is a limitation of
Flush+Reload and is not fundamental to Controlled Preemption. One can
circumvent this limitation with Prime+Probe-based attacks (used in the
next section). We use Flush+Reload to be apples-to-apples with prior work.

uses a lookup table (LUT)-based approach to translate each
base64 character into a 6-bit binary value. This process intro-
duces secret-dependent access patterns, making it vulnerable
to cache side-channel attacks.
OpenSSL’s base64 decoding function EVP_DecodeUpdate

groups 64 characters to parse at a time. First, it performs a
validity check by looking up each character through the LUT.
Second, it decodes valid characters to their binary represen-
tation. Both of the above are loops that read the LUT in a
base64 character-dependent fashion. After that, the function
returns the output and proceeds to decode the next chunk.
Sieck et al. [57] uses SGX Step to single step the victim

enclave that runs the RSA PEM file decode procedure. They
extract the victim’s precise LUT access pattern via a last-
level cache (LLC) Prime+Probe side channel. The LUT used
for translation is 128 bytes in size and spans two consec-
utive cache lines. Knowing which cache set one LUT ac-
cess touches shrinks the search space of one character. To
complete the attack, they leverage prior RSA cryptanalysis
to fully recover the RSA secret key. To reduce cache mea-
surement noise caused by speculative or out-of-order execu-
tion, they compile the SGX program with Load Value Injec-
tion [60] mitigations by setting MITIGATION-CVE2020-0551
to LOAD [3], which places load fences after every load instruc-
tions.

5.2.2 Challenges. Based on the prior base64 decoding
attack, we replace SGX Step with Controlled Preemption.
We monitor the LLC using Prime+Probe, targeting the LUT
when it is accessed during the validity check. This is non-
trivial compared to using SGX Step for several reasons:

Victim ‘overlooping.’ We are interested in monitoring one
LUT access per loop iteration during the validity check. This
presents a challenge. Ideally, we would like to set 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 to
exactly the length of one loop iteration. Setting 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 smaller
would result in extraneous preemptions, which consumes
preemption budget. Yet, as can be seen in Figure 4b, it is
difficult to guarantee a specific amount of forward progress
per preemption, beyond single stepping.

To side-step this issue, we (once again) combine Controlled
Preemption with performance degradation techniques. We
construct an LLC eviction set that is congruent to the cache
line that contains the LUT read instruction. This way, we
can use a larger 𝐼𝑣𝑖𝑐𝑡𝑖𝑚 and use the instruction cache miss to
stall the victim while waiting for the next preemption.

Intra-victim induced channel noise. The LUT is accessed
during both the validity and decode loops. We must ensure
that measurements correspond to the former not the latter.
To address this, we dual-purpose the eviction set that evicts
the LUT access load in the validity loop (see above) to also
test whether the victim is in the validity or decode loop.

Insufficient preemption budget. Recall Section 4.3.2 which
characterizes the number of repeated preemptions that can



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yongye Zhu, Boru Chen, Zirui Neil Zhao, and Christopher W. Fletcher

Figure 10. Cache probe latency trace for the base64 decoding function running inside an SGX enclave. Blue and orange traces
denote probe latencies for the two LUT eviction sets. Red is the latency to probe the instruction cache eviction set. The grey
(white) area is the victim performing the validity (decode) loop.

be achieved by Controlled Preemption. Since a 1024-bit RSA
private key PEM file consists of nearly 900 base64 characters,
the preemption budget only allows the attacker to recover
about 60% of the LUT access trace.

To address this, the attacker invokes the victim twice using
the same RSA key. During the first victim execution, the
attacker starts preempting the victim as soon as the victim
starts and captures the first half of the trace. During the
second victim execution, the attacker times their hibernation
and only starts preempting the victim when the victim is half
way through their execution, recovering the second half of
the trace. Finally, the attacker concatenates these two traces
to form a complete trace.

5.2.3 Evaluation. We use the same victim setup (i.e., en-
ables LVImitigation) as the prior work [57]. The attacker con-
structs one LLC eviction set for the victim’s load instruction
(in the validity check) and two for the LUT. In the measure-
ment phase, the attacker first probes the instruction eviction
set and then, if successful, probes the LUT eviction sets.

Figure 10 shows one segment of the Prime+Probe measure-
ment trace. The grey area represents the victim’s execution
in the validity loop, while the white area represents the exe-
cution in the decode loop. As we can see, the Prime+Probe
latency for the load instruction from the validity loop (the
red line in Figure 10) is high in the grey area, but low in the
white area, indicating that it accurately detects when the
victim is executing the validity loop.

We test on 30 randomized 1024-bit RSA private key files
which contain on average 872 base64 characters. On average,
our technique can recover the first 61.5% of the LUT access
trace with a 99.2% accuracy from a single victim execution.
With two victim executions and the trace concatenation
method (above), the attacker can fully recover the LUT access
trace with 98.9% accuracy.

5.3 Monitoring the BTB Side Channel
Finally, we demonstrate how Controlled Preemption can
also be applied to monitor non-cache channels by exploit-
ing the BTB. We reproduce an exploit first described in
NightVision [77], which combines the fine-grain preemption
primitive with a BTB side channel to leak fine-grain victim
control-flow information. For the former, NightVision uses
an SGX Step-like framework, and hypothesized (but did not

verify) that a userspace preemption mechanism would also
suffice. We verify this claim, enabling NightVision attacks
from userspace.

5.3.1 Overview. NightVision found that the BTB can be
updated by both control-transfer instructions (e.g., jmp) and
non-control-transfer instructions (e.g., nop). As a result, if
a non-control-transfer instruction 𝐴 collides with the BTB
entry of a control-transfer instruction 𝐶 ,5 executing 𝐴 will
invalidate𝐶’s BTB entry, potentially leading to a control-flow
misprediction when 𝐶 is next fetched.

The above enables an attacker to infer the victim’s control
flow. For example, the attacker can execute a direct jump to
create a BTB entry that collides with the victim’s instruction
of interest. Then the attacker triggers the victim execution,
and later checks whether its branch mispredicts. If a mispre-
diction occurs, the attacker learns that the victim’s instruc-
tion of interest was executed. This attack works regardless
of the type of the victim instruction.

5.3.2 Evaluation. As in NightVision, we attack the RSA
key generation procedure in mbedTLS version 3.0 [4], which
contains a secret-dependent branch in the Greatest Common
Divisor (GCD) function mbedtls_mpi_gcd. Extracting the
branch direction in each loop iteration is required to fully
recover the RSA secret key [51]. Unlike NightVision relying
on privileged performance counters to decode BTB states,
we use BTB Train+Probe gadgets from prior work [79] to
encode branch predictor state into cache state.6
Before the attack, the attacker identifies two instruc-

tions, each belonging to a separate direction of the secret-
dependent branch. The attacker then creates two pairs of
BTB Train+Probe gadgets that collide with these two victim
instructions respectively. We use the same method as done
in the previous PoC (Section 5.2.2) to interrupt the victim
at least once per loop iteration. During each measurement
phase, the attacker uses two BTB probes to infer which di-
rection the victim most recently took.
We run our attack on 30 pairs of prime numbers, each of

which results in 20∼30 loop iterations in the GCD function.

5In our machine setup, the BTB entry is indexed by the lower 32 bits of the
PC. Instructions with the same lower 32 bits will collide in the BTB.
6Directly measuring branch prediction outcomes using the timestamp
counter (rdtsc) is extremely noisy [39] and not well suited for our attack.



Controlled Preemption: Amplifying Side-Channel Attacks from Userspace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

We are able to extract all branch directions in a single victim
run with an average accuracy of 97.3%.

6 Mitigations
We discuss two avenues to mitigate Controlled Preemption:
(1) blocking the underlying side channel and (2) hardening
the thread scheduler.

Blocking the underlying side channel. Controlled Pre-
emption increases the temporal resolution of existing
side channels. Therefore, mitigating the encapsulated side-
channel leakage can stop our attack. Per Section 2.2, Con-
trolled Preemption can be used in conjunction with any
stateful/persistent channel. Thus, we focus on defenses that
nominally apply to any stateful/persistent channel.
In software, the most widely-deployed channel-agnostic

defense is constant-time or data-oblivious programming [10,
13, 14, 36, 46]. Constant-time programming works by rewrit-
ing the program so that its observable execution trace is
independent of secret data. The downside of this approach
is that it may not be complete (secure). For example, re-
cent work [15, 67, 68] has demonstrated how traditional
constant-time programming guidelines are insufficient on
modern microarchitectures. Thus, modest system/hardware
support [2, 5, 15, 76] is likely also required.
In hardware, the peer to constant-time programming is

spatial/temporal partitioning [22, 35, 41, 80]. Partitioning
works by isolating microarchitectural resources, used by
the victim, from the attacker. Before a partition is reused
by programs belonging to a different security domain, its
microarchitectural state is flushed [1, 22]. The downside to
this approach is that it requires hardware support.
Finally, one can limit hardware timer resolution [31, 64],

i.e., aggravate the side-channel receiver. This is effective
because many attacks (regardless of channel) rely on high-
resolution timers to detect microarchitectural events like
cache misses and branch mispredictions. The downside to
this approach is that there exists attack primitives that either
do not rely on hardware timers to gather microarchitectural
information [19, 75, 79] or otherwise can increase the reso-
lution of a low-resolution timer [37, 43].

Hardening the thread scheduler. Prior work [63] shows
that setting minimum scheduling intervals for vCPUs in
Xen hypervisors effectively mitigates frequent preemption-
like attacks against hypervisors. Inside the Linux kernel,
a similar strategy is to enable the NO_WAKEUP_PREEMPTION
feature. When this feature is enabled, the victim thread can
complete its minimum time slice before being preempted by
the attacker’s awakening thread. The downside is that this
feature degrades system responsiveness.
Agnostic to enforcing a minimum time slice, Constable

et al. [16] has proposed a software-hardware co-design ap-
proach to mitigate single-step attacks on Intel SGX. The idea

is to use a special trusted prefetch handler after ERESUME
to ensure that the victim makes significant progress be-
fore being preempted again. Unfortunately, this mechanism
would require significant kernel modifications to be used by
userspace programs. Moreover, this defense does not prevent
the attacker from making relative coarse-grained (50-100 in-
structions/preemption) observations that are still sufficiently
fine-grained to conduct certain attacks (e.g., the T-table AES
attack from Section 5.1).

7 Related Work
Improving the temporal resolution of side-channel analysis
is an active area of research. Prior work splits into three
categories, (1) those that induce preemption; (2) those that
speed up the side-channel receiver; (3) those that slow down
the victim (performance degradation). These three are not
mutually exclusive. For example, Controlled Preemption can
increase its preemption budget through approach (2) and
Controlled Preemption already utilizes approach (3), e.g. TLB
flushing (Section 4.3.1).

Preemption-based approaches. There is a rich line of work
on preempting victim threads in an Enclave (or otherwise
privileged) threat model [29, 39, 45, 61, 62, 78]. Here, the
attacker has supervisor privilege and uses supervisor capa-
bilities to facilitate the attack.

Our goal is to enable similar temporal resolution side chan-
nel analyses in an unprivileged setting. The closest work
is a series of papers [11, 12, 28, 54], starting with Cache
Games [28], that also exploit the CFS to preempt the victim
in a fine-grain manner. Controlled Preemption differs from
these works in that they require multiple (10s to 100s) of
threads to preempt the victim. This is because prior work
overlooks Equation (2) in the CFS. They implicitly require
attacker threads to always take the left-hand argument to the
max function in Equation (1). This results in the following
attack workflow. When an attacker thread performs a pre-
emption, it is forced to “cool down” (sleep) for a significant
period of time (𝑆𝑏𝑛𝑑 ) before it can perform another preemp-
tion. If the attacker wishes to preempt the victim 𝑋 times in
fast succession, it requires 𝑋 attacker threads—after the first
preempts and is “cooling down”, the second will preempt and
so on. By contrast, our work performs a careful analysis of
the CFS and enables repeated preemption with only a single
attacker thread.

Speeding up the receiver or slowing down the victim.
Beyond preempting the victim, an attacker can optimize
its receiver logic for a specific side channel (e.g., [30, 34,
52]). For example, Prime+Scope [52] reduces the accesses
needed to perform a Probe from the cache associativity to
a single cache line; Spec-o-Scope [30] combines ideas from
Prime+Scope and Katzman et al. [34] to achieve a 5 cycle
resolution over the cache-timing channel. Preemption-based



ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yongye Zhu, Boru Chen, Zirui Neil Zhao, and Christopher W. Fletcher

techniques, such as Controlled Preemption, differ from these
works in that they are channel agnostic: they can improve
the temporal resolution of any stateful channel.
Alternatively, the attacker can slow down the victim to

achieve finer-grain measurements, e.g., by flushing the active
instruction region [9, 38, 50], bus locking through cross cache
line atomic memory accesses [70], and port contention [8].
Performance degradation, by itself, cannot achieve as fine-
grain resolution as preemption-based methods, but can be
combined with preemption for various purposes (as we do
in Section 4.3 and Section 5.2.2).

8 Conclusion
This paper presented Controlled Preemption, the first
userspace framework that enables a single colocated attacker
thread to nearly single step a victim thread. We comprehen-
sively characterized the Controlled Preemption primitive in
the context of the widely-deployed CFS and EEVDF sched-
ulers. We demonstrated three proof-of-concept attacks that
show how Controlled Preemption can improve existing at-
tacks on multiple victim programs, inside and outside of
SGX, and across multiple side channel types.

Acknowledgments
We thank the anonymous reviewers for their helpful feed-
back. This work was partially supported by NSF grants CNS-
1954521, CNS-1942888, CNS-2154183, and CCF-8191902; as
well as by a gift from Intel.

References
[1] 2018. Indirect Branch Predictor Barrier. https://www.intel.com/

content/www/us/en/developer/articles/technical/software-security-
guidance/technical-documentation/indirect-branch-predictor-
barrier.html.

[2] 2021. Arm Armv8-A Architecture Registers. https://developer.arm.
com/documentation/ddi0595/2021-12.

[3] 2021. Intel® Processors Load Value Injection Advi-
sory. https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00334.html.

[4] 2022. Mbed-TLS: An Open Source, Portable, Easy to Use, Readable and
Flexible SSL Library. https://github.com/Mbed-TLS/mbedtls.

[5] 2023. Data Operand Independent Timing Instruction Set Archi-
tecture (ISA) Guidance. https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security-guidance/best-
practices/data-operand-independent-timing-isa-guidance.html.

[6] 2024. eBPF - Introduction, Tutorials & Community Resources. https:
//ebpf.io/.

[7] 2025. About instance autoscaling in Cloud Run services. https://cloud.
google.com/run/docs/about-instance-autoscaling.

[8] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Ce-
sar Pereida García, and Nicola Tuveri. 2019. Port Contention for Fun
and Profit. In IEEE Symposium on Security and Privacy (IEEE S&P).

[9] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and
Yuval Yarom. 2016. Amplifying Side Channels through Performance
Degradation. In Annual Conference on Computer Security Applications
(ACSAC).

[10] Jose Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupres-
soir, and Michael Emmi. 2016. Verifying Constant-Time Implementa-
tions. In USENIX Security Symposium (USENIX Security).

[11] C. Ashokkumar, Ravi Prakash Giri, and Bernard Menezes. 2016. Highly
Efficient Algorithms for AES Key Retrieval in Cache Access Attacks.
In IEEE European Symposium on Security and Privacy (EuroS&P).

[12] C Ashokkumar, Bholanath Roy, M Bhargav Sri Venkatesh, and
Bernard L Menezes. 2018. " S-Box" Implementation of AES is NOT
Side-channel Resistant. https://ia.cr/2018/1002

[13] Gilles Barthe, Gustavo Betarte, Juan Campo, Carlos Luna, and David
Pichardie. 2014. System-level Non-interference for Constant-time
Cryptography. In ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS).

[14] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure
Compilation of Side-Channel Countermeasures: The Case of Crypto-
graphic “Constant-Time”. InComputer Security Foundations Symposium
(CSF).

[15] Boru Chen, Yingchen Wang, Pradyumna Shome, Christopher W.
Fletcher, David Kohlbrenner, Riccardo Paccagnella, and Daniel Genkin.
2024. GoFetch: Breaking Constant-Time Cryptographic Implementa-
tions Using Data Memory-Dependent Prefetchers. In USENIX Security
Symposium (USENIX Security).

[16] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao, Cedric Xing,
Ilya Alexandrovich, Taesoo Kim, Frank Piessens, Mona Vij, and Mark
Silberstein. 2023. AEX-Notify: Thwarting Precise Single-Stepping At-
tacks through Interrupt Awareness for Intel SGX Enclaves. In USENIX
Security Symposium (USENIX Security).

[17] Jonathan Corbet. 2023. An EEVDF CPU Scheduler for Linux. https:
//lwn.net/Articles/925371/.

[18] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, JohnMcCalpin,
and Mengjia Yan. 2022. Don’t Mesh Around: Side-Channel Attacks and
Mitigations on Mesh Interconnects. In USENIX Security Symposium
(USENIX Security).

[19] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
2017. Prime+Abort: A Timer-Free High-Precision L3 Cache Attack
Using Intel TSX. In USENIX Security Symposium (USENIX Security).

[20] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016.
Jump over ASLR: Attacking Branch Predictors to Bypass ASLR. In
IEEE/ACM International Symposium on Microarchitecture (MICRO).

[21] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and
Dmitry Ponomarev. 2018. BranchScope: A New Side-Channel Attack
on Directional Branch Predictor. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS).

[22] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. 2019. Time
Protection: The Missing OS Abstraction. In Proceedings of the European
Conference on Computer Systems (Eurosys).

[23] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer.
2015. Stealing Keys from PCs Using a Radio: Cheap Electromagnetic
Attacks on Windowed Exponentiation. In Cryptographic Hardware
and Embedded Systems (CHES).

[24] Daniel Genkin, Adi Shamir, and Eran Tromer. 2013. RSA Key Ex-
traction via Low-Bandwidth Acoustic Cryptanalysis. In International
Cryptology Conference (CRYPTO).

[25] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018.
Translation Leak-Aside Buffer: Defeating Cache Side-Channel Pro-
tections with TLB Attacks. In USENIX Security Symposium (USENIX
Security).

[26] Daniel Gruss, Clémentine Maurice, KlausWagner, and StefanMangard.
2016. Flush+Flush: A Fast and Stealthy Cache Attack. In Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA).

[27] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache
Template Attacks: Automating Attacks on Inclusive Last-Level Caches.
In USENIX Security Symposium (USENIX Security).

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
 https://developer.arm.com/documentation/ddi0595/2021-12
 https://developer.arm.com/documentation/ddi0595/2021-12
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00334.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00334.html
https://github.com/Mbed-TLS/mbedtls
 https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
 https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
 https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://ebpf.io/
https://ebpf.io/
https://cloud.google.com/run/docs/about-instance-autoscaling
https://cloud.google.com/run/docs/about-instance-autoscaling
https://ia.cr/2018/1002
https://lwn.net/Articles/925371/
https://lwn.net/Articles/925371/


Controlled Preemption: Amplifying Side-Channel Attacks from Userspace ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands.

[28] David Gullasch, Endre Bangerter, and Stephan Krenn. 2011. Cache
Games – Bringing Access-Based Cache Attacks on AES to Practice. In
IEEE Symposium on Security and Privacy (IEEE S&P).

[29] Marcus Hähnel, Weidong Cui, and Marcus Peinado. 2017. High-
Resolution Side Channels for Untrusted Operating Systems. In USENIX
Annual Technical Conference (USENIX ATC).

[30] Gal Horowitz, Eyal Ronen, and Yuval Yarom. 2024. Spec-o-Scope:
Cache Probing at Cache Speed. In ACM SIGSAC Conference on Com-
puter and Communications Security (CCS).

[31] Wei-Ming Hu. 1992. Reducing Timing Channels with Fuzzy Time.
Journal of computer security (1992).

[32] Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui Apecechea,
Thomas Eisenbarth, and Berk Sunar. 2016. Cache Attacks Enable Bulk
Key Recovery on the Cloud. In Cryptographic Hardware and Embedded
Systems (CHES).

[33] Nikita Ishkov. 2015. A Complete Guide to Linux Process Scheduling.
Master’s thesis. University of Tampere.

[34] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal
Ronen, and Yuval Yarom. 2023. The Gates of Time: Improving Cache
Attacks with Transient Execution. In USENIX Security Symposium
(USENIX Security).

[35] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. 2018. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO).

[36] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In International Cryptology
Conference (CRYPTO).

[37] David Kohlbrenner and Hovav Shacham. 2016. Trusted Browsers for
Uncertain Times. In USENIX Security Symposium (USENIX Security).

[38] Andrew Kwong, Walter Wang, Jason Kim, Jonathan Berger, Daniel
Genkin, Eyal Ronen, Hovav Shacham, Riad Wahby, and Yuval Yarom.
2023. Checking Passwords on Leaky Computers: A Side Channel Anal-
ysis of Chrome’s Password Leak Detect Protocol. In USENIX Security
Symposium (USENIX Security).

[39] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. 2017. Inferring Fine-grained Control Flow Inside
SGX Enclaves with Branch Shadowing. In USENIX Security Symposium
(USENIX Security).

[40] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. 2016. ARMageddon: Cache Attacks on Mobile
Devices. In USENIX Security Symposium (USENIX Security).

[41] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Ger-
not Heiser, and Ruby B. Lee. 2016. CATalyst: Defeating last-level cache
side channel attacks in cloud computing. In International Symposium
on High-Performance Computer Architecture (HPCA).

[42] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
2015. Last-Level Cache Side-Channel Attacks are Practical. In IEEE
Symposium on Security and Privacy (IEEE S&P).

[43] Ross Mcilroy, Jaroslav Sevcik, Tobias Tebbi, Ben L. Titzer, and Toon
Verwaest. 2019. Spectre is here to stay: An analysis of side-channels
and speculative execution. https://arxiv.org/abs/1902.05178

[44] Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky,
Johannes Mittmann, and Jörg Schwenk. 2021. Raccoon Attack: Finding
and Exploiting Most-Significant-Bit-Oracles in TLS-DH(E). In USENIX
Security Symposium (USENIX Security).

[45] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017.
CacheZoom: How SGX Amplifies the Power of Cache Attacks. In
Cryptographic Hardware and Embedded Systems (CHES).

[46] David Molnar, Matt Piotrowski, David Schultz, and David Wagner.
2005. The Program Counter Security Model: Automatic Detection and
Removal of Control-Flow Side Channel Attacks. In USENIX Security
Symposium (USENIX Security).

[47] Ingo Molnar. 2007. sched-design-CFS.txt. https://www.kernel.org/doc/
Documentation/scheduler/sched-design-CFS.txt.

[48] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks
and Countermeasures: The Case of AES. In The Cryptographers’ Track
at the RSA Conference (CT-RSA).

[49] Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. 2021.
Lord of the Ring(s): Side Channel Attacks on the CPU On-Chip Ring
Interconnect Are Practical. In USENIX Security Symposium (USENIX
Security).

[50] Cesar Pereida García, Billy Bob Brumley, and Yuval Yarom. 2016. "Make
Sure DSA Signing Exponentiations Really are Constant-Time". In ACM
SIGSAC Conference on Computer and Communications Security (CCS).

[51] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Capkun. 2021.
Frontal Attack: Leaking Control-Flow in SGX via the CPU Frontend.
In USENIX Security Symposium (USENIX Security).

[52] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021.
Prime+Scope: Overcoming the Observer Effect for High-Precision
Cache Contention Attacks. In ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[53] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
2009. Hey, You, Get Off of My Cloud: Exploring Information Leakage in
Third-Party Compute Clouds. In ACM SIGSAC Conference on Computer
and Communications Security (CCS).

[54] Bholanath Roy, Ravi Prakash Giri, Ashokkumar C., and Bernard
Menezes. 2015. Design and Implementation of an Espionage Net-
work for Cache-based Side Channel Attacks on AES. In International
Joint Conference on e-Business and Telecommunications (ICETE).

[55] Till Schlüter, Amit Choudhari, Lorenz Hetterich, Leon Trampert,
Hamed Nemati, Ahmad Ibrahim, Michael Schwarz, Christian Rossow,
and Nils Ole Tippenhauer. 2023. FetchBench: Systematic Identifica-
tion and Characterization of Proprietary Prefetchers. In ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[56] Michael Schwarz, Moritz Lipp, and Daniel Gruss. 2018. JavaScript
Zero: Real JavaScript and Zero Side-Channel Attacks. In Network and
Distributed System Security Symposium (NDSS).

[57] Florian Sieck, Sebastian Berndt, Jan Wichelmann, and Thomas Eisen-
barth. 2021. Util::Lookup: Exploiting Key Decoding in Cryptographic
Libraries. In ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS).

[58] I. Stoica and H. Abdel-Wahab. 1995. Earliest Eligible Virtual Deadline
First: A Flexible and Accurate Mechanism for Proportional Share Re-
source Allocation. https://people.eecs.berkeley.edu/~istoica/papers/
eevdf-tr-95.pdf

[59] Andrei Tatar, Daniël Trujillo, Cristiano Giuffrida, and Herbert Bos.
2022. TLB;DR: Enhancing TLB-based Attacks with TLB Desynchro-
nized Reverse Engineering. In USENIX Security Symposium (USENIX
Security).

[60] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens. 2020. LVI: Hijacking Transient Execution through Mi-
croarchitectural Load Value Injection. In IEEE Symposium on Security
and Privacy (IEEE S&P).

[61] Jo Van Bulck and Frank Piessens. 2023. SGX-Step: An Open-Source
Framework for Precise Dissection and Practical Exploitation of Intel
SGX Enclaves. In Annual Conference on Computer Security Applications
(ACSAC).

[62] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control. In
Workshop on System Software for Trusted Execution (SysTEX).

[63] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift.
2014. Scheduler-based Defenses against Cross-VM Side-channels. In
USENIX Security Symposium (USENIX Security).

[64] Bhanu C. Vattikonda, Sambit Das, and Hovav Shacham. 2011. Eliminat-
ing fine grained timers in Xen. In Cloud Computing Security Workshop

https://arxiv.org/abs/1902.05178
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://people.eecs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
https://people.eecs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf


ASPLOS ’25, March 30–April 3, 2025, Rotterdam, Netherlands. Yongye Zhu, Boru Chen, Zirui Neil Zhao, and Christopher W. Fletcher

(CCSW).
[65] Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. 2022. MeshUp:

Stateless Cache Side-channel Attack on CPUMesh. In IEEE Symposium
on Security and Privacy (IEEE S&P).

[66] Alan Wang, Boru Chen, Yingchen Wang, Christopher W. Fletcher,
Daniel Genkin, David Kohlbrenner, and Riccardo Paccagnella. 2025.
Peek-a-Walk: Leaking Secrets via Page Walk Side Channels. In IEEE
Symposium on Security and Privacy (IEEE S&P).

[67] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav
Shacham, Christopher W. Fletcher, and David Kohlbrenner. 2022.
Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing
Attacks on x86. In USENIX Security Symposium (USENIX Security).

[68] Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang,
Grant Garrett-Grossman, Christopher W. Fletcher, David Kohlbrenner,
and Hovav Shacham. 2023. DVFS Frequently Leaks Secrets: Hertzbleed
Attacks Beyond SIKE, Cryptography, and CPU-Only Data. In IEEE
Symposium on Security and Privacy (IEEE S&P).

[69] Zixuan Wang, Mohammadkazem Taram, Daniel Moghimi, Steven
Swanson, Dean Tullsen, and Jishen Zhao. 2023. NVLeak: Off-Chip
Side-Channel Attacks via Non-Volatile Memory Systems. In USENIX
Security Symposium (USENIX Security).

[70] Zhenyu Wu, Zhang Xu, and Haining Wang. 2012. Whispers in the
hyper-space: high-speed covert channel attacks in the cloud. InUSENIX
Security Symposium (USENIX Security).

[71] Wei Xu. 2024. Deep into Linux and Beyond. https://wxdublin.gitbooks.
io/deep-into-linux-and-beyond/content/cfs_internals.html.

[72] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W.
Fletcher, Roy H. Campbell, and Josep Torrellas. 2019. Attack Directo-
ries, Not Caches: Side Channel Attacks in a Non-Inclusive World. In
IEEE Symposium on Security and Privacy (IEEE S&P).

[73] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-Channel Attack. In USENIX
Security Symposium (USENIX Security).

[74] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed:
A Timing Attack on OpenSSL Constant Time RSA. Journal of Crypto-
graphic Engineering (2016).

[75] Jiyong Yu, Aishani Dutta, Trent Jaeger, David Kohlbrenner, and
Christopher W Fletcher. 2023. Synchronization Storage Channels
(S2C): Timer-less Cache Side-Channel Attacks on the Apple M1 via
Hardware Synchronization Instructions. In USENIX Security Sympo-
sium (USENIX Security).

[76] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W.
Fletcher. 2018. Data Oblivious ISA Extensions for Side Channel-
Resistant and High Performance Computing. In Network and Dis-
tributed System Security Symposium (NDSS).

[77] Jiyong Yu, Trent Jaeger, and Christopher Wardlaw Fletcher. 2023. All
Your PCAre Belong to Us: Exploiting Non-control-Transfer Instruction
BTB Updates for Dynamic PC Extraction. In International Symposium
on Computer Architecture (ISCA).

[78] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
2012. Cross-VM Side Channels and Their Use to Extract Private Keys.
In ACM SIGSAC Conference on Computer and Communications Security
(CCS).

[79] Zhiyuan Zhang, Mingtian Tao, Sioli O’Connell, Chitchanok Chuengsa-
tiansup, Daniel Genkin, and Yuval Yarom. 2023. BunnyHop: Exploiting
the Instruction Prefetcher. In USENIX Security Symposium (USENIX
Security).

[80] Zirui Neil Zhao, Adam Morrison, Christopher W Fletcher, and Josep
Torrellas. 2023. Untangle: A Principled Framework to Design Low-
leakage, High-performance Dynamic Partitioning Schemes. In Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[81] Zirui Neil Zhao, Adam Morrison, Christopher W. Fletcher, and Josep
Torrellas. 2024. Last-Level Cache Side-Channel Attacks Are Feasible in
the Modern Public Cloud. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

https://wxdublin.gitbooks.io/deep-into-linux-and-beyond/content/cfs_internals.html
https://wxdublin.gitbooks.io/deep-into-linux-and-beyond/content/cfs_internals.html

	Abstract
	1 Introduction
	2 Background
	2.1 Linux Completely Fair Scheduler
	2.2 Microarchitectural Side-Channel Attacks

	3 Threat Model
	4 Controlled Preemption
	4.1 Controlled Preemption on the CFS
	4.2 Controlled Wake Up
	4.3 Evaluation
	4.4 Achieving Core Colocation
	4.5 EEVDF Scheduler

	5 Proof-of-Concept Exploits
	5.1 Attacking T-Table AES
	5.2 Attacking SGX Enclaves
	5.3 Monitoring the BTB Side Channel

	6 Mitigations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

